Interview Questions

HOME Interview Questions MCQs *LAB VIVA CLASS NOTES SEMINAR TOPICS

ONLINE TEST GATE CAT Internship ABOUT US Privacy Policy

Home » RCC STRUCTURES DESIGN Objective Questions » 300+ TOP RCC Structures Design Multiple Choice Questions \& Answers

300+ TOP RCC Structures Design

Search
Here for
Skill
Search...

Multiple Choice Questions \& Answers

Mining and Cement Technology

We specialise in Ultra High Performance Concrete Additives

RCC STRUCTURES DESIGN Multiple Choice

 Questions:-1. An R.C.C. beam of 6 m span is 30 cm wide and has a lever arm of 55 cm . If it carries a U.D.L. of 12 t per m and allowable shear stress is $5 \mathrm{~kg} / \mathrm{cm} 2$, the beam
A. Is safe in shear
B. Is safe with stirrups
C. Is safe with stirrups and inclined bars
D. Needs revision of section

ANS: D
2. According to I.S. : 456, slabs which span in two directions with corners held down, are assumed to be divided in each direction into middle strips and edge strips such that the width of the middle strip, is
A. Half of the width of the slab
B. Two -third of the width of the slab
C. Three-fourth of the width of the slab
D. Four-fifth of the width of the slab

ANS: C
3. The load stress of a section can be reduced by
A. Decreasing the lever arm
B. Increasing the total perimeter of bars
C. Replacing larger bars by greater number of small bars
D. Replacing smaller bars by greater number of greater bars

ANS: C
4. the column head support a flat slab, is generally kept The diameter of
A. 0.25 times the span length
B. 0.25 times the diameter of the column
C. 4.0 cm larger than the diameter of the column
D. 5.0 cm larger than the diameter of the column

ANS: A
5. fixed at its ends, the If is the uniformly distributed load on a circular slab of radius maximum positive radial moment at its centre, is
A. $3 \mathrm{WR}^{2} / 16$
B. $2 \mathrm{WR}^{2} / 16$
C. WR2/16
D. None of these

ANS: C
6. The maximum ratio of span to depth of a slab simply supported and spanning in one direction, is
A. 35
B. 25
C. 30
D. 20

ANS: C
7. If the width of the foundation for two equal columns is restricted, the shape of the footing generally adopted, is
A. Square
B. Rectangular
C. Trapezoidal
D. Triangular

ANS: B
8. The floor slab of a building is supported on reinforced cement floor beams. The ratio of the end and intermediate spans is kept
A. 0.7
B. 0.8
C. 0.9
D. o. 6

ANS: C
9. Pick up the correct statement from the following:
A. Lateral reinforcement in R.C.C. columns is provided to prevent the longitudinal reinforcement from buckling
B. Lateral reinforcement prevents the shearing of concrete on diagonal plane
C. Lateral reinforcement stops breaking away of concrete cover, due to buckling
D. All the above
10. In case the factor of safety against sliding is less than 1.5, a portion of slab is constructed downwards at the end of the heel slab, which is known as
A. A key
B. A cut-off wall
C. A rib
D. All the above

ANS: D

RCC Structures Design Multiple Choice Questions
11. Lapped splices in tensile reinforcement are generally not used for bars of size larger than
A. 18 mm diameter
B. 24 mm diameter
C. 30 mm diameter
D. 36 mm diameter

ANS: D
12. Minimum spacing between horizontal parallel reinforcement of the same size should not be less than
A. One diameter
B. 2.5 diameters
C. 3 diameters
D. 3.5 diameters

ANS: A

13. For a ribbed slab

A. Clear spacing between ribs shall not be greater than 4.5 cm
B. Width of the rib shall not be less than 7.5 cm
C. Overall depth of the slab shall not exceed four times the breadth of the rib
D. All the above

ANS: D
14. A very comfortable type of stairs is
A. Straight
B. Dog legged
C. Geometrical
D. Open newel

ANS: D

15. Columns may be made of plain concrete if their unsupported lengths do not exceed their least lateral dimension

A. Two times
B. Three times
C. Four times
D. Five times

ANS: C

Q-NO: 16

The width of the flange of a L-beam, should be less than
A. One- sixth of the effective span
B. Breadth of the rib + four times thickness of the slab
C. Breadth of the rib + half clear distance between ribs
D. Least of the above

ANS: D

Q-NO: 17

A pre-stressed concrete member is preferred because
A. Its dimensions are not decided from the diagonal tensile stress
B. Large size of long beams carrying large shear force need not be adopted
C. Removal of cracks in the members due to shrinkage
D. All the above

ANS: D

Q-NO: 18
If the ratio of the span to the overall depth does not exceed 10, the stiffness of the beam will
ordinarily be satisfactory in case of a
A. Simply supported beam
B. Continuous beam
C. Cantilever beam
D. None of these

ANS: C
Q-NO: 19
carrying a uniformly distributed load per metre length is suspended at two
A pile of length
points, the maximum, B.M. at the centre of the pile or at the points of suspension, is
A. WL/8
B. $\mathrm{WL}^{2} / 24$
C. WL²/47
D. WL $2 / 16$

ANS: C

Q-NO: 20

If is the net upward pressure on a square footing of side for a square column of side, the maximum bending moment is given by
A. $B \cdot M=p b(c-a) / 4$
B. $B \cdot M=p b(b-a)^{2} / 4$
C. $B \cdot M=p b(b-a)^{2} / 8$
D. $B \cdot M=p b(b+a) / 8$

ANS: C

Q-NO: 21

To ensure uniform pressure distribution, the thickness of the foundation, is
A. Kept uniform throughout
B. Increased gradually towards the edge
C. Decreased gradually towards the edge
D. Kept zero at the edge

ANS: C

Q-NO: 22
longitudinal bars and lateral stirrups, is
A. Stress in concrete \times area of concrete
B. Stress in steel \times area of steel
C. Stress in concrete \times area of concrete + Stress in steel \times area of steel
D. None of these

ANS: C

Q-NO: 23
mutually perpendicular principal stresses acting on a soil mass, the normal stress

If p 1 and p 2 are
A. [(p - p p p to the principal plane carrying the principal stress p1, is:
$\sin 2$
B. $[(\mathrm{p}-\mathrm{p} p \mathrm{p} \cos 2$
C. [(p p p - p cos 2
D. [(p p p - p / 2$] \sin 2$

ANS: C

Q-NO: 24

The maximum permissible size of aggregates to be used in casting the ribs of a slab, is
A. 5 mm
B. 7.5 mm
C. 10 mm
D. 15 mm

ANS: C

Q-NO: 25

Pick up the incorrect statement from the following: Tensile reinforcement bars of a rectangular beam
A. Are curtailed if not required to resist the bending moment B. Are bent up at suitable places to serve as shear reinforcement C. Are bent down at suitable places to serve as shear reinforcement
D. Are maintained at bottom to provide at least local bond stress ANS: C

Q-NO: 26

Steel bars are generally connected together to get greater length than the standard length by providing
A. Straight bar splice
B. Hooked splice
C. Dowel splice
D. All the above ANS: D

Q-NO: 27

The minimum thickness of the cover at the end of a reinforcing bar should not be less than twice the diameter of the bar subject to a minimum of
A. 10 mm
B. 15 mm
C. 20 mm
D. 25 mm

ANS: D

Q-NO: 28

Top bars are extended to the projecting parts of the combined footing of two columns Ldistance apart for a distance of
A. o. 1 L from the outer edge of column
B. o. 1 L from the centre edge of column
C. Half the distance of projection
D. One -fourth the distance of projection

ANS: B

Q-NO: 29

For M 150 grade concrete (1:2:4) the moment of resistance factor is
A. 0.87
B. 8.50
C. 7.50
D. 5.80

ANS: B

Q-NO: 30
is the pre- stressed force applied to tendon of a rectangular prestressed beam whose area of cross section is and sectional modulus is. The minimum stress on the beam subjected to a
maximum bending moment is
A. $\mathrm{f}=(\mathrm{P} / \mathrm{A})-(\mathrm{Z} / \mathrm{M})$
B. $\mathrm{f}=(\mathrm{A} / \mathrm{P})-(\mathrm{M} / \mathrm{Z})$
C. $f=(P / A)-(M / Z)$
D. $\mathrm{f}=(\mathrm{P} / \mathrm{A})-(\mathrm{M} / 6 \mathrm{Z})$

ANS: C

Q-NO: 31

If C is creep coefficient, f is original pre-stress in concrete, m is modular ratio, E is Young's modulus of steel and e is shrinkage strain, the combined effect of creep and shrinkage is:
A. $(1-C) m f-e E$
B. $(\mathrm{C}-1) \mathrm{mf}+\mathrm{eE}$
C. $(\mathrm{C}-1) \mathrm{mf}-\mathrm{eE}$
D. $(1-\mathrm{C}) \mathrm{mf}+\mathrm{eE}$ ANS: B

Q-NO: 32

In a pre-stressed member it is advisable to use
A. Low strength concrete only
B. High strength concrete only
C. Low strength concrete but high tensile steel
D. High strength concrete and high tensile steel

ANS: D

Q-NO: 33

An R.C.C. lintel is spanning an opening of 2 m span in a brick wall. The height of the roof is 2.9 m above the floor level and that of the opening is 2.1 m above the floor level. The lintel is to be designed for self weight plus
A. Triangular load of the wall
B. UDL of wall
C. UDL of wall + load from the roof
D. Triangular load + load from the roof

ANS: C

Q-NO: 34

The minimum clear cover for R.C.C. columns shall be
A. Greater of 40 mm or diameter
B. Smaller of 40 mm or diameter
C. Greater of 25 mm or diameter
D. Smaller of 25 mm or diameter

ANS: C

Q-NO: 35

The minimum thickness of a flat slab is taken
A. $\mathrm{L} / 32$ for end panels without drops
B. $\mathrm{L} / 36$ for end panels without drops
C. L/36 for interior panels without drop
D. All the above

ANS: D

Q-NO: 36

The design of heel slab of a retaining wall is based on the maximum bending moment due to:
A. Its own weight
B. Weight of the soil above it
C. Load of the surcharge, if any
D. All the above

ANS: D

Q-NO: 37

An R.C.C beam of 25 cm width has a clear span of 5 metres and carries a U.D.L. of $2000 \mathrm{~kg} / \mathrm{m}$ inclusive of its self weight. If the lever arm of the section is 45 cm ., the beam is
A. Safe in shear
B. Is safe with stirrups
C. Is safe with stirrups and inclined members
D. Needs revision of the section

ANS: A

Q-NO: 38

The neutral axis of a T-beam exists
A. Within the flange
B. At the bottom edge of the slab
C. Below the slab
D. All the above

ANS: D

Q-NO: 39

A pre-cast pile generally used, is
A. Circular
B. Square
C. Octagonal
D. Square with corners chamfered

ANS: D

Q-NO: 40

The spacing of transverse reinforcement of column is decided by the following consideration.
A. The least lateral dimension of the column
B. Sixteen times the diameter of the smallest longitudinal reinforcing rods in the column
C. Forty-eight times the diameter of transverse reinforcement
D. All the above

ANS: D

Q-NO: 41

The self-weight of the footing, is
A. Not considered for calculating the upward pressure on footing
B. Also considered for calculating the upward pressure on footing
C. Not considered for calculating the area of the footing
D. Both B. and C.

ANS: A

Q-NO: 42

Pick up the incorrect statement from the following:
A. In the stem of a retaining wall, reinforcement is provided near the earth side
B. In the toe slab of a retaining wall, reinforcement is provided at the bottom of the slab
C. In the heel slab of a retaining wall, reinforcement is provided at the top of the slab
D. None of these

ANS: D

Q-NO: 43

If the bearing capacity of soil is 10 tonnes/cm2 and the projection of plain concrete footing from walls, is a cm, the depth D of footing is
A. $D=0.0775 \mathrm{a}$
B. $\mathrm{D}=0.775 \mathrm{a}$
C. $\mathrm{D}=0.775 \mathrm{a}$
D. $\mathrm{D}=0.775 \mathrm{a} 2$

ANS: B

Q-NO: 44

After pre-stressing process is completed, a loss of stress is due to
A. Shrinkage of concrete
B. Elastic shortening of concrete
C. Creep of concrete
D. All the above

ANS: D

Q-NO: 45

In a simply supported slab, alternate bars are curtailed at
A. $1 / 4$ th of the span
B. $1 / 5^{\text {th }}$ of the span
C. 1/6th of the span
D. $1 / 7$ th of the span

ANS: D

Q-NO: 46

If R and T are rise and tread of a stair spanning horizontally, the steps are supported by a wall on
one side and by a stringer beam on the other side, the steps are designed as beams of width
A. $R+T$
B. $\mathrm{T}-\mathrm{R}$
C. $2+\mathrm{T} 2$)
D. $\mathrm{R}-\mathrm{T}$

ANS: C

Q-NO: 47

If p 1 and P 2 are effective lateral loadings at the bottom and top exerted by a level earth subjected to a super-load on the vertical face of height h of a retaining wall, the horizontal pressure p per unit length of the wall, is
A. $[(-) / 2] h$
B. $[(+) / 4] \mathrm{h}$
C. $[(+) / 2] h$
D. (- h ANS: C

Q-NO: 48

In the zone of R.C.C. beam where shear stress is less than $5 \mathrm{~kg} / \mathrm{cm} 2$, nominal reinforcement is provided at a pitch of
A. One -half lever arm of the section
B. One-third lever arm of the section
C. Lever arm of the section
D. One and half lever arm of the section

ANS: C

Q-NO: 49

The transverse reinforcements provided at right angles to the main reinforcement
A. Distribute the load
B. Resist the temperature stresses
C. Resist the shrinkage stress
D. All the above

ANS: D

Q-NO: 50

Long and short spans of a two way slab are 1 and l and load on the slab acting on strips parallel
to lx and ly be wx and wy respectively. Accordingy to xRankine Grashoff theory
A. $(\mathrm{wx} / \mathrm{wy})=(\mathrm{ly} / \mathrm{lx})$
B. $(\mathrm{wx} / \mathrm{wy})=(\mathrm{ly} / \mathrm{lx})^{2}$
C. $(w x / w y)=(l y / l x) 4$
D. None of these

ANS: C

Q-NO: 51

The pitch of the main bars in a simply supported slab, should not exceed its effective depth by
A. Three times
B. Four times
C. Five times
D. Six times

ANS: D

Q-NO: 52

High strength concrete is used in pre-stressed member
A. To overcome high bearing stresses developed at the ends
B. To overcome bursting stresses at the ends
C. To provide high bond stresses
D. All the above

ANS: D

Q-NO: 53
on a circular slab of radius, the maximum radial moment at the centre of the
If is the load slab, is $\mathrm{WR}^{2} / 16$
A.
B. $2 \mathrm{WR}^{2} / 16$
C. $3 \mathrm{WR}^{2} / 16$
D. $5 \mathrm{WR}^{2} / 16$

ANS: C

Q-NO: 54

If A is the area of the foundation of a retaining wall carrying a load W and retaining earth of weight w per unit volume, the minimum depth (h) of the foundation from the free surface of the earth, is $) /(1+\sin)]$
A. $\mathrm{h}=(\mathrm{W} / \mathrm{Aw})[(1-$
B. $\mathrm{h}=(\mathrm{W} / \mathrm{Aw})[(1+) /(1+\sin)]$
C. $\mathrm{h}=(\mathrm{W} / \mathrm{Aw})[(1-) /(1+\sin)]^{2}$
D. h W/Aw) $[(1-) /(1+\sin)]^{2}$

ANS: C

Q-NO: 55

If the permissible compressive and tensile stresses in a singly reinforced beam are $50 \mathrm{~kg} / \mathrm{cm} 2$ and $1400 \mathrm{~kg} / \mathrm{cm} 2$ respectively and the modular ratio is 18 , the percentage area At of the steel required for an economic section, is
A. 0.496 \%
B. 0.596%
C. 0.696 \%
D. 0.796 \%

ANS: C

Q-NO: 56

The modular ratio m of a concrete whose permissible compressive stress is C, may be obtained from the equation.
A. $\mathrm{m}=700 / 3 \mathrm{C}$
B. $m=1400 / 3 C$
C. $\mathrm{m}=2800 / 3 \mathrm{C}$
D. $\mathrm{m}=3500 / 3 \mathrm{C}$

ANS: C

Q-NO: 57

Enlarged head of a supporting column of a flat slab is technically known as
A. Supporting end of the column
B. Top of the column
C. Capital
D. Drop panel ANS: C

Thickened part of a flat slab over its supporting column, is technically known as
A. Drop panel
C. Column head
D. None of these

ANS: A

Q-NO: 59

If is the sectional area of a pre-stressed rectangular beam provided with a tendon pre -stressed
by a force through its centroidal longitudinal axis, the compressive stress in concrete, is
A. P/A
B. A / P
C. $\mathrm{P} / 2 \mathrm{~A}$
D. $2 \mathrm{~A} / \mathrm{P}$

ANS: A

Q-NO: 60

Side face reinforcement shall be provided in the beam when depth of the web in a beam exceeds
A. 50 cm
B. 75 cm
C. 100 cm
D. 120 cm

ANS: B

Q-NO: 61

A pre-stressed rectangular beam which carries two concentrated loads W at $\mathrm{L} / 3$ from either end, is provided with a bent tendon with tension P such that central one-third portion of the tendon remains parallel to the longitudinal axis, the maximum dip h is
A. WL/P
B. $\mathrm{WL} / 2 \mathrm{P}$
C. $\mathrm{WL} / 3^{P}$
D. WL/4P

ANS: C

Q-NO: 62

The minimum head room over a stair must be
A. 200 cm
B. 205 cm
C. 210 cm
D. 230 cm

ANS: C

Q-NO: 63

If q is the punching shear resistance per unit area a, is the side of a square footing for a column of side b , carrying a weight W including the weight of the footing, the depth D. of the footing from punching shear consideration, is
A. $\mathrm{D}=\mathrm{W}(\mathrm{a}-\mathrm{b}) / 4 \mathrm{a}^{2} \mathrm{bq}$
B. $\mathrm{D}=\mathrm{W}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) / 4 \mathrm{a}^{2} \mathrm{bq}$
C. $\mathrm{D}=\mathrm{W}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) / 8 \mathrm{a}^{2} \mathrm{bq}$
D. $\mathrm{D}=\mathrm{W}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) / 4 \mathrm{abq}$

ANS: B

Q-NO: 64

For initial estimate for a beam design, the width is assumed
A. $1 / 15^{\text {th }}$ of span
B. 1/2oth of span
C. $1 / 25^{\text {th }}$ of span
D. 1/3oth of span

ANS: D

Q-NO: 65

In a slab, the pitch of the main reinforcement should not exceed its effective depth
A. Three times
B. Four times
C. Five times
D. Two times

ANS:

Q-NO: 66
If the length of a combined footing for two columns l metres apart is L and the projection on the
left side of the exterior column is x, then the projection y on the
right side of the exterior column,
in order to have a uniformly distributed load, is (where is the distance of centre of gravity of
column loads).
A. $y=L-(l-))$
B. $\mathrm{y}=\mathrm{L} / 2+(\mathrm{l}-$
C. $y=L / 2-(1+)$
D. $y=L / 2-(l-)$

ANS: D

Q-NO: 67

Total pressure on the vertical face of a retaining wall of height h acts parallel to free surface and from the base at a distance of
A. h/4
B. $\mathrm{h} / 3$
C. h/2
D. $2 \mathrm{~h} / 3$

ANS: B

Q-NO: 68

If the tendon is placed at an rectangular beam (sectional top edge
A. Is increased by PZ/e
B. Is increased by Pe / Z
C. Is decreased by Pe / Z
D. Remains unchanged ANS: C
eccentricity e below the centroidal axis of the longitudinal axis of a modulus Z and stressed load P in tendon) the stress at the extreme

Q-NO: 69

The Young's modulus of elasticity of steel, is
A. $150 \mathrm{KN} / \mathrm{mm} 2$
B. $200 \mathrm{KN} / \mathrm{mm} 2$
C. $250 \mathrm{KN} / \mathrm{mm} 2$
D. $275 \mathrm{KN} / \mathrm{mm} 2$

ANS: D

Q-NO: 70

Design of a two way slab simply supported on edges and having no provision to prevent the corners from lifting, is made by
A. Rankine formula
B. Marcus formula
C. Rankine Grashoff formula
D. Grashoff formula

ANS: C

Q-NO: 71

Spacing of stirrups in a rectangular beam, is
A. Kept constant throughout the length
B. Decreased towards the centre of the beam
C. Increased at the ends
D. Increased at the centre of the beam

ANS: D

Q-NO: 72

As per IS : 456, the reinforcement in a column should not be less than
A. 0.5% and not more than 5% of cross-sectional area
B. 0.6% and not more than 6% of cross-sectional area
C. 0.7% and not more than 7% of cross-sectional area
D. 0.8% and not more than 8% of cross-sectional area ANS: D Q-NO: 73

The allowable tensile stress in mild steel stirrups, reinforced cement concrete, is
A. $1400 \mathrm{~kg} / \mathrm{cm} 2$
B. $190 \mathrm{~kg} / \mathrm{cm} 2$
C. $260 \mathrm{~kg} / \mathrm{cm} 2$
D. $230 \mathrm{~kg} / \mathrm{cm} 2$ ANS: A

Q-NO: 74

Bottom bars under the columns are extended into the interior of the footing slab to a distance greater than
A. 42 diameters from the centre of the column
B. 42 diameters from the inner edge of the column
C. 42 diameters from the outer edge of the column
D. 24 diameters from the centre of the column

ANS: C

Pick up the assumption for the design of a pre-stressed concrete member from the following:
A. A transverse plane section remains a plane after bending
B. During deformation limits, Hook's law is equally applicable to concrete as well as to steel
C. Variation of stress in reinforcement due to changes in external loading is negligible
D. All the above

ANS: D

RCC STRUCTURE DESIGN MCQs Pdf ::
Q-NO: 76

The advantage of reinforced concrete, is due to
A. Monolithic character
B. Fire-resisting and durability
C. Economy because of less maintenance cost
D. All the above

ANS: D

Q-NO: 77

An R.C.C. column is treated as short column if its slenderness ratio is less than
A. 30
B. 35
C. 40
D. 50

ANS: D

Q-NO: 78

The zone in which transverse bending is likely to occur may be obtained by drawing a line from the
A. 30°
B. 45°
C. 60°
D. None of these ANS: B

Q-NO: 79

The thickness of the topping of a ribbed slab, varies between
A. 3 cm to 5 cm
B. 5 cm to 8 cm
C. 8 cm to 10 cm
D. 12 cm to 15 cm

ANS: B

Q-NO: 8o

If the length of an intermediate span of a continuous slab is 5 m , the length of the end span is kept
A. 4.5 m
B. 4.0 m
C. 3.5 m
D. 3.0 m

ANS: A

Q-NO: 81

If L is the effective span of a R.C.C. beam which is subjected to maximum shear qmax at the ends, the distance from either end over which stirrups for the shear, are provided, is
A. $(\mathrm{L} / 2)(1-3 / \mathrm{qmax})$
B. $(\mathrm{L} / 3)(1-5 / \mathrm{qmax})$
C. $(\mathrm{L} / 2)(1-5 / \mathrm{qmax})$
D. $(L / 2)(1-2 / q)$

ANS: Cmax

Q-NO: 82

The angle of internal friction of soil mass is the angle whose
A. Tangent is equal to the rate of the maximum resistance to sliding on any internal inclined plane to the normal pressure acting on the plane
B. Sine is equal to the ratio of the maximum resistance to sliding on any internal inclined plane to the normal pressure acting on the plane
C. Cosine is equal to the ratio of the maximum resistance sliding on any internal inclined plane to the normal pressure acting on the plane
D. None of these

ANS: A

Q-NO: 83

The maximum ratio of span to depth of a slab simply supported and spanning in two directions, is
A. 25
B. 30
C. 35
D. 40

ANS: C

Q-NO: 84

If T and R are the tread and rise of a stair which carries a load w per square metre on slope, the corresponding load per square metre of the horizontal area, is
A. $w(R+T) / T$
B. $\mathrm{w}\left(\mathrm{R}^{2}+\mathrm{T}^{2}\right) / \mathrm{T}$
C. $\mathrm{w}(\mathrm{R}+\mathrm{T}) / \mathrm{T}$
D. $\mathrm{w}(\mathrm{R} / \mathrm{T})$

ANS: B

Q-NO: 85

If the loading on a pre-stressed rectangular beam, is uniformly distributed, the tendon to be provided should be.
A. Straight below centroidal axis
B. Parabolic with convexity downward
C. Parabolic with convexity upward
D. Straight above centroidal axis

ANS: B

Q-NO: 86

For normal cases, stiffness of a simply supported beam is satisfied if the ratio of its span to its overall depth does not exceed
A. 10
B. 15
C. 20
D. 25

ANS: C

Q-NO: 87

If the maximum dip of a parabolic tendon carrying tension P is h and the effective length of the pre-stressed beam is L, the upward uniform pressure will be
A. $8 \mathrm{hp} / \mathrm{l}$
B. $8 \mathrm{hp} / \mathrm{l}^{2}$
C. $8 \mathrm{hl} / \mathrm{p}$
D. $8 \mathrm{hl} / \mathrm{p}^{2}$

ANS: B

Q-NO: 88

If depth of slab is 10 cm , width of web 30 cm , depth of web 50 cm , centre to centre distance of beams 3 m , effective span of beams 6 m , the effective flange width of the beam, is
A. 200 cm
B. 300 cm
C. 150 cm
D. 100 cm

ANS: C

Q-NO: 89

The steel generally used in R.C.C. work, is
A. Stainless
B. Mild steel
C. High carbon steel
D. High tension steel

ANS: B

Q-NO: 90

If the ratio of long and short spans of a two way slab with corners held down is r, the actual reduction of B.M. is given by
A. $(5 / 6)\left(r / 1+r^{2}\right) M$
B. $(5 / 6)\left(\mathrm{r}^{2} / 1+\mathrm{r}^{2}\right) \mathrm{M}$
C. $(5 / 6)\left(r^{2} / 1+r 3\right) M$
D. $(5 / 6)\left(r^{2} / 1+r 4\right) M$

ANS: D

Q-NO: 91

A part of the slab may be considered as the flange of the T-beam if
A. Flange has adequate reinforcement transverse to beam
B. It is built integrally with the beam
C. It is effectively bonded together with the beam
D. All the above

ANS: D

Q-NO: 92

By over-reinforcing a beam, the moment of resistance can be increased not more than
A. 10%
B. 15%
C. 20%
D. 25 \%

ANS: D

Q-NO: 93 per unit run exerted by the
Total pressure on the vertical face of a retaining wall of height retained earth weighing per unit volume, is
A. $\operatorname{wh}[(1-) /(1+\sin)]$
B. $\operatorname{wh}^{2}[(1-) /(1+\sin)]$
C. $\operatorname{wh}^{2}[(1-) / 2(1+\sin)]$
D. $\mathrm{wh}^{2}[(1-) / 3(1+\sin)]$

ANS: C

Q-NO: 94

A singly reinforced beam has breadth b, effective depth d, depth of neutral axis n and critical neutral axis n 1 . If fc and ft are permissible
compressive and tensile stresses, the moment to resistance of the beam, is
A. $b n(f c / 2)(d-n / 3)$
B. $\operatorname{Atft}(\mathrm{d}-\mathrm{n} / 3)$
C. $1 / 2 \mathrm{n} 1(1-\mathrm{n} 1 / 3) \operatorname{cbd}^{2}$
D. All the above

ANS: D

Q-NO: 95

According to I.S.: 456, 1978 the thickness of reinforced concrete footing on piles at its edges, is kept less than
A. 5 cm
B. 10 cm
C. 15 cm
D. 20 cm

ANS: C

Q-NO: 96

If l1 and l2 are the lengths of long and short spans of a two way slab simply supported on four edges and carrying a load w per unit area, the ratio of the loads split into w1 and w2acting on strips parallel to l 2 and l 1 is
A. $\mathrm{w} 1 / \mathrm{w} 2=\mathrm{l} 2 / \mathrm{l} 1$
B. $\mathrm{w} 1 / \mathrm{w} 2=(\mathrm{l} 2 / \mathrm{l} 1)^{2}$
C. $\mathrm{w} 1 / \mathrm{w} 2=(\mathrm{l} 2 / \mathrm{l} 1) 3$
D. $w / w=(l / l) 4$

ANS:1 Option22 1D

Q-NO: 97

The live load to be considered for an accessible roof, is
A. Nil
B. $75 \mathrm{~kg} / \mathrm{m} 3$
C. $150 \mathrm{~kg} / \mathrm{m} 2$
D. $200 \mathrm{~kg} / \mathrm{cm} 2$

ANS: C

Q-NO: 98

If Ac, Asc and A are areas of concrete, longitudinal steel and section of a R.C.C. column and m and
c are the modular ratio and maximum stress in the configuration of concrete, the strength of column is
A. $\mathrm{cAc}+\mathrm{m} \mathrm{cAsc}$
B. $c(A-A s c)+m c A s c$
C. $c[A+(m-1) A S C]$
D. All the above

ANS: D

Q-NO: 99

On an absolutely rigid foundation base, the pressure will
A. Be more at the edges of the foundation
B. Be uniform
C. Not be uniform
D. Be zero at the centre of the foundation

ANS: C

Q-NO: 100

The diameter of transverse reinforcement of columns should be equal to one-fourth of the diameter of the main steel rods but not less than
A. 4 mm
B. 5 mm
C. 6 mm
D. 7 mm

ANS: D

Q-NO: 101

If longitudinally spanning stairs are casted along with their landings, the maximum bending moment per metre width, is taken as
A. $\mathrm{wl}^{2} / 4$
B. $\mathrm{wl}^{2} / 8$
C. $\mathrm{wl}^{2} / 10$
D. $\mathrm{wl}^{2} / 12$

ANS: B

Q-NO: 102

If $\mathrm{P} \mathrm{kg} / \mathrm{m} 2$ is the upward pressure on the slab of a plain concrete footing whose projection on either side of the wall is a cm, the depth of foundation D is given by
A. $\mathrm{D}=0.00775 \mathrm{aP}$
B. $\mathrm{D}=0.0775 \mathrm{aP}$
C. $\mathrm{D}=0.07775 \mathrm{aP}$
D. $\mathrm{D}=0.775 \mathrm{~Pa}$

ANS: A

Q-NO: 103

If the shear stress in a R.C.C. beam is
A. Equal or less than $5 \mathrm{~kg} / \mathrm{cm} 2$, no shear reinforcement is provided
B. Greater than $4 \mathrm{~kg} / \mathrm{cm} 2$, but less than $20 \mathrm{~kg} / \mathrm{cm} 2$, shear reinforcement is provided
C. Greater than $20 \mathrm{~kg} / \mathrm{cm} 2$, the size of the section is changed
D. All the above

ANS: D

Q-NO: 104

For a continuous floor slab supported on beams, the ratio of end span length and intermediate span length, is
A. 0.6
B. 0.7
C. 0.8
D. 0.9

ANS: D

Q-NO: 105

In a singly reinforced beam
A. Compression is borne entirely by concrete
B. Steel possesses initial stresses when embedded in concrete
C. Plane sections transverse to the centre line of the beam before bending remain plane after bending
D. Elastic moduli for concrete and steel have different values within the limits of deformation of the beam

ANS: C

Q-NO: 106

The ratio of the breadth to effective depth of a beam is kept
A. 0.25
B. 0.50
C. 0.70
D. 0.75

ANS: B

Q-NO: 107

In a cantilever retaining wall without a heel slab
A. Thickness of the stem is kept same throughout
B. Base slab is made 10 cm thicker than the stem
C. Width of the base slab is kept 0.7 time the total height of the wall
D. All the above

ANS: D

Q-NO: 108
is the pre-stressed force applied to the tendon of a rectangular prestressed beam whose area
of cross section is and sectional modulus is . The maximum stress in the beam, subjected
to a maximum bending moment , is
A. $\mathrm{f}=(\mathrm{P} / \mathrm{A})+(\mathrm{Z} / \mathrm{M})$
B. $\mathrm{f}=(\mathrm{A} / \mathrm{P})+(\mathrm{M} / \mathrm{Z})$
C. $\mathrm{f}=(\mathrm{P} / \mathrm{A})+(\mathrm{M} / \mathrm{Z})$
D. $\mathrm{f}=(\mathrm{P} / \mathrm{A})+(\mathrm{M} / 6 \mathrm{Z})$

ANS: C

Q-NO: 109

A T-beam behaves as a rectangular beam of a width equal to its flange if its neutral axis
A. Remains within the flange
B. Remains below the slab
C. Coincides the geometrical centre of the beam
D. None of these

ANS: A

Q-NO: 110

For the design of a simply supported T-beam the ratio of the effective span to the overall depth of the beam is limited to
A. 10
B. 15
C. 20
D. 25

ANS: C

Q-NO: 111

A reinforced concrete cantilever beam is 3.6 m long, 25 cm wide and has its lever arm 40 cm . It carries a load of 1200 kg at its free end and vertical stirrups can carry 1800 kg . Assuming concrete to carry one-third of the diagonal tension and ignoring the weight of the beam, the number of shear stirrups required, is
A. 30
B. 35
C. 40
D. 45

ANS: C

Q-NO: 112

The width of the rib of a T-beam, is generally kept between
A. $1 / 7$ to $1 / 3$ of rib depth
B. $1 / 3$ to $1 / 2$ of rib depth
C. $1 / 2$ to $3 / 4$ of rib depth
D. $1 / 3$ to $2 / 3$ of rib depth

ANS: D

Q-NO: 113

A ribbed slab is provided for
A. A plain ceiling
B. Thermal insulation
C. Acoustic insulation
D. All the above

ANS: D

Q-NO: 114

To ensure that the hogging bending moment at two points of suspension of a pile of
length L equals the sagging moment at its centre, the distances of the points of suspension from either end, is
A. 0.107 L
B. 0.207 L
C. 0.307 L
D. 0.407 L

ANS: B

Q-NO: 115

The stresses developed in concrete and steel in reinforced concrete beam 25 cm width and 70 cm effective depth, are $62.5 \mathrm{~kg} / \mathrm{cm} 2$ and $250 \mathrm{~kg} / \mathrm{cm} 2$ respectively. If $\mathrm{m}=15$, the depth of its neutral axis is
A. 20 cm
B. 25 cm
C. 30 cm
D. 35 cm

ANS: C

Q-NO: 116

If the depth of actual neutral axis of a doubly reinforced beam
A. Is greater than the depth of critical neutral axis, the concrete attains its maximum stress earlier
B. Is less than the depth of critical neutral axis, the steel in the tensile zone attains its maximum stress earlier
C. Is equal to the depth of critical neutral axis; the concrete and steel attain their maximum stresses simultaneously
D. All the above

ANS: D

Q-NO: 117

If the modular ratio is, steel ratio is and overall depth of a beam is, the depth of the critical neutral axis of the beam, is
A. $[m /(m-r)] d$
B. $[\mathrm{m} /(\mathrm{m}+\mathrm{r})] \mathrm{d}$
C. $[(m+r) / m] d$
D. $[(\mathrm{r}-\mathrm{m}) / \mathrm{m}] \mathrm{d}$

ANS: B

Q-NO: 118

The maximum diameter of a bar used in a ribbed slab, is
A. 12 mm
B. 6 mm
C. 20 mm
D. 22 mm ANS: D

A column is regarded as long column if the ratio of its effective length and lateral dimension, exceeds
A. 10
B. 15
C. 20
D. 25

ANS: B

Q-NO: 120

According to the steel beam theory of doubly reinforced beams
A. Tension is resisted by tension steel
B. Compression is resisted by compression steel
C. Stress in tension steel equals the stress in compression steel
D. All the above

ANS: D

Q-NO: 121

The breadth of a ribbed slab containing two bars must be between
A. 6 cm to 7.5 cm
B. 8 cm to 10 cm
C. 10 cm to 12 cm
D. 12 cm to 15 cm

ANS: B

Q-NO: 122

The stem of a cantilever retaining wall which retains earth level with top is 6 m . If the angle of repose and weight of the soil per cubic metre are 30° and 2000 kg respectively, the effective width of the stem at the bottom, is
A. 51.5
B. 52.5
C. 53.5
D. 54.5

ANS: C

Q-NO: 123

If the diameter of the main reinforcement in a slab is 16 mm , the concrete cover to main bars is
A. 10 mm
B. 12 mm
C. 14 mm
D. 16 mm

ANS: D

Q-NO: 124

Minimum spacing between horizontal parallel reinforcement of different sizes, should not be less than
A. One diameter of thinner bar
B. One diameter of thicker bar
C. Twice the diameter of thinner bar
D. None of these

ANS: B

Q-NO: 125

For a number of columns constructed in a rcjw, the type of foundation provided, is
A. Footing
B. Raft
C. Strap
D. Strip

ANS: D

Q-NO: 126

A singly reinforced concrete beam of 25 cm width and 70 cm effective depth is provided with 18.75 cm 2 steel. If the modular ratio (m) is 15 , the depth of the neutral axis, is
A. 20 cm
B. 25 cm
C. 30 cm
D. 35 cm

ANS: C

Q-NO: 127

In testing a pile by load test, pile platform is loaded with one and half times the design load and a maximum settlement is noted. The load is gradually removed and the consequent rebound is measured. For a safe pile, the net settlement (i.e. total settlement minus rebound) per tonne of test load should not exceed
A. 10 mm
B. 15 mm
C. 20 mm
D. 25 mm

ANS: D

Q-NO: 128

The diameter of main bars in R.C.C. columns, shall not be less than
A. 6 mm
B. 8 mm
C. 10 mm
D. 12 mm

ANS: D

Q-NO: 129

If d is the diameter of a bar, ft is allowable tensile stress and fb , is allowable bond stress, the bond length is given by
A. ft .d/4fb
B. (/ 4) . (ft .d/fb)
C. $\mathrm{ft} . \mathrm{d}^{2} / \mathrm{fb}$
D. (/4). (f.d3/f)

ANS:t Ab

Q-NO: 130

An intermediate T-beam reinforced with two layers of tensile steel with clear cover 13 cm encasted with the floor of a hall 12 metres by 7 metres, is spaced at 3 metres from adjoining beams and if the width of the beam is 20 cm , the breadth of the flange is
A. 300 cm
B. 233 cm
C. 176 cm
D. 236 cm

ANS: C

Q-NO: 131

The length of lap in tension reinforcement should not be less than the bar diameter \times (actual tension / four times the permissible average bond stress) if it is more than
A. 18 bar diameters
B. 24 bar diameters
C. 30 bar diameters
D. 36 bar diameters

ANS: C

Q-NO: 132

As the percentage of steel increases
A. Depth of neutral axis decreases
B. Depth of neutral axis increases
C. Lever arm increases
D. Lever arm decreases

ANS: B

Q-NO: 133

The effective width of a column strip of a flat slab, is
A. One-fourth the width of the panel
B. Half the width of the panel
C. Radius of the column
D. Diameter of the column

ANS: B

Q-NO: 134

As per IS : 1343, total shrinkage for a pre-tensioned beam, is
A. $3.0 \times 10-2$
B. $3.0 \times 10-3$
C. $3.0 \times 10-5$
D. $3.5 \times 10-5$

ANS: D

Q-NO: 135

Dimensions of a beam need be changed if the shear stress is more than
A. $10 \mathrm{~kg} / \mathrm{cm} 2$
B. $15 \mathrm{~kg} / \mathrm{cm} 2$
C. $20 \mathrm{~kg} / \mathrm{cm} 2$
D. $25 \mathrm{~kg} / \mathrm{cm} 2$

ANS: C

Q-NO: 136

Based on punching shear consideration, the overall depth of a combined footing under a column A , is
A. (Area of the column A \times Safe punching stress)/Load on column A
B. (Perimeter of column $\mathrm{A} \times$ Safe punching stress)/(Load on column A + Upward pressure \times Area of the column)
C. (Perimeter of column $\mathrm{A} \times$ Safe punching stress)/(Load on column A \times Upward pressure \times Area of the column)
D. None of these

ANS: B

Q-NO: 137

Pick up the correct statement from the following:
A. A pile is a slender member which transfers the load through its lower end on a strong strata B. A pile is a slender member which transfers its load to the surrounding soil C . A pile is a slender member which transfers its load by friction
D. A pile is a cylindrical body of concrete which transfers the load at a depth greater than its width

ANS: B

Q-NO: 138

In a combined footing if shear stress exceeds $5 \mathrm{~kg} / \mathrm{cm} 2$, the nominal stirrups provided are:
A. 6 legged
B. 8 legged
C. 10 legged
D. 12 legged

ANS: D

Q-NO: 139

The weight of reinforced concrete, is generally taken as
A. $2200 \mathrm{~kg} / \mathrm{m} 3$
B. $2300 \mathrm{~kg} / \mathrm{m} 3$
C. $2400 \mathrm{~kg} / \mathrm{m} 3$
D. $2500 \mathrm{~kg} / \mathrm{m} 3$

ANS: C

Q-NO: 140
If W is the load on a circular slab of radius R , the maximum circumferential moment at the centre of the slab, is
A. $\mathrm{WR}^{2} / 16$
B. $2 \mathrm{WR}^{2} / 16$
C. $3 \mathrm{WR}^{2} / 16$
D. Zero

ANS: C
Q-NO: 141
a retaining wall and is the horizontal earth pressure, the factor of safety
If is weight of
against sliding, is
A. 1.0
B. 1.25
C. 1.5
D. 2.0

ANS: C

Q-NO: 142

The effective span of a simply supported slab, is
A. Distance between the centres of the bearings
B. Clear distance between the inner faces of the walls plus twice the thickness of the wall
C. Clear span plus effective depth of the slab
D. None of these

ANS: B

Q-NO: 143

In a beam the local bond stress Sb , is equal to
A. Shear force/(Leaver arm \times Total perimeter of reinforcement)
B. Total perimeter of reinforcement/(Leaver arm \times Shear force)
C. Leaver arm/(Shear force \times Total perimeter of reinforcement)
D. Leaver arm/(Bending moment \times Total perimeter of reinforcement)

ANS: A

Q-NO: 144

A continuous beam shall be deemed to be a deep beam if the ratio of effective span to overall depth, is
A. 2.5
B. 2.0
C. Less than 2
D. Less than 2.5 ANS: A

Q-NO: 145

With usual notations the depth of the neutral axis of a balanced section, is given by
A. $m c / t=(d-n) / n$
B. $\mathrm{t} / \mathrm{mc}=(\mathrm{d}-\mathrm{n}) / \mathrm{n}$
C. $\mathrm{t} / \mathrm{mc}=(\mathrm{d}+\mathrm{n}) / \mathrm{n}$
D. $m c / t=n /(d-n)$

ANS: D

Q-NO: 146

Pick up the true statement from the following:
A. Plain ceiling provides the best property diffusing light B. In the absence of beams, it is easier to install piping C. In the absence of beams, it is easier to paint
D. All the above

ANS: D

Q-NO: 147

If the maximum shear stress at the end of a simply supported R.C.C. beam of 16 m effective span is $10 \mathrm{~kg} / \mathrm{cm} 2$, the length of the beam having nominal reinforcement, is
A. 8 cm
B. 6 m
C. 8 m
D. 10 m

ANS: C

Q-NO: 148

If the length of a wall on either side of a lintel opening is at least half of its effective span L , the load W carried by the lintel is equivalent to the weight of brickwork contained in an equilateral triangle, producing a maximum bending moment
A. $\mathrm{WL} / 2$
B. WL/4
C. WL/6
D. WL/8

ANS: C

Q-NO: 149

The section of a reinforced beam where most distant concrete fibre in compression and tension in steel attains permissible stresses simultaneously, is called
A. Balanced section
B. Economic section
C. Critical section
D. All the above ANS: D

The length of the lap in a compression member is kept greater than bar diameter x (Permissible stress in bar / Five times the bond stress) or
A. 12 bar diameters
B. 18 bar diameters
C. 24 bar diameters
D. 30 bar diameters

ANS: C

RCC STRUCTURES DESIGN Objective Questions Pdf :: Q-NO: 151
The system in which high tensile alloy steel bars (silica manganese steel) are used as prestressing
tendons, is known as
A. Freyssinet system
B. Magnel-Blaton system
C. C.C.L. standard system
D. Lee-McCall system

ANS: D
Q-NO: 152
An under-reinforced section means
A. Steel is provided at the underside only
B. Steel provided is insufficient
C. Steel provided on one face only
D. Steel will yield first

ANS: D
Q-NO: 153
The angle of repose of a soil is the maximum angle which the outer face of the soil mass makes
A. With the horizontal
B. With the vertical
C. With the perpendicular to the inclined plane of the soil
D. None of these

ANS: A
Q-NO: 154 is
In a doubly-reinforced beam if and
the effective depth and is depth of critical neutral axis, the following relationship holds good
A. $\mathrm{mc} / \mathrm{t}=\mathrm{n} /(\mathrm{d}-\mathrm{n})$
B. $(\mathrm{m}+\mathrm{c}) / \mathrm{t}=\mathrm{n} /(\mathrm{d}+\mathrm{n})$
C. $(\mathrm{t}+\mathrm{c}) / \mathrm{n}=(\mathrm{d}+\mathrm{n}) / \mathrm{n}$
D. $m c / t=(d-n) / t$ ANS: A

A raft foundation is provided if its area exceeds the plan area of the building by
A. 10%
B. 20%
C. 40%
D. 50%

ANS: D

In favourable circumstances a 15 cm concrete cube after 28 days, attains a maximum crushing strength
A. $100 \mathrm{~kg} / \mathrm{cm} 2$
B. $200 \mathrm{~kg} / \mathrm{cm} 2$
C. $300 \mathrm{~kg} / \mathrm{cm} 2$
D. $400 \mathrm{~kg} / \mathrm{cm} 2$

ANS: D

Q-NO: 157
intensity of pressure at a depth h on a block of earth weighing w per unit

If p 1 is the vertical
A. wh $(1-\cos) /(1+) \mathrm{p} 2$ is
B. $\operatorname{wh}(1-\sin) /(1+))$
C. $\operatorname{wh}(1-\tan) /(1+$
D. $\mathrm{w}(1-\cos) / \mathrm{h}(1+\sin)$

ANS: B

Q-NO: 158

Pick up the incorrect statement from the following. The intensity of horizontal shear stress at the elemental part of a beam section, is directly proportional to
A. Shear force
B. Area of the section
C. Distance of the C.G. of the area from its neutral axis
D. Moment of the beam section about its neutral axis ANS: D

Q-NO: 159

According to I.S.: 456, 1978 the thickness of reinforced concrete footing on piles at its edges, is kept less than
A. 20 cm
B. 30 cm
C. 40 cm
D. 75 cm

ANS: B

Q-NO: 160

An R.C.C. beam of 25 cm width and 50 cm effective depth has a clear span of 6 metres and carries a U.D.L. of $3000 \mathrm{~kg} / \mathrm{m}$ inclusive
of its self weight. If the lever arm constant for the section is 0.865 , the maximum intensity of shear stress, is
A. $8.3 \mathrm{~kg} / \mathrm{cm} 2$
B. $7.6 \mathrm{~kg} / \mathrm{cm} 2$
C. $21.5 \mathrm{~kg} / \mathrm{cm} 2$
D. $11.4 \mathrm{~kg} / \mathrm{cm} 2$

ANS: A

Q-NO: 161

The percentage of minimum reinforcement of the gross sectional area in slabs, is
A. 0.10%
B. 0.12%
C. 0.15%
D. 0.18%

ANS: C

Q-NO: 162

If the permissible compressive stress for a concrete in bending is C $\mathrm{kg} / \mathrm{m} 2$, the modular ratio is
A. $2800 / \mathrm{C}$
B. $2300 / 2 \mathrm{C}$
C. $2800 / 3 \mathrm{C}$
D. $2800 / \mathrm{C} 2$

ANS: C

Q-NO: 163

An R.C.C. beam not provided with shear reinforcement may develop cracks in its bottom inclined roughly to the horizontal at
A. 25°
B. 35°
C. 45°
D. 55°

ANS: C

Q-NO: 164

Cantilever retaining walls can safely be used for a height not more than
A. 3 m
B. 4 m
C. 5 m
D. 6 m

ANS: D

Q-NO: 165

The maximum area of tension reinforcement in beams shall not exceed
A. 0.15%
B. 1.5%
C. 4%
D. 1 \%

ANS: C

Q-NO: 166

The width of the flange of a T-beam should be less than
A. One- third of the effective span of the T-beam
B. Distance between the centres of T-beam
C. Breadth of the rib plus twelve times the thickness of the slab
D. Least of the above

ANS: D

Q-NO: 167

For a circular slab carrying a uniformly distributed load, the ratio of the maximum negative to maximum positive radial moment, is
A. 1
B. 2
C. 3
D. 5

ANS: B

Q-NO: 168

According to I.S. : 456 specifications, the safe diagonal tensile stress for M 150 grade concrete, is
A. $5 \mathrm{~kg} / \mathrm{cm} 2$
B. $10 \mathrm{~kg} / \mathrm{cm} 2$
C. $15 \mathrm{~kg} / \mathrm{cm} 2$
D. $20 \mathrm{~kg} / \mathrm{cm} 2$

ANS: A

Q-NO: 169

The width of the flange of a T-beam, which may be considered to act effectively with the rib depends upon
A. Breadth of the rib
B. Overall thickness of the rib
C. Centre to centre distance between T-beams
D. All the above

ANS: D

Q-NO: 170

The maximum shear stress (qmax) in a rectangular beam is
A. 1.25 times the average
B. 1.50 times the average
C. 1.75 times the average
D. 2.0 times the average ANS: B

Q-NO: 171

If the sides of a slab simply supported on edges and spanning in two directions are equal, the maximum bending moment is multiplied by
A. 0.2
B. 0.3
C. 0.4
D. 0.5

ANS: D

Q-NO: 172

If K is a constant depending upon the ratio of the width of the slab to its effective span l, x is the distance of the concentrated load from the nearer support, bw is the width of the area of contact of the concentrated load measured parallel to the supported edge, the effective width of the slab be is
A. $K / x(1+x / d)+b w$
B. $K x(1-x / l)+b w$
C. $K x(1+x / l)+b w$
D. All the above

ANS: B

Q-NO: 173

The length of the straight portion of a bar beyond the end of the hook, should be at least
A. Twice the diameter
B. Thrice the diameter
C. Four times the diameter
D. Seven times the diameter

ANS: D

Q-NO: 174
bending moment of a simply supported slab is M Kg.cm, the effective depth of the
If the maximum
slab is (where Q is M.R. factor)
A. M/100Q
B. M / Q
C. M / Q)
D. $(\mathrm{M} / 100 \mathrm{Q})$

ANS: D
Q-NO: 175
If is the overall height of a retaining wall retaining a surcharge, the width of the base slab
usually provided, is
A. 0.3 H
B. 0.4 H
C. 0.5 H
D. 0.7 H ANS: D

Q-NO: 176
If Sb , is the average bond stress on a bar of diameter subjected to maximum stress, the
length of the embedment is given by
A. $l=d t / S b$
B. $1=\mathrm{dt} / 2 \mathrm{Sb}$
C. $l=d t / 3 S b$
D. $1=\mathrm{dt} / 4 \mathrm{Sb}$

ANS: D

Q-NO: 177

If diameter of a reinforcement bar is d, the anchorage value of the hook is
A. 4 d
B. 8 d
C. 12d
D. 16 d

ANS: D

Q-NO: 178

As per I.S. $456-1978$, the pH value of water shall be
A. Less than 6
B. Equal to 6
C. Not less than 6
D. Equal to 7

ANS: C

Q-NO: 179

For M 150 mix concrete, according to I.S. specifications, local bond stress, is
A. $5 \mathrm{~kg} / \mathrm{cm} 2$
B. $10 \mathrm{~kg} / \mathrm{cm} 2$
C. $15 \mathrm{~kg} / \mathrm{cm} 2$
D. $20 \mathrm{~kg} / \mathrm{cm} 2$

ANS: B

Q-NO: 180

The minimum cube strength of concrete used for a pre-stressed member, is
A. $50 \mathrm{~kg} / \mathrm{cm} 2$
B. $150 \mathrm{~kg} / \mathrm{cm} 2$
C. $250 \mathrm{~kg} / \mathrm{cm} 2$
D. $350 \mathrm{~kg} / \mathrm{cm} 2$

ANS: D

Q-NO: 181
effective depth and depth of the neutral axis respectively of a singly reinforced
If d and n are the
beam, the lever arm of the beam, is
A. d
B. n
C. $\mathrm{d}+\mathrm{n} / 3$
D. $d-n / 3$

ANS: D
Q-NO: 182
foundation is assumed as
The weight of a
A. 5% of wall weight
B. 7% of wall weight
C. 10% of wall weight
D. 12% of wall weight

ANS: C
Q-NO: 183
of 30 cm diameter is reinforced with 6 bars 12 mm placed
symmetrically along
An R.C.C. column
the circumference. If it carries a load of 40, ooo kg axially, the stress is
A. $49.9 \mathrm{~kg} / \mathrm{cm} 2$
B. $100 \mathrm{~kg} / \mathrm{cm} 2$
C. $250 \mathrm{~kg} / \mathrm{cm} 2$
D. $175 \mathrm{~kg} / \mathrm{cm} 2$

ANS: A
Q-NO: 184

If the diameter of longitudinal bars of a square column is 16 mm , the diameter of lateral ties should not be less than
A. 4 mm
B. 5 mm
C. 6 mm
D. 8 mm

ANS: B

Q-NO: 185

Design of R.C.C. cantilever beams, is based on the resultant force at
A. Fixed end
B. Free end
C. Mid span
D. Mid span and fixed support

ANS: A

Q-NO: 186

In a combined footing if shear stress does not exceed $5 \mathrm{~kg} / \mathrm{cm} 2$, the nominal stirrups provided are
A. 6 legged
B. 8 legged
C. 10 legged
D. 12 legged

ANS: B

Q-NO: 187

The maximum shear stress (q) in concrete of a reinforced cement concrete beam is
A. Shear force/(Lever arm \times Width)
B. Lever arm/(Shear force \times Width)
C. Width/(Lever arm \times Shear force)
D. (Shear force \times Width)/Lever arm

ANS: A

Q-NO: 188

An R.C.C. column is treated as long if its slenderness ratio is greater than
A. 30
B. 35
C. 40
D. 50

ANS: D

Q-NO: 189

The thickness of base slab of a retaining wall generally provided, is
A. One half of the width of the stem at the bottom
B. One -third of the width of the stem at the bottom
C. One fourth of the width of the steam at the bottom
D. Width of the stem at the bottom

ANS: D

Q-NO: 190

Design of R.C.C. simply supported beams carrying U.D.L. is based on the resultant B.M. at
A. Supports
B. Mid span
C. Every section
D. Quarter span

ANS: B

Q-NO: 191

If the maximum shear stress at the end of a simply supported R.C.C. beam of 6 m effective span is $10 \mathrm{~kg} / \mathrm{cm} 2$, the share stirrups are provided for a distance from either end where, is
A. 50 cm
B. 100 cm
C. 150 cm
D. 200 cm ANS: C

Q-NO: 192

Distribution reinforcement in a simply supported slab, is provided to distribute
A. Load
B. Temperature stress
C. Shrinkage stress
D. All the above

ANS: D

Q-NO: 193

Distribution of shear intensity over a rectangular section of a beam, follows:
A. A circular curve
B. A straight line
C. A parabolic curve
D. An elliptical curve

ANS: C

Q-NO: 194

In a singly reinforced beam, if the permissible stress in concrete reaches earlier than that in steel, the beam section is called
A. Under-reinforced section
B. Over reinforced section
C. Economic section
D. Critical section

ANS: B

Q-NO: 195

If the size of a column is reduced above the floor, the main bars of the columns, are
A. Continued up
B. Bent inward at the floor level
C. Stopped just below the floor level and separate lap bars provided
D. All the above

ANS: D

Q-NO: 196

The minimum number of main steel bars provided in R.C.C.
A. Rectangular columns is 4
B. Circular columns is 6
C. Octagonal columns is 8
D. All the above

ANS: D

Q-NO: 197

A short column $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ in section is reinforced with 4 bars whose area of cross section is 20 sq . cm. If permissible compressive stresses in concrete and steel are $40 \mathrm{~kg} / \mathrm{cm} 2$ and $300 \mathrm{~kg} / \mathrm{cm} 2$, the Safe load on the column, should not exceed
A. 4120 kg
B. $41,200 \mathrm{~kg}$
C. $412,000 \mathrm{~kg}$
D. None of these

ANS: B

Q-NO: 198

If T and R are tread and rise respectively of a stair, then
A. $2 R+T=60$
B. $R+2 T=60$
C. $2 R+T=30$
D. $\mathrm{R}+2 \mathrm{~T}=30$

ANS: A

Q-NO: 199

For stairs spanning l metres longitudinally between supports at the bottom and top of a flight carrying a load w per unit horizontal area, the maximum bending moment per metre width, is
A. $\mathrm{wl}^{2} / 4$
B. $\mathrm{wl}^{2} / 8$
C. $\mathrm{wl}^{2} / 12$
D. $\mathrm{wl}^{2} / 16$

ANS: D

Q-NO: 200

In a singly reinforced beam, the effective depth is measured from its compression edge to
A. Tensile edge
B. Tensile reinforcement
C. Neutral axis of the beam
D. Longitudinal central axis

ANS: B

Q-NO: 201

Though the effective depth of a T-beam is the distance between the top compression edge to the centre of the tensile reinforcement, for heavy loads, it is taken as
A. $1 / 8$ th of the span
B. 1/10th of the span
C. 1/12th of the span
D. $1 / 16$ th of the span

ANS: C

Q-NO: 202

If jd
stress at the section having Q shear force, is
A. $\mathrm{Q} / 2$
B. $\mathrm{Q} / 3$
C. Q/
D. $2 \times \mathrm{Q} /$

ANS: C

Q-NO: 203

On piles, the drop must be at least
A. 80 cm
B. 100 cm
C. 120 cm
D. 140 cm

ANS: C

Q-NO: 204

Steel beam theory is used for
A. Design of simple steel beams
B. Steel beams encased in concrete
C. Doubly reinforced beams ignoring compressive stress in concrete
D. Beams if shear exceeds 4 times allowable shear stress ANS: C

Q-NO: 205

In a pre-stressed beam carrying an external load W with a bent tendon is having angle of -stressed load P. The net downward load at the centre is
A. $\mathrm{W}-2 \mathrm{P}$
B. $\mathrm{W}-\mathrm{P}$
C. W - P
D. $W-2 P$

ANS: D

Q-NO: 206

To have pressure wholly compressive under the base of a retaining wall of width b, the resultant of the weight of the wall and the pressure exerted by the retained, earth should have eccentricity not more than
A. b/3
B. $\mathrm{b} / 4$
C. b/5
D. $\mathrm{b} / 6$

ANS: D

Q-NO: 207

The diameter of longitudinal bars of a column should never be less than
A. 6 mm
B. 8 mm
C. 10 mm
D. 12 mm

ANS: D

Q-NO: 208

Post tensioning system
A. Was widely used in earlier days
B. Is not economical and hence not generally used
C. Is economical for large spans and is adopted now a days
D. None of these

ANS: D

Q-NO: 209

The number of treads in a flight is equal to
A. Risers in the flight
B. Risers plus one
C. Risers minus one
D. None of these

ANS: C

Q-NO: 210

The amount of reinforcement for main bars in a slab, is based upon
A. Minimum bending moment
B. Maximum bending moment
C. Maximum shear force
D. Minimum shear force

ANS: B

Q-NO: 211

The shear reinforcement in R.C.C. is provided to resist
A. Vertical shear
B. Horizontal shear
C. Diagonal compression
D. Diagonal tension

ANS: D

Q-NO: 212

A simply supported beam 6 m long and of effective depth 50 cm , carries a uniformly distributed load $2400 \mathrm{~kg} / \mathrm{m}$ including its self weight. If the lever arm factor is 0.85 and permissible tensile stress of steel is $1400 \mathrm{~kg} / \mathrm{cm} 2$, the area of steel required, is
A. 14 cm 2
B. 15 cm 2
C. 16 cm 2
D. 17 cm 2 ANS: C

Q-NO: 213

The anchorage value of a hook is assumed sixteen times the diameter of the bar if the angle of the bend, is
A. 30°
B. 40°
C. 45°
D. All the above

ANS: D

Q-NO: 214

A circular slab subjected to external loading, deflects to form a
A. Semi-hemisphere
B. Ellipsoid
C. Paraboloid
D. None of these

ANS: C

Q-NO: 215

If a rectangular pre-stressed beam of an effective span of 5 meters and carrying a total load $3840 \mathrm{~kg} / \mathrm{m}$, is designed by the load balancing method, the central dip of the parabolic tendon should be
A. 5 cm
B. 10 cm
C. 15 cm
D. 20 cm

ANS: B

Q-NO: 216

The radius of a bar bend to form a hook, should not be less than
A. Twice the diameter
B. Thrice the diameter
C. Four times the diameter
D. Five times the diameter

ANS: A

Q-NO: 217

The reinforced concrete beam which has width 25 cm , lever arm 40 cm , shear force $6 \mathrm{t} / \mathrm{cm} 2$, safe shear stress $5 \mathrm{~kg} / \mathrm{cm} 2$ and B.M. 24 mt ,
A. Is safe in shear
B. Is unsafe in shear
C. Is over safe in shear
D. Needs redesigning ANS: B

Q-NO: 218

If a bent tendon is required to balance a concentrated load W at the centre of the span L, the central dip h must be at least
A. WL /P
B. $\mathrm{WL} / 2 \mathrm{P}$
C. WL/3P
D. WL/4P

ANS: D

Q-NO: 219

If the effective length of a 32 cm diameter R.C.C. column is 4.40 m , its slenderness ratio, is
A. 40
B. 45
C. 50
D. 55

ANS: D

Q-NO: 220

If W is total load per unit area on a panel, D is the diameter of the column head, L is the span in two directions, then the sum of the maximum positive bending moment and average of the negative
bending moment for the design of the span of a square flat slab, should not be less than
A. $\mathrm{WL} / 12(\mathrm{~L}-2 \mathrm{D} / 3)^{2}$
B. $\mathrm{WL} / 10(\mathrm{~L}+2 \mathrm{D} / 3)^{2}$
C. $\mathrm{WL} / 10(\mathrm{~L}-2 \mathrm{D} / 3)^{2}$
D. $\mathrm{WL} / 12(\mathrm{~L}-\mathrm{D} / 3)^{2}$

ANS: C

Q-NO: 221

Piles are usually driven by
A. Diesel operated hammer
B. Drop hammer
C. Single acting steam hammer
D. All the above

ANS: D

Q-NO: 222

In a combined footing for two columns carrying unequal loads, the maximum hogging bending moment occurs at
A. Less loaded column
B. More loaded column
C. A point of the maximum shear force
D. A point of zero shear force

ANS: D

Q-NO: 223
If the average bending stress is $6 \mathrm{~kg} / \mathrm{cm} 2$ for M 150 grade concrete, the length of embedment of a
bar of diameter d according to I.S. 456 specifications, is
A. 28 d
B. 38 d
C. 48 d
D. 58 d

ANS: D
Q-NO: 224
The live load to be considered for an inaccessible roof, is
A. Nil
B. $75 \mathrm{~kg} / \mathrm{m} 2$
C. $150 \mathrm{~kg} / \mathrm{cm} 2$
D. $200 \mathrm{~kg} / \mathrm{m} 2$

ANS: B
Q-NO: 225
carrying a uniformly distributed load per metre length is suspended at the
A pile of length
centre and from other two points 0.15 L from either end ; the maximum hogging moment will be
A. $\mathrm{WL}^{2} / 15$
B. $\mathrm{WL}^{2} / 30$
C. WL²/60
D. WL²/90

ANS: D
Q-NO: 226
An R.C.C. roof slab is designed as a two way slab if
A. It supports live loads in both directions
B. The ratio of spans in two directions is less than 2
C. The slab is continuous over two supports
D. The slab is discontinuous at edges

ANS: B

Q-NO: 227

The design of a retaining wall assumes that the retained earth
A. Is dry
B. Is free from moisture
C. Is not cohesive
D. All the above

ANS: D

Q-NO: 228

A foundation rests on
A. Base of the foundation
B. Sub-grade
C. Foundation soil
D. Both B. and C.

ANS: D

Q-NO: 229

The advantage of a concrete pile over a timber pile, is
A. No decay due to termites
B. No restriction on length
C. Higher bearing capacity
D. All the above

ANS: D

Q-NO: 230

For stairs spanning horizontally, the minimum waist provided is
A. 4 cm
B. 6 cm
C. 8 cm
D. 12 cm

ANS: D

Q-NO: 231

The toe projection of foundation slabs is taken
A. As one third of the base
B. As one sixth of overall height of the wall
C. Equal to heel slab
D. Below ground surface

ANS: A

Q-NO: 232

The horizontal portion of a step in a stairs case, is known as
A. Rise
B. Flight
C. Winder
D. Tread

ANS: D

Q-NO: 233

The maximum ratio of span to depth of a cantilever slab, is
A. 8
B. 10
C. 12
D. 16

ANS: C

Q-NO: 234
[A $+(m-1) A S C]$ known as equivalent concrete area of R.C.C. is given by
A. Modular ratio method
B. Load factor method
C. Ultimate load method
D. None of these

ANS: A

Q-NO: 235

If permissible working stresses in steel and concrete are respectively $1400 \mathrm{~kg} / \mathrm{cm} 2$ and $80 \mathrm{~kg} / \mathrm{cm} 2$ and modular ratio is 18 , in a beam reinforced in tension side and of width 30 cm and having effective depth 46 cm , the lever arms of the section, is
A. 37 cm
B. 38 cm
C. 39 cm
D. 40 cm

ANS: D

Q-NO: 236

A pre-stressed concrete member
A. Is made of concrete
B. Is made of reinforced concrete
C. Is stressed after casting
D. Possesses internal stresses

ANS: D

Q-NO: 237

A flat slab is supported
A. On beams
B. On columns
C. On beams and columns
D. On columns monolithically built with slab

ANS: D

Q-NO: 238

A foundation is called shallow if its depth, is
A. One-fourth of its width
B. Half of its width
C. Three-fourth of its width
D. Equal to its width

ANS: D

RCC STRUCTURES DESIGN Mcqs Book ::

LEAVE A REPLY

Your email address will not be published. Required fields are marked *

Comment

\square

Name *
\square

Email *
\square

Website

\square

Post Comment

Search...

Copyright 2020, Engineering Interview Questions.com, Theme by Engineering|| Privacy Policy|| Terms and Conditions|| ABOUT US|| Contact US||
Engineering interview questions,Mcqs,Objective Questions,Class Lecture Notes,Seminor topics,Lab Viva Pdf PPT Doc Book free download. Most Asked Technical Basic CIVIL \| Mechanical \| CSE \| EEE \| ECE \| IT \| Chemical \| Medical MBBS Jobs Online Quiz Tests for Freshers Experienced.

