NATIONAL UNIFORM ELECTRICAL LICENSING Advisory Council

LIST OF ESSENTIAL PERFORMANCE CAPABILITY REQUIREMENTS FOR LICENSED ELECTRICIANS

Explanatory Note

This policy document was developed by NUELAC's Electrician Working Group, later approved by NUELAC on 13 February 2001 and then released for industry information on 1 March 2001.

NUELAC membership covers various government and industry interests relevant to the safe and competent performance of electrical work. NUELAC therefore includes the electrical industry associations and technical/safety regulators (licensing authorities) of all Australian States/Territories. New Zealand is an observer. The document has been approved by the Electrical Regulatory Authorities Council (ERAC) for use by the various licensing authorities.

The purpose of the document is to provide clear guidance to Registered Training Organisations (RTOs) in Australia about the regulatory requirements that a trainee must satisfy, before he or she can be issued with an Electrician Licence.

Failure by an RTO to provide evidence (to the satisfaction of the relevant licensing authority) that the training (including assessment) delivered to a licence applicant satisfies the stated requirements and forms an integral part of an *approved National Training Package qualification, which means the applicant has successfully passed a "capstone assessment" in accordance with specified requirements, will result in the applicant being required to undertake further assessments at the discretion of the licensing authority.

This document shows both the overall essential capability list as well the critical items within that list, thus detailing part of the requirements for the "capstone assessment" of each trainee.

The over-arching objective is that the training for a prospective electrician must deliver at least the "essential performance capability" requirements, and that the capstone assessment will confirm that the most critical of these has been attained by the applicant.

*Approved National Training Package means an ANTA National Training Quality Council endorsed National Training Package qualification, that includes the "Capstone Assessment Test" as approved by ERAC/NUELAC, within the respective industry's training program where recommended.

Enquiries: Please contact the Electrical Licensing Authority in your Australian State/Territory.

LIST OF ESSENTIAL PERFORMANCE CAPABILITIES FOR PROSPECTIVE ELECTRICIANS (with "Critical Items" shown)

Preface and Context:

The following tables list the various essential or minimum capabilities expected of a licensed Electrician in any State/Territory in Australia. To put this statement into a workplace competency context where relevant, a person seeking an electrician licence needs to be capable of competently and safely performing the tasks set out in the tables, in a wide variety of typical industry environments, working independently and without supervision.

Furthermore, the person needs to know what action, if taken, will void the integrity, compliance and/or certification of electrical equipment or an electrical installation.

"Typical industry environments" is to be taken to include routine types of commercial premises and office buildings to 10 levels, industrial sites of modest complexity (with some HV plant and hazardous areas), institutional premises of modest complexity (eg high schools and non-specialist hospitals), and residential premises (single dwellings, multi-unit buildings including high rise units).

		COMMENTS	Critical
	ESSENTIAL CAPABILITY COMMENTS	COMMENTS	Item
1.	Demonstrate a knowledge of basic electrical and energy concepts.	Fundamentals of electrical energy, other energy forms, voltage, current and resistance.	
2.	Demonstrate a knowledge of the various effects of electric current.	Physiological effects on humans, heating and other energy conversion effects and principles.	Critical
3.	Demonstrate a knowledge of resistivity and resistors.	Ohm's law, material resistivity, resistor parameters and introduction to measuring methods.	
4.	Demonstrate a knowledge of the various sources of electromotive force (e.m.f.).	How electrical energy is produced from various forms of energy, including batteries.	
5.	Explain the operation of a simple practical circuit.	Include current path, circuit control, load, EMF source and conductors.	Critical

The applicant will be able to competently:-

	ESSENTIAL CAPABILITY	COMMENTS	Critical
-			
6.	Determine the resistance, voltage,	I heoretical and practical knowledge	Critical
	Current and power in any part of a DC singuit using theory and actual	or measuring instrument use and sale	
	massurement methods	Include series and/or parallel circuit	
	measurement methous.	analysis	
7	Demonstrate a knowledge of the	Concepts and characteristics of	
	theory and application of	Capacitors and Inductors and their	
	Capacitors and Inductors.	application in DC circuits.	
	-		
8.	Demonstrate a knowledge of	Magnetism, magnetic induction,	
	permanent and electro magnetic	magnetic fields and the fundamental	
	theory and application.	magnetic quantities.	
0			
9.	Demonstrate a knowledge of	Principles of EMF induced in a	
	electromagnetic induction and state	conductor and its application in	
	of this principle		
10	Demonstrate a knowledge of	To include calculation of capacitive	
10.	Capacitance and Inductance in AC	and inductive reactance, effects on V	
	circuits and their effects.	and I phase relationships, resonance	
		and impedance in AC series and	
		parallel circuits.	
11.	Demonstrate a knowledge of	Explain sinusoidal voltage generation	Critical
	alternating voltage & current	and resultant current flow. Define key	
	generation, phase relationships,	terms, calculate and apply measuring	
	energy in an AC circuit, and actual	techniques to derive required	
10	measurement methods.	parameters. Eg power factor.	
12.	Describe Star and Delta three phase	Multiphase systems and their	
	AC systems and the reason why three phase is used	advantages – reduced current now,	
	three phase is used.	diagrams) of line and phase voltages	
13	Demonstrate an understanding of	Definitions alterations protection	Critical
	the fundamental safety principles of	design, selection and installation of	21110ui
	the AS/NZS 3000:2000 Section 1.	electrical equipment for electrical	
		safety requirements. This includes	
		protection from direct and indirect	
		contact with live parts.	
14.	Demonstrate a knowledge of power	Consequences of low power factor,	
	factor, power factor improvement	value of capacitance required for	
	principles and power measurement	correction, measurement theory and	
	techniques to AC circuits in 1 and	methods to obtain real power and	
1.5	multiphase systems.	apparent power values.	
15.	Describe the rationale and	Concept of a rotating magnetic field,	
	operating principles and	stator and rotor construction. Power,	
	characteristics of three phase	torque and speed relationships.	
1	muuction motors and generators.		

		COMMENTS	Critical
	ESSENTIAL CAPABILITY	COMMENTS	Item
16.	Describe methods of electric motor	Reduced current starting, methods of	Critical
	selection, starting, connection and	starting (star-delta etc), typical motor	
	protection.	lead terminations and protection	
		(including by electronic devices) of	
		the motor from environmental,	
		overload, internal faults and supply	
		variation conditions.	
17.	Describe the AS/NZ 3000:2000 and	Design of motor circuits for operator	
	local Supply Authority	control, isolation, automatic starting	
	requirements for three phase motor	and emergency stopping. Starting	
	installations and starters.	methods required by the local supply	
		authority to limit the transient current.	
18.	Describe the possible causes of	Common causes of malfunction –	
	malfunction of three phase	starting equipment failure, insulation	
	induction motors and demonstrate	deterioration, water ingress etc.	
	the tests required for diagnosing	Common testing methods – voltage,	
	faults	ampere and insulation resistance	
		checks.	
19.	Describe the operating principles,	The rotating magnetic field and	
	typical control methods and	components for single phase motors,	
	characteristics of single phase	methods to achieve starting and	
	motors and their key components.	operating torque. Control methods	
		used including voltage/speed	
		reduction, reversal and impact on	
		performance.	
20.	Describe the suitability of various	Application of various motor	
	types of single phase motors for	starting/operating torque curves to	
	particular applications and describe	various mechanical loads. Eg drills,	
	the fault finding methods.	fans and pumps etc.	
21.	Describe and apply in practice the	Earthing arrangements for protective	Critical
	requirements of AS/NZ 3000:2000	and functional purposes, earthing	
	in relation to earthing arrangements	connections and conductor selection.	
	and fault loop impedance	Calculation of the correct cable size	
	calculations.	for an installation to achieve	
		protective device and cable co-	
		ordination.	0
22.	Demonstrate a comprehensive	Multiple Earthed Neutral arrangement,	Critical
	knowledge and understanding of the	resultant fault current path and	
	WIEN system and its application,	magnitude, operation of protective	
	including on sub-installations.	absonces and implication of MEN link	
22	Describe the basis served of the	Design of different types of the	
23.	Describe the basic construction of	Design of different types of core	
	transformers.	animation styles, winding types and	
1		assembly lecilingues.	1

		COMMENTS	Critical
	ESSENTIAL CAPABILITY	COMMENTS	Item
24.	Demonstrate understanding of the	Production of secondary winding	
	principle of operation of	induced EMF from primary winding	
	transformers.	and core. Open circuit and full load	
		parameters.	
25.	List the main types of transformers.	Single and double wound, auto,	
		current and voltage transformers.	
26.	List typical applications of various	Distribution and transmission systems,	Critical
	types of transformers and key safety	large consumers' installations, within	
	issues.	electrical equipment, appliances	
		including welders. Safe working	
		procedures when connecting and	
		testing transformers.	~ · · · ·
27.	Describe and apply in practice the	Causes of excess current (and voltage)	Critical
	requirements for circuit protection	within a circuit. Calculation and	
	using AS/NZS 3000:2000 and other	selection of protective devices to	
	relevant Australian Standards. Eg	satisfy the required Standards.	
28	Demonstrate a knowledge of the	Protection against both direct and	Critical
20.	SFLV PFLV and earth leakage	indirect contact using SELV and	Cinical
	current protection systems and their	PELV systems Protection using	
	annlication in accordance with	Residual Current Device	
	AS/NZS 3000:2000.	Residual Carrent Device.	
29.	Demonstrate the ability to select	Determination of maximum demand.	Critical
	cables for mains and submains	voltage drop, interpretation of cable	
	using AS/NZS 3000:2000 and	supplier data tables and the impact of	
	AS/NZS 3008.1 based on current	various installation methods. Selection	
	carrying capacity, short circuit	of the appropriate cable installation	
	capacity, maximum demand and	route/method.	
	voltage drop, for single phase and		
	three phase installations including		
	multiple installations.		
30.	Demonstrate the ability to select	Application of maximum demand	Critical
	cables for final subcircuits using	methods to calculate current	
	AS/NZS 3000:2000 and AS/NZS	requirements and ensure voltage drop	
	3008.1 based on current carrying	is within specification, evaluation of	
	capacity, short circuit capability,	the installation method.	
	impedance and voltage drop		
31	Describe the control and protection	Main board controls sub installation	Critical
51.	requirements for installations and	control and submain/final subcircuit	Cinical
	equinment. Demonstrate the ability	controls Assessment of the	
	to select suitable equipment and	prospective short circuit current and	
	switchgear for a narticular	operating current Selection of	
	installation or part of an	equipment and suitable protection	
	installation.	equipment to protect conductors and	
		installed equipment. Inclusion of	
		RCD's where required.	

	ESSENTIAL CADADILITY	COMMENTS	Critical
	ESSENTIAL CAI ADILITT		Item
32.	Demonstrate an understanding of	Suitable locations for switchboards	
	the AS/NZS 3000:2000 and	(eg well ventilated and dry) including	
	regulatory requirements for the	personnel access requirements.	
	location of switchboards and	Requirements for metering and	
	arrangement of switchboard	equipment positions and the	
	equipment in installations	identification of switchboard	
		equipment (and the switchboard).	~ · · · ·
33.	Demonstrate an understanding of	Damp zones and related equipment	Critical
	the AS/NZS 3000:2000 and	requirements. Assessment of the	
	regulatory requirements for the	earthing requirements and wiring	
	installation of electrical equipment	systems for damp and wet areas as per	
	in given damp situations and wet	Section 7 of the AS/NZS 3000:2000	
24	areas.	Wiring Rules.	0.1
54.	Demonstrate the appropriate	Assessment of supply requirements,	Critical
	methods for the installation,	final circuit protection and socket	
	modification and testing of electrical	outlet requirements.	
	installations and equipment for	A S DIZE 27(0 and alastrical	
	construction and demolition sites,	AS/NZS 3/60 and electrical	
	complying with AS/NZS 3012 and	installation testing requirements.	
	applicable workplace safety		
25	legislation.	Variana taman famintan hastan and	Critical
33.	Demonstrate knowledge of AS/NZS	various types of aerial conductors and their emplication (installation methods	Critical
	5000:2000 requirements for the	A gassmont of underground and agricit	
	installation of aerial conductors and	Assessment of underground and aerial	
	underground wiring.	process. Underground ashle	
		installation systems	
36	Domonstrato a knowledge of the	Basics as set out in AS/NZS	Critical
50.	AS/NZS 3000.2000 requirements for	3000.2000 awareness of concepts and	Cinical
	electrical installations in hazardous	practices in specialised standards	
	areas and an awareness of the	provinces in specialised standards.	
	standards to which it refers (e.g. AS		
	2430. AS 2381.1).		
37.	Demonstrate knowledge of the	Standards for special installations eg	
	AS/NZS 3000:2000 requirements	Movable premises, Caravan parks and	
	and the standards referenced for	Shows and Carnivals AS 3001, High	
	special electrical installations	Voltage Neons AS/NZS 3832,	
	including emergency systems, and	standards for the electrical	
	construction/demolition sites.	installations of emergency systems	
		and construction/demolition sites	
38.	Describe and perform to AS/NZS	Tests to ensure the requirements of the	Critical
	3000:2000 and AS/NZS 3017	Standards have been met, include:	
	standards the electrical checks and	visual checks, testing energised and de	
	tests required to ensure electrical	energised circuits – earth continuity,	
	installations are safe.	insulation resistance, polarity test,	
		fault loop impedance tests etc.	

	ESSENTIAL CADARII ITV	COMMENTS	Critical
	ESSENTIAL CALADILIT I		Item
39.	Demonstrate the reporting of test results for an electrical installation as typically required to satisfy regulatory requirements.	Statutory documentation requirements and the practices necessary to achieve compliance.	
40.	Demonstrate the knowledge and skill to perform effective safe isolation of any equipment, including switch and lock off, circuit isolation, equipment testing and tagging procedures.	The sequential steps needed to achieve an isolated, tested and safe work area. Preparation of a written isolation procedure.	Critical
41.	Describe the construction, specifications, colour coding and application of various types of cords and cables.	Conductor material, stranding, colour coding, sheathing types and other construction parameters of cords and cables. Typical application examples of the various cable types and interpretation of cable manufacturers data.	
42.	Demonstrate the skill to prepare and terminate cords and cables.	Requirements for cable jointing and termination in a variety of installation situations and accessories.	
43.	Demonstrate the Selection and attachment of electrical accessories, using appropriate fixing devices and methods.	Various fixing devices, methods and the tools which may be used – need for safety whilst performing this work.	
44.	Demonstrate the knowledge and skill to install and terminate a variety of electrical cables in a wide range of applications (including final subcircuits) to AS/NZS3000:2000.	Installation requirements for a wide range of typically used electrical cables in a variety of situations: e.g. thermoplastic, elastomer sheaths, XLPE, high temperature cables. Separation from other services (and fire wall penetrations).	Critical
45.	Demonstrate the knowledge and skills for the installation of wiring support systems	Steel conduit, PVC conduit, ladder/perforated tray, trough/duct, including ratings, space, etc.	
46.	Describe and perform the circuit tests required for electrical cables in a range of installations, with attention to the final subcircuit tests.	Earth continuity, insulation resistance, fault loop impedance, polarity and correct circuit connection tests.	Critical
47.	Instal final subcircuit wiring into switchboards and connect to switchboard equipment in accordance with AS/NZS 3000:2000 and local supply authority requirements.	Termination of subcircuit cabling at switchboards and connection to components.	Critical

	ESSENTIAL CAPABILITY	COMMENTS	Critical
			Item
48.	Connect consumers mains to an installation, in accordance with AS/NZS 3000:2000 and local supply authority requirements.	Installation of consumers mains in buildings and underground. Termination at pillars, pits and mains connection boxes. Bonding of metallic meter enclosures	Critical
49.	Determine and apply AS/NZS 3000:2000 and AS/NZS 3008 requirements for the installing, terminating and testing of MIMS and Armoured cables. This is to include the cable type selection to AS2381 (or other standards) requirements.	Assessment of cable ratings according to installation method and location. Installation and termination of MIMS and armoured cables and accessories and necessary tests.	
50.	Determine and apply AS/NZS 3000:2000 requirements for the installing, terminating and testing of catenary supported cables, pendant- type socket outlets and trailing cables.	Assessment of the requirements for installation of cables and accessories supported by catenary wire, techniques of installing trailing cables.	
51.	Demonstrate ability to read, sketch and interpret electrical diagrams.	Purpose and characteristics of schematic, block and wiring diagrams, typical symbols used.	Critical
52.	Design and connect switching circuits, including via electronic logic controls, as per AS/NZS 3000.	Lighting and equipment control circuits. PLCs at basic level. Other types of logic controllers (eg C Bus).	
53.	Describe basic statutory occupational safety and health responsibilities for employers and employees, including supervisory requirements and employees' own "duty of care".	Occupational Safety and Health regulations and electrical safety regulations - legal requirements, safety committees and duty of care.	Critical
54.	Demonstrate understanding of the requirements for personal safety in the workplace including safe isolation and application of safety practices.	Adoption of safe working practices, incident reporting process and responsibility to co- workers. Reference to safe electrical work guidelines issued by regulators, including supervision requirements applying to apprentices and trainees.	Critical
55.	Describe a workplace safety check, identify potential workplace hazards and suggest measures for accident prevention.	Workplace safety inspections. Reference to guidelines issued by both electrical safety regulators and general workplace safety regulators including the supervision requirements applying to apprentices/trainees	

		COMMENTS	Critical
	ESSENTIAL CAPABILITY	COMMENTS	Item
56.	Demonstrate the knowledge and	Testing and tagging procedures,	
	practices that are essential for	common causes and prevention of	
	working safely with electrical	electric shocks and incidents. Safe	
	equipment and tools and knowledge	use of hand and power tools,	
	of testing and tagging procedures to	including power actuated fastening	
	AS 3760.	devices, ladders, elevated work	
		platforms, etc	0.1
57.	Describe the method of rescuing a	Fundamental principles of emergency	Critical
	person in contact with live electrical	procedures.	
	conductors or equipment.		
58	Describe the emergency first aid	Application and learning of EAR and	Critical
	requirements for an electric shock	CPR procedures to resuscitate and	
	victim and demonstrate the	stabilise a victim. Use of fire	
	knowledge and application skill of	extinguishers to control electrical fire	
	EAR and CPR.	at accident site.	
59.	Demonstrate knowledge and	Step and touch voltages, induced	Critical
	understanding of the significant	voltages, creepage and clearance	
	dangers of High Voltage equipment	requirements. Stored energy and	
	and distribution systems.	earthing requirements. The use of safe	
		working procedures.	
60.	Describe the types of potential	Eg 1. The need to isolate and earth an	
	operational situations that may be	item of equipment supplied at High	
	encountered in various areas of	Voltage, for repair or maintenance	
	industry, that will require assistance	work.	
	from more experienced industry	Eg 2. The need to sequentially	
	personnel.	shutdown and isolate a gas fired boiler	
		in preparation for electrical	
(1	Describe the time of excitations that	maintenance.	
61.	Describe the type of assistance that	Continuing the above examples	
	situations that could be encountered	Dg 1. Consulting experienced local	
	in various areas of industry	on H V Switching procedure and	
	III various areas of muusury.	earthing arrangements	
		Fg 2 Consulting experienced	
		nersonnel for the advice to shut down	
		the boiler in a safe manner	

		COMMENTS	Critical
	ESSENTIAL CAPABILITY	COMMENTS	Item
62	Describe methods of commissioning	Commissioning: Circuit voltage	Critical
02.	and/or decommissioning electrical	testing phase rotation checks syste-	Cinical
	and/or decommissioning electrical	matic loading up correct installation	
	equipment of an instantion, using	functioning and instrumentation/	
	a systems approach.	control parameter abasis	
		Decommissioning: Identification of all	
		Decommissioning. Identification of an	
		circuits, impact on other equipment,	
		isolation, tagging, testing, securing	
		and earthing where required, safe	
()		removal of equipment/ conductors.	
63.	Describe the functioning of basic	Basic theory and measurement.	
	electronic circuits used in common	Common applications are motor	
	electrical power circuit applications	starters, lighting dimmers, inverters,	
	including related hazards and safety	line conditioners, smoke alarms,	
	requirements	backup supplies, etc.	
		Hazards and safety requirements	
		associated with Static Electricity	
		Discharge from components.	
64.	Describe basic control techniques	Understanding of concepts and basic	
	and diagnostic methods for simple	applications in modern plant systems	
	DC motor control circuits and	including motor interlocking safety	
	applications	issues.	
65.	Demonstrate an understanding of	HP and LP discharge luminaires,	
	the basic operation of various types	fluorescent luminaires, filament	
	of luminaires and the purpose of	luminaires etc. used in lighting	
	components and ancillary	systems together with their respective	
	equipment including related	ancillary equipment and related	
	hazards and their safety	hazards and safety requirements. Refer	
	requirements.	to AS/NZS 3000 4.3.6.1.	
66.	Demonstrate the knowledge and	Required for safe working practices	Critical
	skills for diagnosing and rectifying	with electrical systems and	
	faults in electrical apparatus and	installations. All repairs must be	
	associated circuits.	compliant with the relevant standards.	
		This item is crucial as all previous	
		skills are utilised to effectively	
		perform a fault find function.	

<u>Note 1:</u> Under the Capstone Assessment covering the "critical" items, items 57 and 58 are expected to be covered only by a written assessment, although proper practical skill and knowledge will be expected to be developed during the course of training.

(Document issued 1 March 2001)

Elec_Reg_Perf_Reqmts_2001.doc