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If	you’re	passionate	about	drones,	get	ready	to	take	your	skills	and	understanding

	

to	new	heights.	Drones	make	a	great	platform	for	learning	about	the	fascinating,	Dr

useful,	and	even	beautiful	world	of	control	systems.	With	this	guide,	you	will

o

Drones

learn	how	to	harness	the	breakthroughs	that	make	possible	the	remarkable	flying

nes

abilities	of	multirotor	copters.

	

The	book	covers	three	classes	of	drones.	You’ll	start	by	building	a	small	drone	using	Te

the	Hubsan	frame	and	brushed	motors.	As	you	move	up	to	a	medium-sized	drone,

ach	an

you’ll	use	an	Arduino	Teensy	as	the	core	of	a	flight-control	system	and	add	modules	for	power,	sensors,	and	radios.	Finally,	you’ll	build	an	autonomous	drone	using	the
S500	frame	kit,	brushless	motors,	and	an	ArduCopter	flight	control	system	that

Ar

makes	a	great	aerial	photography	platform.

duino	to	Fly

Inside	Make:	Drones,	you'll	find:

	

»	Hands-on	DIY	projects	for	building	your	own	drones	using	existing	frames

	

»	An	in-depth	examination	of	flight-control	systems	and	programming

	

»	Tips	for	upgrading	and	improving	off-the-shelf	systems

	

»	A	lucid	explanation	of	multirotor	aerodynamics

	

»	Custom	circuit	board	design	with	modular	components

	

»	Instructions	for	installing	RC	radio,	telemetry,	and	GPS	systems

	



»	Fine-tuning	and	troubleshooting	for	flight	stabilization

	

»	And	much	more!

McGriff

If	you’re	ready	to	get	serious	about	drones	and	drone	control	systems,

this	is	the	book	for	you.	Teach	your	Arduino	how	to	fly	today!
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Preface

Success

The	successful	people	I	have	known	all	seem	to	have	gotten	there	by	some	personal	mix	of	talent,	luck,	and	work.	I	hope	that	the	mix	turns	out	right	in	this	book	and	that	I
succeed	in	inspiring	you	to	make	something.	It	will	probably	be	a	drone,	but	if	it’s	a	great	new	garage	door	opener,	I’ll	count	that	as	a	success	as	well.

I	have	put	my	unique	talents	into	this	book,	as	you	will	into	your	project.	I	was	born	with	a	soldering	iron	in	my	hand,	or	almost,	thanks	to	my	father’s	ham	radio	hobby.
Also,	largely	due	to	his	efforts,	I	started	finding	things	to	program	when	I	was	still	a	kid.	I	happen	to	love	mathematics,	which	has	served	me	well	as	a	coder,	of	course.	And
there	are	several	pilots	on	my	father’s	side	of	the	family.	But	there	are	other	threads	in	my	life	that	led	to	drones.

From	my	mother’s	side	I	get	music.	My	love	of	music	and	my	love	of	gear	came	together	in	recording	technology.	This	led	to	computer	audio	and	digital	signal	processing.
And	now	we	get	back	around	to	drones.	Many	of	the	very	same	algorithms	I	have	coded	for	audio	processing	get	used	in	drones	to	process	sensor	data	and	control	inputs.

Add	in	some	professional	experience	doing	consulting	in	the	control	systems	business,	and	perhaps	you	can	see	why	I	love	building	drones.	It	all	comes	together—building
electronics,	flying,	radios,	programming,	signal	processing.	But	there	was	also	some	luck	involved	in	the	creation	of	Make:	Drones.

My	old	friend	Tim	Deagan	was	working	on	his	book,	Make:	Fire,	and	I	shot	some	drone	video	of	his	fire	projects.	Then	Roger,	who	would	become	our	mutual	editor,	said,
“Drones	are	hot,	send	me	a	book	proposal	on	drones,”	so	I	did.

Then	there	is	the	work.	And	I	don’t	just	mean	mine.	Roger	Stewart	makes	all	those	things	happen	that	turn	a	bunch	of	files	into	a	book	on	a	shelf.	Ron	Parsons	has	saved
me	from	many	an	error	as	technical	editor.	He	also	let	me	play	on	his	Processor	Technology	Sol	per-ix

sonal	computer	when	I	was	a	kid,	giving	me	one	of	my	very	first	programming	experiences.

And	without	the	constant	support	of	my	wife,	Marva,	and	kids,	Stella	and	Sean,	the	produc-tion	and	marketing	teams	would	never	have	had	anything	to	work	on.

The	real	success,	of	course,	is	not	just	a	book	on	a	shelf.	I	hope	that	this	book	inspires	you	to	make	something	that	pulls	the	threads	of	your	life	together.	I	hope	that	this
book	helps	you	see	that	even	something	as	complex	as	a	drone	control	system	can	be	broken	down	into	fundamental,	understandable	parts.	Over	and	over	we	see	that	the
same	technologies	that	make	a	drone	fly	make	many	of	our	other	modern	gadgets	possible.	I	hope	that	they	will	make	your	project	fly,	figuratively	and	perhaps	literally.

Small,	Medium,	Large

You	can	divide	this	book	into	three	sections,	as	drones	nicely	divide	themselves	into	small,	medium,	and	large	based	mostly	on	their	motors.	Small	drones	use	brushed
motors

directly	connected	to	small	props.	Medium-sized	drones	use	the	same	6-to	8-millimeter	motors,	but	gear	them	down	in	order	to	use	larger,	more	efficient	props.	Large
drones	use	brushless	motors	and	electronic	speed	controllers.	Each	of	these	classes	can	actually	vary	greatly	in	size,	but	the	general	trend	holds	true.

In	Chapters	4–5	we	work	with	small	drones.	First	we	take	some	measurements	and	try	to	improve	the	performance	of	an	existing	small	drone,	the	Hubsan	X4C.	Then	we
build	a	new	small	drone	using	a	Hubsan	frame	and	an	open	source	flight	controller.	It’s	called	the	X4Wii	since	it	uses	an	X4	frame	and	MultiWii	flight	control	code.

Chapters	6–13	cover	the	construction	of	a	medium-sized	drone.	Once	again	we	start	with	the	frame	from	an	existing	drone,	the	Syma	X5.	We	use	an	Arduino	Teensy	3.2	as
the	core	of	our	new	flight	control	system,	adding	modules	for	power,	sensors,	and	radios.	A	custom	circuit	board	ties	it	all	together.	Finally,	so	that	people	can	see	this	new
custom	controller,	we	put	a	clear	lid	on	it	and	call	this	project	the	Visible	Drone.

In	Chapters	14–20	we	build	a	large	drone,	based	on	the	S500	frame	kit.	For	flight	control,	this	one	uses	the	powerful	Pixhawk	Lite	controller	and	ArduCopter	flight	control
software.

Combined	with	a	high-performance	GPS	unit,	this	system	can	fly	completely	autonomous	missions—and	it	has	the	power	to	carry	a	useful	payload	while	doing	it.	This	one
will	make	a	great	aerial	photography	platform.



Having	talked	about	what	makes	current	drones	possible	in	the	first	few	chapters,	we	will	look	at	the	future	of	drones	in	the	last	few.	Researchers	and	hobbyists	alike
continually	push	the	limits	of	drones	with	new	sensors	and	ever	more	sophisticated	software.	Be	a	part	of	this	future	and	make	a	drone!

x
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Conventions	Used	in	This	Book

The	following	typographical	conventions	are	used	in	this	book:

Italic	Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements	such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

This	element	signifies	a	general	note,	tip,	or	suggestion.

This	element	indicates	a	warning	or	caution.

Using	Code	Examples

Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download	at	http://

www.makedronesbook.com.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is	offered	with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You	do	not	need
to	contact	us	for	permission	unless	you’re	reproducing	a	significant	portion	of	the	code.	For	example,	writing	a	program	that	uses	several	chunks	of	code	from	this	book
does	not	require	permission.	Selling	or	distributing	a	CD-ROM	of	examples	from	Make:	books	does	require	permission.	Answering	a	question	by	citing	this	book	and
quoting	example	code	does	not	require	permission.	Incorporating	a	significant	amount	of	example	code	from	this	book	into	your	product’s	documentation	does	require
permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,	author,	publisher,	and	ISBN.	For	example:	“Make:	Drones	by	David	McGriffy	(Maker
Media).

Copyright	2017	David	McGriffy,	978-1-68045171-9.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,	feel	free	to	contact	us	at	bookpermissions@makermedia.com.
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Safari®	Books	Online

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,	educa-

tion,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication	manu-scripts	in	one	fully
searchable	database	from	publishers	like	O’Reilly	Media,	Prentice	Hall	Professional,	Addison-Wesley
Professional,	Microsoft	Press,	Sams,	Que,	Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,
Syngress,	Morgan	Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New
Riders,	McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more	information
about	Safari	Books	Online,	please	visit	us	online.

How	to	Contact	Us

Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

Maker	Media,	Inc.

1160	Battery	Street	East,	Suite	125

San	Francisco,	CA	94111

877-306-6253	(in	the	United	States	or	Canada)

707-639-1355	(international	or	local)

Maker	Media	unites,	inspires,	informs,	and	entertains	a	growing	community	of	resourceful	people	who
undertake	amazing	projects	in	their	backyards,	basements,	and	garages.

Maker	Media	celebrates	your	right	to	tweak,	hack,	and	bend	any	technology	to	your	will.

The	Maker	Media	audience	continues	to	be	a	growing	culture	and	community	that

believes	in	bettering	ourselves,	our	environment,	our	educational	system—our	entire	world.	This	is	much
more	than	an	audience,	it’s	a	worldwide	movement	that	Maker	Media	is	leading.	We	call	it	the	Maker
Movement.

For	more	information	about	Maker	Media,	visit	us	online:

Make:	and	Makezine.com:	http://makezine.com

Maker	Faire:	http://makerfaire.com

Maker	Shed:	http://makershed.com

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional	information.	You	can
access	this	page	at	http://bit.ly/makedrones.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to	bookquestions@oreilly.com.
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What	Makes	a	1

Drone	Possible

The	quadcopter	glides	gently	through	the	sky,	using	every	subtle	variation	in	the	atmosphere	to	its
advantage,	performing	that	delicate	dance	with	the	air	that	we	call	flight.

Doesn’t	quite	sound	right,	does	it?

Let’s	face	it,	a	quadcopter	doesn’t	so	much	dance	with	the	air	as	arm	wrestle.	Usually	the	quadcopter
wins.	Some	days	the	sky	wins.

No,	the	beauty	of	a	drone	is	not	in	the	graceful	curve	it	cuts	through	the	sky	or	the	subtle	shape	of	its
wings.	It	has	no	wings,	of	course.	In	fact,	among	the	best	things	about	our	modern	multirotors	are	all	the
parts	they	don’t	have.	No	wings.	No	control	surfaces	and	no	servos	to	move	them.	No	complex	collective
pitch	hubs.	No	stall	speed,	timed	turns,	or	holding	patterns.	We	have	stripped	flying	down	to	its	bare
essentials.	We	have	four	moving	parts	that	push	us	upward,	and	the	rest	is	in	the	control	system	(Figure
1-1).

Figure	1-1	A	micro	drone	in	a	mint	tin

1

Motors

And	now	we	are	getting	closer	to	where	the	beauty	lies.

As	with	the	most	interesting	people	and	the	best	books,	the	real	beauty	of	the	multirotor	drone	is	on	the
inside.	An	ArduCopter-based	drone	has	four	main	inputs	from	two	joysticks	and	four	outputs	to	its	motors.
To	compute	those	four	outputs	from	those	four	inputs,	it	uses	nearly	three	hundred	parameters.	At	first	it
may	appear	that	this	is	so	complex	as	to	be	magic,	but	it’s	not.	It’s	engineering.	And	precisely	because	of
all	the	parts	it	doesn’t	have,	a	drone	turns	out	to	be	a	wonderful	platform	to	learn	about	engineering
principles.

The	algorithms	used	in	drone	control	systems	are	basic,	important,	and	beautiful.	You’ll	discover	that
learning	how	to	use	them	will	be	fun	and	interesting.	But	these	methods	have	been	around	for	decades.
So	whatever	the	aesthetics,	they	are	not	the	breakthrough	that	made	modern	quadcopters	possible.	And
make	no	mistake:	there	have	been	breakthroughs.

I	have	flown	radio	control	aircraft	off	and	on	for	many	years	and	have	watched	them	with	great	interest
since	I	was	a	kid.	There	have	long	been	RC	helicopters,	but	they	were	expensive	and	very	hard	to	fly.	Then
there	were	toy	helicopters,	but	to	watch	them	fly	is	to	know	that	they	belong	in	the	toy	aisle.	The	military
built	cruise	missiles,	but	they	cost	millions.

Then	one	day	a	friend	brought	a	quadcopter	into	the	office.	It	would	fit	in	your	hand	and	it	flew	like	an
aircraft,	not	just	a	toy.	And	the	punch	line?	It	cost	$20!	Now	that’s	what	I	call	a	breakthrough.

So	I	bought	one,	then	another,	then	a	bigger	one.	Then	I	built	one	from	scratch	and	started	to	modify	the
flight	control	code.	After	many	crashes	and	much	thought,	I	am	now	ready	to	say	what	has	changed:
motors,	batteries,	and	control	systems.

Drones	Versus	Quadcopters



You	will	see	several	terms	for	the	flying	things	we	like	“drone”	will	do.	The	term	“multirotor”	leaves	will
build	here.	Some	take	“drone”	to	mean	only	a	out	fixed-wing	aircraft	and	traditional	helicop-military
system	or	vehicle	that	can	fly	autono-ters,	but	describes	everything	we	will	build	here.

mous	missions.	Since	it	is	by	far	the	shortest,	The	term	“quadcopter”	describes	an	even	more	easiest	word
for	it,	I	intend	to	use	the	word	limited	class—only	those	with	four,	not	six	or

“drone”	for	just	about	anything	that	can	fly	eight,	props—but	still	covers	all	of	our	projects.

without	a	human	on	board.	The	military	actually	We	will	use	these	words	to	differentiate	our	calls	them
unmanned	aerial	vehicles	(UAVs)	and	drones	from	fixed-wing	or	six-rotor	vehicles	the	FAA	calls	them
unmanned	aerial	systems	when	needed,	but	also	sometimes	just	for	vari-

(UASs),	but	I	use	enough	acronyms	in	my	life	ety.

without	using	one	where	a	one-syllable	word

Motors

That	first	little	quadcopter	I	saw	at	the	office,	like	most	micro	drones,	used	tiny	electric	motors.	They	are
smaller	but	look	essentially	the	same	as	the	small	DC	motors	I	bought	10

to	a	bag	as	a	kid,	but	those	were	nowhere	close	to	powerful	enough	to	lift	themselves.	It	2
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Motors

turns	out	that	there	is	an	essential	difference	between	the	quadcopter	motors	and	the	motors	I	was
familiar	with.	Like	many	motors	these	days,	they	use	rare	earth	magnets,	but	that’s	not	the	essential
difference.	These	“coreless”	motors	(Figure	1-2)	are	optimized	for	aviation.

Figure	1-2	6	mm,	7	mm,	and	8.5	mm	coreless	motors

The	windings	in	small	motors,	like	nearly	all	electric	magnets,	are	generally	made	around	a	core	of	some
ferrous	material	like	iron.	This	makes	the	magnets	more	efficient—electrically	efficient,	that	is.	It	turns
out,	however,	that	weight	is	more	important	than	energy	efficiency	in	aviation,	so	someone	thought	to
take	out	that	heavy	core,	and	our	tiny,	flight-ready	motors	were	born.



These	coreless	motors,	used	in	smaller	drones,	are	often	called	“brushed”	to	differentiate	them	from	the
sort	of	motor	used	in	larger	multirotors,	which	have	no	brushes.	In	most	motors,	brushes	riding	on	a
series	of	contacts	control	which	windings	get	energized	in	what	order.	In	a	brushless	motor,	first
developed	for	floppy	disk	drives	(see	Figure	1-3),	electronics	control	the	windings	instead	of	contacts,
making	a	simpler,	longer-lasting	motor.



Chapter	1
3

Batteries

Figure	1-3	Modern	drones	and	old	floppy	drives	use	similar	brushless	motors	Like	the	drones	they	fly	in,
brushless	motors	gain	mechanical	simplicity	at	the	expense	of	control	system	complexity.	Each	of	the	four
motors	in	a	brushless	quad	has	to	have	its	own	little	processor,	always	watching	the	back	current	on	the
unused	coils	to	determine	position,	and	adjusting	the	current	to	the	other	coils	to	achieve	the	speed
commanded	by	the	central	flight	controller.

Batteries

I	suppose	it	should	come	as	no	surprise	that	the	power	plant	is	one	of	the	important	technologies	in	a
drone.	It	has	always	been	so	in	aviation.	From	that	first	piston	engine	that	Orville	made	according	to
Wilbur’s	design,	to	Whittle’s	first	jet	engine,	to	the	rocket	that	Chuck	Yeager	flew,	advances	in	power	have
driven	advances	in	aviation.	And	each	new	power	plant	comes	with	its	new	fuel	source.

For	our	modern	electric	aircraft—and	this	means	mostly	drones,	though	there	are	a	few	experimental
human-carrying	electric	aircraft—the	fuel	source	is	a	battery.	The	most	common	battery	technology	used
by	drones	today	is	the	LiPo,	or	lithium	polymer	battery,	as	seen	in	Figure	1-4.

4
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Control	Systems

Figure	1-4	A	selection	of	1S	and	3S	LiPos

LiPos	come	in	all	sizes	and	shapes,	from	batteries	the	size	of	a	thick	postage	stamp	to	batteries	the	size	of
a	suitcase	that	can	literally	run	your	house	or	your	car.	Their	capacities	and	capabilities	vary	accordingly.
They	can	be	rather	finicky	things	compared	to	say,	nickel–

metal	hydride	(NiMH)	batteries.	LiPos	don’t	like	to	be	left	fully	charged	for	long	but	don’t	want	to	be
stored	completely	empty	either.	Treat	them	wrong	and	it	is	pretty	easy	to	ruin	them,	or	worse.	They	have
a	bit	of	a	reputation	for	catching	on	fire,	but	with	a	few	reasonable	precautions	LiPos	will	allow	us	to	do
things	no	other	batteries	will.

Control	Systems

In	between	the	batteries	and	the	motors	is	the	control	system.	Even	the	tiniest	micro	drone	has	several
subsystems,	including	radio	receivers,	gyros,	accelerometers,	and,	of	course,	a	processor	to	tie	it	all
together.	Since	each	of	these	components	is	just	a	little	black	chip	on	a	circuit	board	that	looks	much	like
those	out	of	any	modern	consumer	electronics	gadget,	people	may	be	less	aware	of	the	advances	that
have	made	modern	drone	control	systems	possible.

Before	looking	at	what’s	new,	however,	it’s	worth	pointing	out	that	some	parts	of	these	little	control
systems	date	back	years	or	even	decades.	The	processors	used	are	fairly	modern,	but	the	microcontrollers
of	several	years	ago	could	have	done	this	job	as	well.	On	the	software	side,	the	algorithms	used,	including
the	Kalman	filter	and	PID	controller,	have	been	used	by	control	systems	engineers	since	long	before	the
microprocessor	was	invented.
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Control	Systems

Having	acknowledged	the	great	work	of	engineers	past,	however,	some	aspects	of	drone	control	systems
do	represent	new	breakthroughs.	The	general	shrinking	of	electronic	components	in	both	physical	size
and	power	consumption	makes	smaller	drones	possible.

Modern	design	and	manufacturing	techniques	allow	these	tiny	chips	to	be	integrated	into	task-specific
circuit	boards	that	can	be	economically	made	in	small	numbers.	A	flight	controller,	containing	all	the
subsystems	mentioned	above	and	more,	can	be	put	on	a	single	board	that	you	could	lose	in	a	shirt	pocket.

At	least	one	of	the	chips	on	that	little	board	represents	a	breakthrough	that	is	more	specific	to	aviation:
the	gyro.	Gyroscopes	have	been	used	to	stabilize	aircraft	since	Lawrence	Sperry	demonstrated	his
gyroscopic	stabilizer	apparatus	on	a	Curtis	C-2	biplane	to	a	French	audience	in	June	1914.	As	mentioned
earlier,	radio-controlled	helicopters	were	notoriously	hard	to	fly,	so	someone	eventually	made	a	gyroscopic
stabilizer	for	them.	The	first	models	used	physical	spinning	disks,	just	like	the	children’s	toys,	and	thus
were	rather	large	and	heavy	for	all	but	the	biggest	model	helicopters.	The	price	of	a	single	axis	stabilizer
would	buy	a	complete	midsized	quadcopter	today.

Now	we	can	get	three	gyros	and	three	accelerometers	in	a	single	chip	(Figure	1-5)	and	they	only	cost	a
few	bucks,	even	in	small,	maker-friendly	quantities.	And	this	brings	us	to	one	more	breakthrough	and
pleasant	surprise.	It’s	nothing	new	for	a	consumer	gadget	like	a	drone	to	be	made	more	cheaply	in	China.
What	makes	this	new	world	of	micro	aviation	so	exciting	for	makers	is	that	Chinese	manufacturing	has
resulted	in	a	range	of	drone	parts	that	we	can	buy	in	single	units,	mix	and	match,	and	make	into	our	own
designs.

Figure	1-5	A	gyroscope	module	and	its	inspiration

6
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For	all	these	innovations,	we	are	yet	at	the	beginning	of	the	drone	revolution.	As	of	this	moment,	the	FAA
has	just	announced	new	rules	for	commercial	drone	use;	and	many	types	of	activities,	like	package
delivery,	are	not	allowed	at	all.	The	drones	themselves	are	only	just	starting	to	add	safety	features	like
collision	avoidance	and	recovery	parachutes	that	will	make	them	safe	and	reliable	enough	to	share	the
airspace	with	each	other	and	with	other	aircraft.	The	first	international	drone	racing	championship	was



just	held,	and	everywhere	drones	are	being	used	in	classrooms	to	excite	kids	and	teach	engineering
concepts.

And	teaching	engineering	concepts	brings	us	back	to	what	we	will	do	in	this	book.	We	will	take	the	tools
we	are	already	familiar	with—an	Arduino,	some	motors,	and	a	battery—and	we	will	teach	them	how	to	fly.
In	the	process,	we	will	learn	some	basic	engineering	that	can	be	used	in	making	anything	from	robots	to
coffee	pots.	Then,	when	the	construction	is	complete	and	the	tuning	is	done,	when	you	have	put	in	the
hours	and	learned	to	control	your	drone,	you	will	be	rewarded	with	one	of	humanity’s	oldest	dreams:
flight,	an	experience	made	deeper	because	your	understanding	made	it	possible.
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Popular	Drone	2

Control	Systems

Of	the	three	breakthroughs	that	made	drones	possible—motors,	batteries,	and	control	systems—I	find
control	systems	the	most	interesting.	Perhaps	I	am	biased	by	a	lifetime	of	writing	code,	but	I	am	also
drawn	by	the	human	elements.	Of	course,	real	people	with	stories	to	tell	developed	our	motors	and
batteries	too,	but	those	stories	are	trapped	inside	companies	in	China.	The	flight	controllers	we	will	look
at	here	are	mostly	open	source,	so	the	story	of	their	development	gets	played	out	in	public.

In	this	chapter	we	will	look	at	several	drone	control	system	projects.	Each	of	these	projects	has	developed
software	that	runs	on	drones	for	stability	and	control.	Many	projects	also	include	ground	control	station
software	to	monitor	and	tune	drones,	or	even	open	source	hardware	specifications.	We’ll	look	at	the
history	of	each	and	sort	out	the	reasons	one	might	choose	one	system	over	another.

MultiWii

Yes,	the	two	i’s	at	the	end	of	the	name	are	a	reference	to	the	Nintendo	video	game	system.

When	solid-state	gyros	were	first	becoming	commercially	available,	one	of	the	earliest	products	to	use
them	was	the	Wii	controller.	Untold	numbers	of	Wii	controllers	were	taken	apart	because	they	were	the
most	reliable	place	to	get	the	chips.	In	time,	a	whole	control	system	grew	up	using	gyros	taken	from	Wii
controllers	that	were	connected	to	Arduinos	to	control	multirotors.	This	project	became	known	as
MultiWii.

The	original	Wii	controller	only	had	accelerometers,	no	gyroscopes,	which	wasn’t	enough	to	control	flight.
Using	either	the	Motion	Plus	extension	or	the	Nunchuck,	one	could	get	three	axes	of	gyroscope.	Some	of
the	earliest	MultiWii	models	didn’t	use	accelerometers	and	thus	had	no	absolute	reference	to	the	horizon.
But	stabilizing	the	roll,	pitch,	and	yaw	rates	provided	just	enough	control	to	fly.	Today,	the	MultiWii
codebase	supports	all	the	common	gyro/accelerometer	chips,	including	the	currently	very	popular
InvenSense	9

MultiWii

MPU-6050	in	the	MicroMWC	pictured	in	Figure	2-1,	which	we	will	use	later	when	we	build	the	X4Wii.

Figure	2-1	A	MultiWii-based	flight	controller	with	its	namesake

The	original	MultiWii	multirotors	used	an	Arduino	Pro	Mini,	but	the	codebase	now	supports	all	the



common	versions	of	Arduino.	One	of	the	advantages	of	using	MultiWii	is	the	number	of	integrated	flight
controllers	you	have	to	choose	from.	They	all	start	with	some	type	of	Arduino	processor	and	a
gyro/accelerometer	chip.	They	may	include	a	radio	control	receiver,	brushed	motor	controllers,	or	a
compass	or	barometer.	Some	will	have	plugs	for	easy	attachment	of	external	devices	such	as	radios	or
GPS	devices.	Which	one	is	right	for	your	project	depends	on	whether	you	are	using	brushed	or	brushless
motors,	whether	you	need	GPS,	and	so	on.

MultiWii	is	mature	as	drone	control	systems	go,	and	because	of	this	it	has	given	birth	to	several	offshoot
projects.	These	include,	most	significantly,	Baseflight	and	Cleanflight,	which	we	will	cover	later	in	this
chapter.	This	maturity	means	that	there	are	also	a	variety	of	support	programs	available.	MultiWiiConf,
the	main	configuration	program,	is	available	for	all	the	major	desktop	and	mobile	platforms.	Because
several	of	the	offshoot	projects	have	maintained	compatibility	with	the	MultiWii	Serial	Protocol	(MSP)	that
it	uses	to	communicate,	MultiWiiConf	and	many	of	the	MultiWii	support	programs	can	be	used	with	these
other	control	systems	as	well.

While	MultiWii	supports	GPS	stabilization	and	there	are	experimental	versions	for	all	the	latest	sensors,	it
does	have	its	limits.	As	the	“multi”	in	the	name	implies,	MultiWii	is	for	multirotors,	not	for	helicopters	and
certainly	not	for	fixed-wing	aircraft.	Nor	can	it	run	complex,	10
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autonomous	missions.	(The	latter	is	the	strength	of	the	next	drone	control	system	we	will	look	at.)

The	First	MultiWii	Tricopter

The	first	aircraft	to	use	what	would	become	MultiWii	was	a	tricopter	built	by	Alexandre	Dubus	in

2010	(Figure	2-2).	It	had	only	gyroscopes	(no

accelerometers),	so	it	had	no	absolute	horizon

reference.	Nevertheless,	reports	are	that	it	flew

pretty	well.

Figure	2-2	The	first	MultiWii	tricopter	had	no

accelerometers

Dronecode

Dronecode	is	a	Linux	Foundation	Collaborative	Projects	initiative	that	combines	open	source	hardware
and	software	projects	with	APIs	and	communications	protocols	to	create	a	rich	and	wide-ranging
development	platform	for	unmanned	aerial	vehicles	(UAVs).	On	the	software	side,	there	are	two	main
flight	control	projects:	APM/ArduPilot	and	PX4.	Each	has	a	related	hardware	project	with	which	it	shares
a	name,	though	there	is	some	cross-compatibility.	There	are	also	related	projects	for	things	like	ground
stations	and	simulators.

We	will	divide	our	discussion	of	the	Dronecode	world	into	two	sections,	centered	around	APM/ArduPilot
and	PX4/Pixhawk.	Let’s	take	the	older	APM/ArduPilot	system	first.

APM/ArduPilot

You	will	see	the	terms	APM,	ArduPilot,	ArduCopter,	and	APM:Copter.	The	most	confusing	term	is	APM,



because	it	refers	both	to	the	APM	1	&	2	hardware	and	the	APM	flight	code	project.	The	latter	is	also
known	as	ArduPilot,	and	it	is	a	general-purpose	autopilot	that	has	variants	for	different	types	of	vehicles
now	known	as	APM:Plane,	APM:Rover,	and

APM:Copter.	These	were	previously	known	as	ArduPlane	and	so	forth.	The	addition	of	a	GPS,	as	shown	in
Figure	2-3,	makes	this	system	capable	of	autonomous	flight.



Chapter	2
11

Dronecode

Figure	2-3	An	ArduPilot	flight	controller	with	power	monitor	and	GPS

The	APM:Copter	flight	control	system	originated	from	a	collaboration	between	Chris	Anderson	and	Jordi
Muñoz.	Chris	had	been	building	a	plane	controlled	by	a	Lego	Mindstorms	controller	(see	“Lego
Mindstorms	Autopilot”	)	and	Jordi	was	working	on	a	traditional	helicopter.	Together	they	built	a	plane	that
won	the	first	SparkFun	autonomous	vehicle	competition	in	2009.	This	plane	used	thermopiles,	an	array	of
six	photocells,	to	stay	level	by	keeping	track	of	the	sun.	Chris	and	Jordi	went	on	to	found	3D	Robotics	and
the	controller	from	that	plane	went	on	to	become	ArduPilot	and	then	APM.

3D	Robotics

It	is	important	to	remember	that	3D	Robotics	is	synonymous	with	neither

APM	nor	PX4.	3DR	is	perhaps	the	largest,	but	not	the	only,	retailer	of	the

hardware.	While	it	is	a	key	sponsor	of	the	various	Dronecode	projects	and

sells	products	based	on	them,	3DR	also	extends	these	systems	so	that	its

products	have	many	unique	capabilities	as	well.

To	add	a	bit	of	naming	confusion,	the	first	hardware	that	ran	ArduCopter	was	called	ArduPilot,	a	name
now	used	only	for	software.	Other	earlier	versions	of	the	hardware	for	running	ArduCopter	were	called
APM	1	through	APM	2.6.	Only	the	2.x	boards	are	still	supported	as	of	this	writing.	These	older	flight
controllers	use	8-bit	microcontrollers	and	can	only	run	versions	of	ArduCopter	up	to	3.2.x.	To	run	the
newer	versions	at	the	speed	required	to	keep	up	with	aircraft	requires	more	power.	This	is	where	the
cross-12
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compatibility	between	different	Dronecode	projects	comes	into	play.	To	run	APM:Copter	software	version
3.3	or	later,	you	need	one	of	the	more	powerful	platforms.	Several	options	are	available,	including	one
based	on	the	Raspberry	Pi	2,	but	the	most	common	choice	is	PX4	hardware.

Lego	Mindstorms	Autopilot

Chris	Anderson	built	this	autopilot,	based	on	a

Lego	Mindstorms	NXT	controller	(Figure	2-4).	He

was	working	on	building	an	autonomous	aerial

vehicle	for	under	one	thousand	dollars.	One

measure	of	how	far	we	have	come	is	the	fact	the

we	can	build	one	for	closer	to	one	hundred	dollars	today.	This	first	design	put	the	normal	R/C

servo	on	top	of	the	NXT	servo	so	that	moving

either	one	moved	the	rudder.	That	way	the	pilot

could	control	the	plane	normally	or	engage	the

autopilot	and	let	the	autopilot	execute	a	one

hundred	eighty	degree	turn	then	fly	level	until	Figure	2-4	Chris	Anderson’s	Lego	Mindstorms	the	pilot
takes	control	again.

Autopilot	includes	both	a	Lego	and	tradition	R/C

servo

PX4/Pixhawk

The	Pixhawk	and	PX4	flight	controllers	have	32-bit	processors	with	floating-point	units,	improved	sensors,
and	much	more	connectivity	than	the	older	APM	hardware.	They	run	the	NuttX	operating	system	and
feature	a	middleware	layer,	also	called	PX4,	that	gives	the	flight	control	application	a	consistent	interface
regardless	of	the	hardware	being	used.	The	flight	control	application,	PX4	Autopilot,	flies	the	aircraft.	The
PX4	hardware	and	middleware	also	support	the	APM/ArduPilot	stack.

The	PX4/Pixhawk	software	stack	and	hardware	specifications	were	developed	with	support	from	the	ETH
Zurich	research	institute	in	Switzerland,	as	well	as	many	other	labs	and	individuals.	Advanced	controllers,
I/O	boards,	and	sensors	are	available	(including,	notably,	the	PX4Flow	optical	flow	sensor	that	allows
aircraft	to	remain	fixed	over	a	spot	on	the	ground	without	using	GPS).	The	PX4	system	also	supports
research	projects	doing	advanced	vision	work,	using	either	internal	or	external	cameras	to	provide
position	information	to	the	autopilot.	Due	to	its	advanced	autonomous	flight	abilities,	PX4	is	an	obvious
choice	for	projects	involving	the	simultaneous	control	of	multiple	aircraft.

To	sum	it	up	visually,	the	world	of	APM/PX4	looks	something	like	the	diagram	in	Figure	2-5.
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Figure	2-5	Diagram	of	the	APM/PX4	system

DJI/Naza

If	imitation	shows	some	kind	of	respect,	then	DJI	is	surely	the	most	respected	drone	maker	in	the	world.
Every	all-white,	fully	enclosed,	X-shaped	drone	with	red	and	silver	bands	on	its	arms	is	a	form	of	homage
to	DJI’s	Phantom	line	of	quadcopters.	The	control	systems	that	run	these	and	DJI’s	larger	commercial
multirotors	are	versions	of	its	proprietary	flight	control	system,	Naza.	DJI	specializes	in	aerial
photography	and,	with	the	Phantom	series,	is	making	drone	photography	accessible	to	an	ever-larger
audience.

DJI’s	expanding	audience	includes	many	people	who	just	want	photographic	results	and	who	are	not	so
much	interested	in	spending	hours	learning	the	art	of	flying.	While	they	may	be	missing	out	on	the	beauty
of	aviation,	they	have	a	job	to	do.	The	real-world	applications	drones	are	used	for,	from	ranching	to	real
estate	to	search	and	rescue	operations,	deserve	hardware	that	is	as	reliable	and	easy	to	use	as	possible,
and	DJI	is	leading	the	pack.

The	technology	that	DJI	uses	to	make	its	products	easy	to	use	includes	receivers	combining	GPS	and
Glonass	satellites	and	optical	flow	sensors.	In	its	control	systems,	DJI	pays	careful	attention	to	tuning	the
flight	control	parameters.	Because	DJI	sells	complete	integrated	systems,	it	can	do	this	precisely	for	the
particular	hardware	being	used.	Its	batteries	and	charging	systems	are	more	foolproof,	and	more
expensive,	than	most.	DJI	builds	its	own	cameras	and	gimbals,	and	thus	these	systems	are	highly
integrated	as	well.

The	Naza	control	systems	used	in	these	integrated	packages	are	also	available	separately	for	use	in
custom	drones	where	reliability	and	smooth	operation	are	critical.	They	offer	advanced	failover	systems
and	modes	specially	tuned	for	getting	photographic	results.

Some	may	complain	that	Naza-based	drones	aren’t	as	fun	to	fly,	but	judged	by	their	own	goals	they	are
hard	to	beat.

KK2

KK2	flight	controllers	started	with	the	KKMulticopter	board	designed	by	Rolf	Bakke.	The	first	features	you
notice	on	almost	all	KK2	boards	are	a	screen	and	four	buttons,	as	seen	in

Figure	2-6.	This	enables	the	principal	advantage	of	the	system,	which	is	that	it	can	be	com-14
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CC3D/OpenPilot

pletely	configured	and	tuned	without	the	use	of	a	PC	or	even	a	smartphone.	Recent	versions	update	the
system	with	the	latest	gyros	and	even	a	backlit	screen.	And	they	are	cheap.	With	a	screen,	buttons,	and	a
processor	for	under	$20,	it’s	a	wonder	that	these	boards	aren’t	more	often	repurposed	for	projects	other
than	building	quadcopters.

Figure	2-6	KK2	controllers	traditionally	include	a	screen

The	KKs	still	use	8-bit	CPUs.	Given,	however,	that	they	are	not	trying	to	do	operations	such	as	GPS
waypoint	navigation	or	collision	avoidance,	they	work	quite	well.	In	fact,	solid	flight	performance	is	the
other	thing	KK	controllers	are	known	for.	In	the	early	years—they	go	back	to	2012—KKs	did	a	better	job
than	most	systems	using	the	limited	gyros	that	were	then	available.	Today,	with	the	same	InvenSense
MPU-6050	six-axis	gyro/accelerometer	chip	that	everyone	seems	to	be	using,	the	flight	performance	of	the
KKs	is	quite	good.

What	really	sets	these	boards	apart,	though,	is	that	little	screen	(and	the	bigger	ones	it	lets	you	do
without).

CC3D/OpenPilot

The	OpenPilot	project	espouses	similar	goals	to	DJI:	providing	a	stable,	easy-to-use	platform	for	aerial
photography	or	robotics.	But	unlike	the	DJI	systems,	OpenPilot	is	open	source	and	nonprofit;	keeping
costs	down	is	another	of	the	project’s	goals.	In	addition	to	multirotors,	the	system	supports	helicopters
and	fixed-wing	aircraft.	Like	the	APM	systems,	OpenPilot	supports	flight	control	software,	ground
stations,	and	a	couple	of	hardware	options.
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Naze32/Baseflight/Cleanflight

The	OpenPilot	flight	control	software	includes	a	complete	flight-plan	scripting	language,	supports	wireless
telemetry,	and	has	all	the	features	you	would	expect	of	a	modern	drone	control	system.	The	latest	versions
require	the	latest	hardware,	of	course,	which	is	called	Revolution	or	Revolution	Nano.	But	it’s	the	old
hardware,	called	CC3D	for	ControlCopter	3D

(see	Figure	2-7),	that	really	makes	this	whole	project	significant.

Figure	2-7	This	CC3D	board	can	run	several	flight	control	systems

The	CC3D	board	is	one	of	the	most	cloned	and,	thus,	most	widely	available	and	inexpensive	flight
controllers.	The	KK2	controller	is	also	inexpensive	and	widely	available,	but	CC3D

gives	you	a	choice	of	several	flight	control	systems	to	run	on	it.	It	supports	not	only	OpenPilot	but	also	the
Baseflight	and	Cleanflight	systems,	which	we	will	cover	next.	Not	bad	for	a	controller	that	can	be	bought
in	a	case	for	less	than	the	cost	of	most	Arduino	boards!

Naze32/Baseflight/Cleanflight

So,	we	have	come	full	circle.	We	started	with	MultiWii	and	now	we	are	back	to	a	group	of	MultiWii	forks.
Naze32	(not	to	be	confused	with	the	DJI	system,	Naza)	brings	MultiWii	into	the	32-bit	world	with	its
AfroFlight	line	of	hardware.	Baseflight,	the	software	that	goes	with	Naze32,	was	forked	from	MultiWii	to
take	advantage	of	the	32-bit	processors	that	were	becoming	available.	Because	of	its	MultiWii	heritage,
Baseflight	can	still	use	MultiWiiConf	as	a	base	station,	but	BaseflightConf	base	station	software	is
available	as	well.	Here	the	story	turns	a	little	ugly,	though.

16
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Choosing	a	Flight	Control	System

Another	developer	came	along	and	thought	he	could	do	better	yet.	He	forked	the	Baseflight	code,	cleaned
it	up,	and	called	it	Cleanflight.	And	there	is	a	CleanflightConf	base	station	program.	The	original
developer	of	Baseflight	was	not	happy	about	this	new	fork.	You	might	want	to	read	the	history	of	the
disagreement	and	make	your	choice	about	which	to	support.

Based	purely	on	flying	qualities	and	other	features,	the	two	are	reasonably	close.	Each	flies	well	enough
to	have	its	own	set	of	supporters,	especially	among	the	drone	racing	crowd.

So	what	differentiates	them?	Baseflight	is	a	bit	more	mature,	with	less	frequent	updates	and	less	support
for	new	features.	Cleanflight	gets	updated	more	often	and	will	certainly	be	the	first	to	support	things	like
GPS.	Perhaps	most	significantly,	Cleanflight	will	run	on	a	CC3D	board,	making	it	a	very	economical	option,
and	there	are	now	a	couple	of	Cleanflight	boards	with	integrated	brushed	motor	controllers	for	making
micro	drones.

Choosing	a	Flight	Control	System

We’ve	looked	at	a	few	of	the	most	popular	drone	control	systems,	but	there	are	certainly	more.	Tau	Labs	is
a	fork	of	OpenPilot	that	deserves	a	mention.	Paparazzi	is	an	open	source	flight	controller	project	that
includes	the	Lisa/S	autopilot,	the	smallest	flight	controller	that	includes	GPS	and	thus	can	perform
completely	autonomous	flights.

So	how	do	you	choose?	In	many	cases,	there	are	several	options	that	will	do	a	fine	job.

After	making	sure	your	basic	requirements	are	met,	you	can	usually	choose	based	on	price	or	because	of	a
feature	that	strikes	your	fancy.	Figure	2-8	is	a	Venn	diagram	showing	the	domains	in	which	each	system
tends	to	be	used	most	often.

Figure	2-8	Common	uses	of	different	drone	control	systems
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We	will	get	more	experience	with	making	these	decisions	as	we	choose	controllers	for	our	hands-on
construction	projects	in	the	coming	chapters.

18
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Drone	Activities	3

While	the	main	focus	of	this	book	will	be	building	drones,	let’s	stop	for	a	moment	to	consider	what	we	can
do	with	them	once	they	are	built.	Different	drones	for	different	jobs,	of	course.	The	smallest	toy	drones
might	be	mostly	for	fun,	but	they	can	be	great	for	training	too.	Most	larger	drones	carry	a	camera,	but
aerial	photography	can	be	used	for	anything	from	real	estate	to	search	and	rescue.

While	we	may	customize	each	drone	for	a	particular	activity—bigger	motors	and	props	for	a	heavy
camera,	small	and	low-latency	video	gear	for	an	FPV	racer—the	design	principles	and	even	much	of	the
equipment	gets	shared	between	these	subgroups.	Once	you’ve	built	the	projects	covered	in	this	book,	you
will	be	well	prepared	to	dig	into	any	one	of	these	activities.

Aerial	Photography

It	seems	like	every	drone	in	the	store	has	a	camera	on	it	now.	Most	of	these	are	good	for	little	more	than
aerial	selfies,	but	you	can	also	see	what	your	home	or	flying	field	looks	like	from	the	air.	Step	up	to	better
gear	and	you	have	the	basics	for	aerial	real	estate	photography,	which	has	been	one	of	the	first	really
viable	businesses	you	can	run	with	a	drone.

Aerial	cinematography—taking	shots	for	movies	from	the	air—has	been	around	for	a	long	time.	Before	the
development	of	modern	multirotors,	Hollywood	used	RC	helicopters	for	the	job,	but	these	were	large,
expensive,	and	notoriously	difficult	to	fly.	Today	filmmakers	use	hex-and	octocopters,	still	large	but	much
easier	to	fly	thanks	to	modern	control	systems.	The	combination	of	high-performance	medium-sized	or
large	drones	like	the	final	project	in	this	book	with	action	cameras	like	the	GoPro	means	that	even	home
movies	can	use	aerial	photography	now	(Figure	3-1).
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Figure	3-1	The	widely	available	Cheerson	CX-20	can	carry	a	GoPro	and	a	gimbal	Not	everything	shot
with	a	camera	is	art,	of	course—by	which	I	mean	things	like	mapping,	not	just	bad	photography.	Drones
can	easily	be	programmed	to	follow	grid	patterns	and	record	the	GPS	positions	of	each	frame	as	they	go.
Specialized	software	then	stitches	the	images	together	into	a	complete	map	of	the	covered	area.	Complete
turnkey	solutions	for	this	have	been	around	for	a	while,	and	now	they	are	adding	features	like	infrared
cameras	and	lidar	for	more	accurate	height	data.

Like	their	ground-based	robot	cousins,	drones	get	sent	into	places	where	humans	can’t	or	shouldn’t	go
just	to	look	around.	Search	and	rescue	teams	use	drones	to	search	for	lost	people.	Disaster	recovery
teams	might	use	drones	to	survey	the	area	after	a	tornado.

Ranchers	can	use	drones	to	track	down	lost	cattle.	Most	of	these	jobs	have	been	done	with	traditional
helicopters	or	ultralight	aircraft	in	the	past,	but	drones	can	do	much	of	the	same	work	at	drastically	lower
cost	and	risk	to	humans.

FPV	Racing

The	very	definition	of	first-person	view	or	FPV	racing	includes	a	camera,	yet	this	activity	doesn’t	have
much	to	do	with	aerial	photography.	To	begin	with,	the	drones	rarely	get	that	far	off	the	ground.	The	race
courses	usually	include	multiple	barriers	or	gates	that	the	pilots	must	pass	through	to	complete	a	circuit.
The	pilots	themselves	just	sit	on	the	side-lines	somewhere,	stare	into	their	FPV	goggles,	and	move	the
sticks	on	their	transmitters.

The	pilots	control	their	drones	entirely	through	the	video	downlink	viewed	in	an	isolating	headset,	so	that
one	looks	out	from	the	point	of	view	of	the	drone	(that	is,	in	first	person).
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The	cameras	used	for	this	must	be	pretty	small,	and	good	low-light	response	helps	a	lot.

FPV	racers	won’t	use	a	gimbal	to	steady	the	picture	because	they	need	to	know	which	way	the	drone	is
pointing.	Actually,	it’s	not	uncommon	for	a	racer	to	carry	an	action	cam	in	addition	to	the	main	FPV
camera	so	the	pilot	can	watch	a	recording	of	the	flight	later.

The	FPV	racing	community	has	settled	on	the	250	class	as	the	size	for	the	top	racers.	This	means	that
they	measure	250	millimeters	from	motor	to	motor.	They	usually	take	the	form	of	an	“H”	rather	than	an
“X”	like	the	drones	we	will	build	here.	This	design	favors	the	mostly	forward	flight	that	they	are	built	for.
Figure	3-2	shows	a	typical	250	class	FPV	racer.

Figure	3-2	Benjamin	Tovar’s	250	class	FPV	racer



Education

Kids	love	drones,	and	I	believe	that	drones	have	a	lot	to	teach	them—and	the	rest	of	us	as	well.	Kids	can
be	hooked	in	by	the	chance	to	fly	a	drone	and	then	go	any	number	of	ways,	depending	on	their	interests
or	the	setting.	A	science	class	might	learn	about	the	physics	of	flight,	or	might	use	the	drone	as	a	platform
to	plan	experiments,	gather	data,	and	analyze	results,	just	as	we	will	soon	when	testing	different	props
and	batteries.

Older	kids	(no	age	limit	here!)	can	build	complete	drones	following	the	instructions	here,	or	build	their
own	using	the	same	skills.	A	complete	project	includes	planning	and	design,	as	well	as	learning	to	predict
performance	before	you	build	it	(useful	skills	in	many	fields).

Students	can	learn	about	electronics	construction	on	a	fun	platform,	or,	for	those	more	comfortable	with	a
keyboard	than	a	soldering	iron,	learn	to	configure	all	the	flight	parameters	and	analyze	flight	logs	using
ground	control	station	software.
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Flying

Of	course,	drones	are	for	flying.	But	I	believe	the	public	overlooks	this	aspect	of	why	we	fly	drones	too
often.	Each	of	us	may	do	one	or	more	of	the	activities	we	have	just	talked	about	with	our	drones.	But	I	find
that	the	people	who	stick	with	the	hobby,	the	ones	who	can’t	wait	to	get	to	the	field,	are	the	people	who
just	love	flying.

Many	drone	pilots	hold	traditional	pilot’s	licenses.	Quite	a	few	have	flown	other	types	of	RC

aircraft	in	the	past,	or	perhaps	still	do.	Most	of	us	will	gladly	take	a	ride	in	just	about	anything	that	flies	or
stand	and	watch	for	hours	as	luckier	pilots	than	us	get	to	fly	fun-looking	aircraft	for	us	at	airshows.

They	say	flying	is	one	of	our	species’	oldest	dreams.	I	have	certainly	dreamt	of	it,	and	taken	part
whenever	I	get	the	chance,	since	I	was	a	kid.	Flying	generates	science	and	poetry.

Sometimes,	when	the	latest	project	crashes	more	than	it	flies	or	for	any	number	of	reasons	I	get	stuck	in
front	of	a	screen	for	too	long,	I	try	to	remember	to	take	a	micro	quad	out	in	the	front	yard	and	fly	for	a
while.	Perhaps	some	kid	will	walk	by	and	get	hooked.
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Improve	the	Hubsan	X4	4

The	Hubsan	X4	series	includes	some	of	the	most	popular	micro-sized	quadcopters	avail-

able	(Figure	4-1).	They	come	in	a	variety	of	versions	ranging	from	plain	to	those	with	live	video	feeds,	but
they	are	all	about	the	same	size,	and	they	feel	very	similar	to	fly.	Spare	parts—including	props,	batteries,
motors,	frames,	and	controllers—are	inexpensive	and	widely	available.

Figure	4-1	The	Hubsan	X4	107C	will	be	our	test	platform	for	this	chapter	23

Goals	and	Test	Methods

This	is	all	great	for	learning	to	fly	and	for	everyday	stick	time,	but	as	makers	we	always	want	a	little	more
than	the	manufacturer	specs	give	us.	In	this	chapter,	therefore,	we	will	see	if	we	can	improve	the
performance	of	the	Hubsan	X4	107C	with	different	props	and	batteries.	Along	the	way,	we	will	learn	some



test	techniques	and	gather	data	that	can	help	us	later	with	other	designs.

Goals	and	Test	Methods

To	begin,	we	need	to	define	what	we	are	going	to	improve	and	how	to	test	for	it.

One	of	the	most	talked-about	specifications	for	any	drone	is	flight	time.	In	the	real	world,	flight	time
depends	on	factors	such	as	the	kind	of	flying	you’re	doing,	the	wind,	how	beat	up	your	props	are,	and	so
forth.	We’re	going	to	try	to	control	for	most	of	these	factors	so	we	can	focus	on	just	two	of	the	things	that
affect	performance	and	are	easily	changed:	batteries	and	propellers.

To	control	for	type	of	flying,	let’s	first	restate	our	goal	more	precisely	as	“hover	time”

instead	of	just	flight	time.	Since	hovering	smoothly	in	place	is	not	that	easy,	we	will	control	for	flying	style
and	ability	by	building	a	test	stand	that	limits	the	quadcopter’s	motion	to	up	and	down	and	thus	reduces
our	required	control	inputs	to	throttle	only.

This	test	stand	is	very	simple,	and	it’s	easy	to	build.	It	lets	the	quad	hang	off	the	edge	of	a	table	to	allow
free	downward	airflow.	But	before	describing	its	construction,	it’s	worth	pointing	out	a	bit	about	how
engineering	works.	Not	only	do	we	learn	design	patterns	and	algorithms	from	the	works	of	others,	but	we
get	test	data	too.	If	you	are	flying	an	X4	107C

on	one	of	the	batteries	tested	here,	then	there	is	no	reason	for	you	to	retest.	If	you	find	a	great	new
battery,	or	want	to	do	similar	tests	with	a	new	drone	design	of	your	own,	then	here’s	the	parts	list	and	a
picture	of	what	it	looks	like	before	it’s	built	(Figure	4-2):

•	10”	of	1x4,	cut	into	two	4”	pieces	and	one	2”	piece

•	18”	of	1/4”	square	dowel

•	One	3”	#4	machine	screw,	two	#4	nuts,	and	several	#4	washers

•	Two	Velcro	straps

•	A	bit	of	wood	glue	and/or	1	1/2”	wood	screws

•	A	5/32”	drill	bit
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Figure	4-2	The	parts	for	this	test	stand	are	available	at	any	hardware	store	The	three	pieces	of	1x4	go
together	in	a	“U”	formation,	held	together	with	glue	and/or	screws.	Glue	is	stronger,	but	screws	are
quicker.	Be	sure	to	pre-drill	if	you	use	screws	since	1x4s	tend	to	split.	Drill	a	5/32”	hole	in	the	exact
middle	of	the	1/4”	square	dowel.	Drill	another	5/32”	hole	in	the	middle	of	the	two	sides	of	the	“U”	and	bolt
the	dowel	into	it	with	the	3”	screw.	It’s	best	to	use	washers	on	each	side	of	the	dowel	and	on	the	outside
of	the	1x4s,	though	it’s	rather	tricky	to	hold	them	in	place	while	pushing	the	screw	through.	The	first
Velcro	strap	is	for	balance.	With	the	drone	not	on	the	end,	move	the	strap	around	to	achieve	the	best
balance	possible.	Then	use	the	second	strap	to	secure	the	drone.	The	only	critical	points	in	this	design	are
that	the	dowel	move	freely	and	be	relatively	balanced.

Figure	4-3	shows	what	it	looks	like	ready	for	a	test	run.
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Battery	Upgrade

Figure	4-3	This	fixed	test	stand	limits	motion	to	up	and	down	for	more	reliable	tests	Battery	Upgrade

The	easiest	part	to	upgrade	on	most	quadcopters	is	the	battery.	We	remove	it	after	every	flight,	so	why	not
just	put	a	better	one	back	in?	But	what	will	give	us	better	hover	time?

The	lighter	battery	with	less	to	lift,	or	the	bigger	battery	with	more	capacity?	Let’s	test	several	batteries
and	see.

First	we	have	to	find	some	candidate	batteries.	The	Hubsan	X4	107C	comes	with	a	380

mAh,	25C,	1S	LiPo.	The	380	mAh	is	a	measure	of	the	total	energy	that	the	battery	can	deliver	between	the
fully	charged	and	fully	discharged	states.	More	would	give	more	hover	time,	except	that	the	battery	would
also	get	heavier.

The	25C	is	a	measure	of	how	fast	the	battery	can	delivery	its	energy.	A	1C	battery	can	empty	itself	in	one
hour.	A	25C	battery	can	theoretically	empty	itself	in	60/25	=	2.4

minutes.	One	can	also	multiply	this	25	by	the	380	mAh	capacity,	giving	9,500	mA	or	9.5

amps	of	current.	The	quadcopter	won’t	draw	this	much	current	all	the	time,	or	perhaps	ever,	but	it
requires	batteries	that	can	deliver	this	much	when	needed.

The	1S	LiPo	means	that	it	is	a	single	lithium	polymer	cell.	There	are	lots	of	smaller	1S	LiPos,	but	if	they
have	the	same	25C	rating,	then	they	probably	won’t	be	able	to	deliver	enough	current.	For	testing,
suppose	we’ve	found	a	260	mAh	battery	with	a	35–70C	rating.	When	the	C	rating	is	a	range,	the	low
number	is	the	sustained	output	and	the	high	one	is	the	peak.	The	low	end	of	this	range	only	gives	9.1
amps,	not	quite	what	the	original	can	do,	but	26

Make:	Drones

Prop	Upgrade



the	70C	peak	will	certainly	be	enough.	On	the	larger	end,	there	are	many	500	mAh	batteries	that	fit	in	the
107C,	and	a	normal	25C	rating	times	this	larger	capacity	will	be	plenty.

Warning—Don’t	Use	Underrated	LiPos

For	example,	the	stock	240	mAh,	25C	battery	delivered	with	the	smaller

Hubsan	X4	107L	is	not	enough	for	the	107C	we	are	using	here.	Using	a	LiPo

that	is	not	rated	to	deliver	enough	current	will	result	in	the	battery	over-

heating	and	“puffing”	up	or	even	catching	fire.	A	tiny	amount	of	expansion

after	a	flight	is	normal,	but	if	a	battery	stays	puffed	up	it	should	not	be	used	again.

The	test	procedure	will	be	to	strap	the	quadcopter	down,	plug	in	the	battery,	turn	on	the	transmitter	and
let	it	bind	to	the	receiver,	then	start	the	timer	and	give	it	just	enough	throttle	to	keep	the	quad	level.	This
will	be	a	little	less	at	the	start;	climb	slowly	then	quicker	until	the	lights	blink	a	low	battery	warning.	The
measurement	will	be	the	time	between	throttle	up	and	low	battery.	Table	4-1	lists	the	results	for	the
batteries	described.

Table	4-1	Hover	time	for	different	batteries

Description

Capacity

Weight

Hover	time

Smaller	35-70C

260	mAh

7.7g

4:58

Stock

380	mAh

10.6g

6:12

Larger	25C

500	mAh

13g

7:22

The	larger	battery	has	almost	twice	the	capacity	of	the	smaller	one,	but	gives	less	than	50%

more	hover	time.	Overall,	the	larger	the	battery,	the	longer	the	hover	time.	This	relationship	will	be
limited,	though,	as	too	small	a	battery	will	not	have	the	power	to	lift	the	drone	and	the	drone	will	not	have
the	power	to	lift	too	large	a	battery.

Does	this	mean	that	we	should	always	choose	the	largest	battery	that	we	can?	Not	at	all.

Hover	time	is	only	one	parameter,	and	it	comes	at	the	cost	of	performance.	The	drone	does	not	climb	as
fast	or	maneuver	as	well	with	the	heavier	battery.	We	might	choose	the	smaller	battery	just	for	the	fun	of
the	higher	performance.	Or	perhaps	we	need	to	add	a	few	grams	to	the	drone	elsewhere	and	want	to	use
a	smaller	battery	to	hold	the	all-up	weight	constant,	even	if	this	means	sacrificing	a	little	flight	time.

Prop	Upgrade

Propeller	design	requires	a	difficult	blend	of	art	and	science.	One	might	think	that	a	century	of	design
work	would	have	given	us	the	perfect	prop,	but	even	today	we	see	very	different	designs	for	the	same
purpose.	One	might	be	extra	wide	(i.e.,	have	a	longer	chord),	Chapter	4
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in	toward	the	hub	and	another	almost	no	chord	at	all	in	the	middle.	At	first	glance	a	big	prop	with	a	wide
chord	and	an	aggressive	pitch	angle	might	look	like	it	will	give	more	thrust,	but	most	gas	engines	and
electric	motors	give	more	power	as	they	spin	faster,	and	that	big	prop	will	slow	them	down.	This	is	why	in
a	plane	with	a	variable	pitch	prop,	maximum	horsepower	is	achieved	with	the	flattest	pitch.

Thankfully,	we	don’t	have	to	design	propellers	from	scratch.	We	will	limit	ourselves	to	testing	a	few	of	the
props	available	to	fit	our	quads.	Since	the	only	requirements	are	fitting	the	common	1	mm	shaft	and	not
being	so	big	they	hit	each	other,	we	can	easily	find	several	to	choose	from	(Figure	4-4).

Figure	4-4	A	selection	of	small	propellers	that	will	fit	a	1	mm	shaft	Our	test	procedure	will	be	exactly	the
same	as	that	described	earlier,	testing	each	set	of	props	with	a	small,	stock,	and	large	battery	(Table	4-2).
In	fact,	our	test	runs	from	the	previous	section	will	serve	as	the	first	series	for	this	experiment.	Note	that
with	the	exception	of	the	stock	Hubsan	props,	the	hubs	of	these	propellers	needed	to	be	drilled	out	to	fit.
A	#62

drill	bit	is	ideal,	but	they	are	hard	to	find;	the	shaft	ripped	out	of	an	old	micro	motor,	wrapped	in	tape	to
fit	the	drill	chuck,	can	be	used	as	a	poor	substitute.	Either	way,	be	very	careful	to	get	the	hole	straight.
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Table	4-2	Hover	time	for	different	props

Description

260	mAh

380	mAh

500	mAh

45	mm	Hobby	King

4:19

5:37

6:28

55	mm	Hubsan

4:58

6:12

7:22

60	mm	Graupner

3:37

4:59

6:11

In	an	interesting	result,	the	props	on	the	lower	left	in	Figure	4-4,	the	Graupner	55	mm	model,	didn’t
generate	enough	lift	for	even	the	lightest	battery.	The	low	battery	warning	didn’t	go	off	for	well	over	four
minutes,	but	for	most	of	that	time	even	full	throttle	was	not	enough	for	the	drone	to	lift	itself.

In	the	end,	nothing	beats	the	stock	prop.	This	is	not	really	an	unexpected	result,	as	tests	of	other	props	for
micro	drones	have	similarly	failed	to	find	a	better	one.	Of	course,	each	of	these	props	may	be	the	ideal
prop	for	some	other	application.	Figure	4-5	shows	what	the	relationship	between	battery	capacity	and
hover	time	looks	like	for	each	of	the	props	tested.

Figure	4-5	A	plot	of	the	linear	relationship	between	battery	capacity	and	hover	time	And	what	have	we



learned	from	this?	Not	that	one	combination	of	prop	and	battery	is	best.	For	props,	add	price	and
availability	to	performance	and	the	original	Hubsans	are	hard	to	beat.	For	batteries,	if	you	value	long
hover	time,	the	500	mAh	batteries	have	real	benefit	at	an	acceptable	loss	of	performance.	But	it	may	turn
out	more	interesting	to	us	to	Chapter	4
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know	that	there	is	a	lighter	battery	that	can	still	handle	the	load.	This	at	least	allows	us	the	choice	of
sacrificing	flight	time	for	payload.

Propeller	Failure

The	first	fatal	accident	in	a	powered	airplane

occurred	when	a	propeller	of	a	new	design	failed

while	Orville	Wright	was	performing	the	first

flight	carrying	a	passenger	as	part	of	demonstrating	the	Wright	Flyer	to	the	US	Army

(Figure	4-6).	That	passenger—Lt.	Selfridge,	the

army’s	most	experienced	aviator	in	those	days

before	the	airplane—had	worked	with	Glen	Curtis	and	Alexander	Graham	Bell	in	the	Aerial

Experiment	Association	that	Bell	led.	Orville

might	have	saved	the	plane	but	he	was	also	Figure	4-6	The	crash	that	killed	Lieutenant	Thomas	Selfridge
was	caused	by	propeller	failure

using	a	new	stick	control	for	the	first	time,	which

might	have	delayed	his	responses.	Orville	recovered	from	his	injuries	but	would	suffer	from	scia—

tica	for	the	rest	of	his	life.

As	a	final	word	on	performance,	it’s	worth	noting	why	we	haven’t	looked	at	changing	the	other	main
component	in	this	drone’s	power	system:	the	motors.	There	are	more	powerful	ones	available	that	will	fit
the	X4	(0820	motors,	which	are	8.5	mm	in	diameter	and	20	mm	long).	Perhaps	the	best	reason	not	to	try
such	motors	is	that	they	draw	significantly	more	current,	and	we	don’t	really	know	what	the	X4’s
controller	is	rated	for.	Also,	the	increased	thrust	they	would	certainly	give	would	come	at	the	expense	of
flight	time,	and	as	we	have	just	seen,	we	can	achieve	much	the	same	at	lower	expense	and	lower	total
weight	by	just	using	a	smaller	but	powerful	battery.

Next,	we’ll	move	to	the	other	component	besides	motors	that	we	haven’t	changed:	the	flight	controller.
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Build	the	X4Wii	5

In	the	previous	chapter,	we	ran	a	series	of	tests	on	the	Hubsan	X4	107C	to	find	out	how	changing	props
and	batteries	affects	performance.	Now	we	are	going	to	try	changing	that	most	interesting	of	components,
the	flight	controller.	In	fact,	we	are	going	to	build	a	new	drone	from	scratch,	using	the	frame,	motors,	and
props	from	an	X4,	but	putting	in	an	open	source	flight	controller.	We’ll	use	the	MicroMWC	mentioned	in
Chapter	2	(see	Figure	5-1).

Figure	5-1	This	MicroMWC	flight	controller	will	give	our	X4Wii	its	character	31

Parts

You	will	be	surprised	how	the	personality	of	the	drone	changes	when	flying	with	different	software.	If	you
have	flown	an	original	X4,	you	may	not	like	the	new	feel	as	much	at	first.

But	now	you	can	tune	the	system	to	your	needs,	whether	that	be	fast	for	racing	or	smooth	for	video.	And



you	can	include	accessories	that	are	not	available	with	the	stock	X4.

Where	the	original	Hubsan	X4	107D	has	a	video	camera	and	transmitter,	we	will	substitute	a	Bluetooth
module.	With	it,	you	can	connect	a	GUI	on	your	computer	or	smartphone	to	the	X4Wii	without	stopping	to
disconnect	the	battery	and	connect	a	USB	cable	each	time	you	want	to	change	something.	This	makes	the
X4Wii	a	great	platform	for	learning	things	like	how	to	do	proportional–integral–derivative	(PID)	tuning.
When	you	have	tuned	the	controller	just	the	way	you	like	it,	you	can	then	switch	to	manual	mode	and
learn	acrobatic	flying!

Parts

As	mentioned,	the	X4Wii	will	use	the	frame,	motors,	and	props	from	a	Hubsan	X4	107D.

Rather	than	buying	each	of	these	items	separately,	it	is	much	cheaper	to	get	what	is	called	a	crash	kit
(Figure	5-2).	The	kit	includes	a	frame,	props,	motors,	and	batteries.

Figure	5-2	A	“crash	kit”	contains	many	of	the	parts	we	need

No	electronics	come	with	the	crash	kit.	Instead	of	stock	electronics,	we	will	use	the	items	pictured	in
Figure	5-3,	including,	from	left	to	right,	an	FTDI	programmer,	the	MicroMWC

flight	controller,	and	an	HB-02	serial	Bluetooth	module.	I	suggest	getting	the	FTDI	adapter	packaged
specifically	for	the	MicroMWC	because	it	comes	with	the	two	cables	also	shown.
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One	of	the	cables	fits	the	MicroMWC,	but	it	just	so	happens	that	the	other	cable,	meant	for	a	MiniMWC,
fits	the	Bluetooth	module.	So,	we	can	combine	these	two	cables	and	build	one	that	connects	the
MicroMWC	to	the	Bluetooth	module.	While	not	required,	I’d	actually	suggest	buying	two	of	these
adapters:	one	for	the	two	cables	and	another	to	keep	handy	for	later	reflashing	of	the	MicroMWC.

Figure	5-3	A	MicroMWC	flight	controller	with	accessories



The	built-in	receiver	on	the	MicroMWC	board	understands	the	DSM2	protocol.	Since	the	original	Hubsan
transmitters	use	a	proprietary	protocol,	we	will	need	a	new	transmitter.

The	Blade	MLP4DSM,	shown	in	Figure	5-4,	does	everything	we	need	and	can	be	bought	for	under	$20
used.	Any	DSM2	transmitter	with	at	least	four	channels	should	work,	though	having	at	least	one
additional	channel	lets	you	change	flight	modes	easily.	The	MLP4DSM

handles	this	by	having	a	push	of	the	right	stick	toggle	the	AUX1	channel	and	a	push	of	the	left	stick
momentarily	change	the	AUX2	channel,	meaning	it	is	actually	a	six-channel	transmitter.
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Figure	5-4	The	MLP4DSM	uses	stick	pushes	for	its	fifth	and	sixth	channels	We	will	also	need	a	few	other
parts,	like	a	battery	connector,	heat	shrink	tubing,	a	few	little	bits	of	wire,	and	some	even	tinier	screws.
Table	5-1	is	the	complete	list.

Table	5-1	X4Wii	parts	list



Part
Quantity

Hubsan	X4	107D	“crash	kit”

1

MicroMWC	flight	controller

1

FTDI	adapter	for	MicroMWC

1	+	1	optional

Bluetooth	module	(HB-02)

1

Male	Micro	Losi	connector

1

Heat	shrink	tubing,	1/16”

6”

Wire	(~36	AWG)

6”

Screws	(1.6	mm	x	4	mm)

3

DSM	transmitter	(MLP4DSM)

1
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The	first	thing	we	need	to	do	is	flash	new	code	to	the	MicroMWC.	When	I	built	the	first	X4Wii,	it	kept
flipping	over.	It	thought	up	was	down	and	left	was	right.	It’s	an	easy	fix	for	a	drone,	but	one	that	requires
a	code	update.

Flashing	New	Code

Benedikt,	founder	of	micro-motor-warehouse.com,	has	set	up	a	version	of	MultiWii	2.3	for	the	MicroMWC
controller,	which	we	will	use	as	our	starting	point.	To	tell	the	controller	which	way	is	up,	you	must
uncomment	the	line	quoted	here	in	the	config.h	file.	Remove	the	//	at	the	start	of	the	line	and	add	the
minus	signs	as	shown:

#define	FORCE_ACC_ORIENTATION(X,	Y,	Z)	{imu.accADC[ROLL]	=	-Y;	imu.accADC[PITCH]	=	-X;
imu.accADC[YAW]	=	Z;}

Download	the	Arduino	Project

The	complete	Arduino	project	with	all	the	changes	described	in	this	chapter

can	be	downloaded	from	the	book’s	companion	website.



We	must	also	change	a	couple	of	settings	to	accommodate	the	transmitter.	The	Blade	MLP4DSM	outputs	a
range	of	about	1,150	to	1,830.	This	range	represents	the	width	of	a	pulse	in	microseconds	in	some
systems	but	is	just	an	arbitrary	scale	here.	This	matters	to	us	because	the	control	system	compares	these
RC	values	to	preset	minimum	and	maximum	values	to	determine	when	to	do	things	such	as	arming	the
motors.	Many	transmitters	will	output	a	wider	range,	say	1,000–2,000,	or	allow	you	to	set	the	range,	but
we	must	make	the	software	accommodate	the	hardware.	Specifically,	these	values	must	be	changed	in	the
file	MultiWii.h:

#define	MINCHECK	1200

#define	MAXCHECK	1800

Once	you	have	the	modified	code	ready	in	the	Arduino	integrated	development	environment	(IDE),	you
can	upload	it	to	the	MicroMWC.	To	set	up	your	environment	for	this	board,	select	“Board:	Arduino	Pro	or
Pro	Mini”	and	“Processor:	ATmega328	(5v,	16	MHz).”	The	port	setting	will	vary	depending	on	your
computer,	but	it	will	include	“usbserial.”	Figure	5-5

shows	how	these	settings	look	in	OS	X.
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Figure	5-5	The	settings	for	connecting	the	MicroMWC	to	the	Arduino	IDE

Next,	connect	the	MicroMWC	to	your	computer	using	the	FTDI	adapter.	Only	one	of	the	supplied	cables
fits	and	it	only	fits	one	way,	so	this	part	is	easy.	Getting	the	MicroMWC	into	boot	mode,	by	contrast,	is
tricky.

To	get	the	MicroMWC	to	reset	properly	so	the	bootloader	will	accept	new	code,	you	have	to	touch	the
extra	pin	hanging	from	the	FTDI	adapter	to	just	the	right	little	spot	on	the	circuit	board	at	just	the	right
time.	Figure	5-6	shows	the	spot	that	you	have	to	hit.	Hold	the	pin	in	place,	then	start	the	upload	in	the
IDE.	You	can	remove	the	pin	once	the	download	has	started,	as	indicated	by	rapidly	flashing	lights	on	the
FTDI	adapter.
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Figure	5-6	You	must	hold	the	pin	against	this	small	spot	to	start	the	flashing	process	Wiring

I	usually	start	building	each	new	project	by	wiring	the	power.	In	this	case	all	we	have	to	do	is	solder	on
the	battery	connector.	The	connector	needed	is	a	male	Micro	Losi,	which	is	the	same	as	on	a	stock	Hubsan
X4,	so	the	same	batteries	will	fit.	You	can	buy	these	connectors	from	several	places,	but	I	actually
salvaged	one	off	of	a	cheap	battery	charger.	The	connection	on	the	board	for	the	positive	terminal	is	well
marked	and	the	negative	one	is	near	it,	as	seen	in	Figure	5-7.	This	connector	should	go	on	the	same	side
of	the	board	as	the	red	radio	antenna	wire.
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Figure	5-7	The	battery	connector	soldered	onto	the	controller

Our	new	quad	will	really	start	coming	together	as	we	put	the	motors	in	the	frame	and	solder	them	to	the
controller.	Be	careful	to	get	the	motors	in	the	right	corners.	The	front	left,	as	seen	from	the	top	of	the	X4,
should	be	red	and	blue.	Then	they	alternate	going	around,	as	can	be	seen	in	Figure	5-8.	The	wires	on	the
front	two	motors	do	not	reach	far	enough,	so	this	is	where	we	use	that	little	extra	bit	of	wire.	I	salvaged
some	wire	that	matches	from	old	motors.	The	motor	wires	should	come	out	of	the	opposite	side	of	the
board	from	the	battery	cable.	Complete	the	motor	installation	by	putting	some	heat	shrink	on	and
soldering	the	front	motors	to	their	extensions	as	shown.

Figure	5-8	The	motor	wires	should	be	soldered	before	the	MicroMWC	is	screwed	in	38
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Finally,	we	will	build	a	cable	to	connect	the	Bluetooth	module.	As	mentioned,	we	will	use	the	two	cables
that	come	with	the	FTDI	adapter.	Take	the	smaller	end	of	each	one	and	connect	the	like	colors	as	shown	in
Figure	5-9.	Note	that	the	colors	of	the	supplied	cables	may	change,	in	which	case,	of	course,	it	is	the
order	and	not	the	color	that	really	matters.

Figure	5-9	Building	the	cable	to	connect	the	MicroMWC	to	the	Bluetooth	module	Also	note	that,	as	with
all	serial	connections	of	this	sort,	RX	goes	to	TX	and	TX	goes	to	RX.

The	result	should	look	something	like	Figure	5-10	when	plugged	in.

Figure	5-10	Wiring	diagram	for	the	Bluetooth	cable

With	all	the	wires	in	place,	we	can	fit	it	all	together.
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Now	we	can	assemble	everything	to	see	how	it	flies!	Plug	the	cable	you	just	built	into	the	MicroMWC	and
the	Bluetooth	module.	Use	one	screw	to	hold	the	board	into	the	top	of	the	frame.	The	only	hole	that	lines
up	between	the	Hubsan	frame	and	the	MicroMWC	is	at	the	lower	right.	It	fits	very	tightly	into	the	case,	so
one	screw	should	be	plenty.	Next,	place	the	middle	piece	of	the	frame	on	top,	being	careful	that	the	motor
wires	don’t	get	pinched.

The	Bluetooth	module	fits	nicely	into	the	slot	designed	for	the	video	transmitter.	A	little	wire	routing,	and
the	result	should	look	like	Figure	5-11.

Figure	5-11	The	Bluetooth	module	fits	where	the	video	transmitter	would	go	Finally,	fit	the	bottom	of	the
case	on,	again	being	careful	not	to	pinch	any	wires.	The	four	motor	arms	snap	together.	As	you	know	if
you	have	flown	a	stock	X4	before,	these	motor	arms	come	unsnapped	all	the	time	in	crashes.	This	seems
to	be	a	way	to	absorb	energy	and	keep	anything	from	actually	breaking,	since	they	always	snap	right	back
together	again.	Two	screws	hold	the	middle	of	the	case	together.

To	fly,	we	must	put	on	some	props.	The	MultiWii	starts	with	clockwise	at	the	left	front	and	alternates	as
shown	in	Figure	5-12.	It	helps	as	a	visual	cue	to	put	contrasting	colors	in	the	front	and	the	back.	Press	the
props	on	as	far	as	they	will	go	so	that	crashes	will	push	the	prop	against	the	top	of	the	motor,	rather	than
pressing	the	motor’s	shaft	down	into	it.
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Figure	5-12	Yellow	turns	clockwise,	green	turns	counterclockwise

You	are	ready	to	fly!	The	default	parameters	in	the	MultiWii	work	reasonably	well	for	the	X4Wii.	The	DSM
radios	require	a	different	power-on	sequence	than	the	Hubsan’s,	though,	and	since	MultiWii	also	runs
much	larger,	more	dangerous	drones,	we	have	to	intentionally	arm	the	motors	before	we	can	fly.	This
checklist	should	get	you	airborne:

1.	Turn	on	the	transmitter.

2.	Place	the	battery	into	the	X4Wii	and	plug	it	in.

3.	Place	the	X4Wii	on	solid,	fairly	level	ground	until	the	green	blinking	light	stops.

4.	Hold	the	left	stick	on	the	transmitter	down	and	to	the	right	until	the	green	light	comes	on	solid.

5.	Throttle	up	very	slightly	and	then	back	down;	take	note	that	all	props	turn.

(The	green	light	mentioned	shines	though	the	case	and	can	be	very	hard	to	see	in	bright	sunlight.	If	you
have	trouble	with	the	arming	sequence,	try	it	in	the	shade	or	indoors.)	The	X4Wii	responds	a	bit	sluggishly
to	stick	input	compared	to	the	stock	X4,	at	least	with	the	default	parameters.	But	we	will	tune	that	up	in
the	next	section.
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Setup	and	Tuning

Our	X4Wii	flies	all	right	with	the	default	settings,	but	we	chose	the	MicroMWC	and	its	open	source
MultiWii	firmware	so	that	we	could	improve	and	customize	the	way	the	X4Wii	flies.

We	will	take	this	in	three	steps.	First	we	will	increase	the	RC	rates	a	bit—this	is	a	feature	most	expensive
transmitters	have	that	now	we	can	do	in	software!	Then	we	will	experiment	with	tuning	the	PIDs,	though
this	is	a	complex	subject	we	will	tackle	in	greater	detail	in	a	later	chapter.	Finally,	we	will	set	up	acrobatic
mode	on	our	X4Wii	for	a	real	flying	challenge.

RC	Rates

Radio	control	(RC)	rates	are	like	a	gain	knob	for	the	control	sticks.	Turn	up	the	rate,	and	it’s	like	you	are
moving	the	stick	further.	Turn	the	rate	down,	and	it	makes	your	stick	movements	smaller.	Advanced
transmitters	allow	you	to	adjust	this,	but	we	can	get	this	feature	using	our	simple	transmitter	by	adjusting
parameters	in	MultiWii.	The	default	roll	and	pitch	response—that	is,	how	fast	it	will	rotate	front	to	back	or
side	to	side—feels	a	bit	slow	to	me,	so	let’s	increase	these	RC	rates	a	little.

The	“RATE”	shown	in	Figure	5-13	changes	the	RC	rate	for	pitch	and	roll.	Setting	this	higher	makes	the
drone	respond	quicker	as	you	move	the	sticks.	To	keep	this	from	making	the	controls	too	twitchy	and	hard
to	manage,	the	“EXPO”	setting	makes	the	stick	response	lower	around	the	center.	The	settings	of	1.1	and
0.1	for	“RATE”	and	“EXPO”	are	not	extreme,	so	feel	free	to	try	higher	values.

Figure	5-13	Setting	RC	rates	with	MultiWiiConf
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Desktop	Versus	Smartphone

You	can	use	the	desktop	program	MultiWiiConf	The	process	for	connecting	different	computers	or	various
smartphone	programs	like	MultiWii	or	phone	applications	varies,	but	in	every	case,	Configurator	or
Naze32	Configurator	to	adjust	when	asked	what	to	connect	to,	look	for	“HB-02.”

settings	on	your	X4Wii	(Figure	5-14).

I	find	the	phone	app	is	easier	for	changing	settings,	but	the	desktop	app	is	easier	to	read	since

more	settings	fit	on	one	screen.

Figure	5-14	Viewing	PID	settings	in	two

smartphone	apps

PIDs

Setting	RC	rates	can	help,	but	this	just	makes	the	drone	do	the	same	thing	with	a	little	less	stick
movement.	To	really	make	our	new	drone	fly	better,	we	will	need	to	tune	the	PIDs	(a	topic	we’ll	discuss	in
more	detail	in	Chapter	11).	The	PIDs	in	MultiWii	include	an	extra

“RATE”	parameter	in	addition	to	the	“P”	(proportional),	“I”	(integral),	and	“D”	(derivative)	parameters,
and	this	new	parameter	happens	to	do	just	what	we	want:	it	increases	the	rate	when	using	high	stick
deflection.	Try	setting	the	“PID	Yaw	Rate”	and	the	“PID	Roll/Pitch	Rate”	to	0.25	and	0.75,	respectively
(see	Figure	5-15).



Chapter	5
43

Setup	and	Tuning

Figure	5-15	Using	MultiWiiConf	to	adjust	the	extra	RATE	parameter

I	use	full	yaw	all	the	time,	so	this	setting	really	helps.	Roll	and	pitch	need	more	adjustment	in	the
midrange,	so	we	will	adjust	the	actual	“P,”	“I,”	and	“D”	settings	next.

The	PID	controllers,	embodied	by	a	few	lines	of	code	in	the	firmware,	either	hold	something	constant	or
smooth	out	any	required	control	changes	so	that	they	are	as	fast	as	possible	without	causing	problems
such	as	overshoot	or	oscillation.	The	cruise	control	system	in	a	car	uses	something	like	a	PID	controller,
for	example.	In	drones	we	use	them	to	control	roll,	pitch,	and	yaw	at	a	minimum.	As	we	add	other
systems,	like	a	barometer	for	altitude	hold,	PIDs	get	added	to	manage	these	variables	too.

The	“P”	setting	controls	how	strongly	the	controller	tries	to	correct	an	error	between	the	requested	and
actual	values.	The	value	in	question	could	be	roll	angle,	roll	rate,	or	even	latitude.	Using	roll	angle	as	an
example,	the	desired	and	actual	angles	might	be	different	because	the	wind	blew	your	drone	around,
changing	the	actual	angle,	or	because	you	moved	the	stick,	changing	the	desired	angle.	The	“P”	value	in
this	case	would	control	how	much	roll	force	gets	applied	to	reduce	the	error.

If	you	set	“P”	too	low,	the	system	doesn’t	have	enough	control	and	the	drone	will	sort	of	wobble	around.	If
you	set	“P”	too	high,	the	control	system	goes	into	oscillations.	This	may	at	first	look	similar	to	the
wobbling	around	of	a	low	“P.”	To	be	sure	which	you	are	seeing,	adjust	through	the	middle,	more	stable
zone	first.	Most	tuning	guides	say	to	increase	“P”

until	oscillations	begin,	then	back	off	a	little.	But	adjusting	“I”	and	“D”	affects	how	“P”

works,	so	you	may	have	to	make	several	passes	before	you	get	the	response	you	are	after	(see	Figure	5-
16).
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Figure	5-16	“P,”	“I,”	and	“D”	settings	for	a	smooth,	but	more	responsive	feel	You	should	now	have	“P,”
“I,”	and	“D”	set	to	your	liking—but	this	is	only	angle	mode.

Adding	other	modes	may	require	more	tweaking,	and	that’s	what	we’ll	talk	about	next.

Modes

For	extra	credit,	let’s	try	setting	the	X4Wii	to	what	MultiWii	calls	“manual”	mode.	Most	would	call	this
“rate”	mode	or	full	acrobatic	mode.	It	means	that	the	control	system	uses	the	gyros	to	stabilize	roll,	pitch,
and	yaw,	but	it	does	not	use	the	accelerometers	to	give	any	reference	to	the	horizon.	In	the	normal	angle
mode,	the	angle	of	the	stick	is	proportional	to	the	pitch	or	roll	angle	of	the	drone.	In	rate	mode,	the	angle
of	the	stick	determines	the	roll	rate	or	pitch	rate.	If	you	hold	the	stick	all	the	way	to	the	left,	the	drone
should	roll	completely	around.	Of	course,	acrobatics	are	not	that	easy!

There	is	a	trick	to	setting	MultiWii	to	“manual”—it	doesn’t	show	up	in	the	list	of	modes!	You	get	manual
mode	when	no	other	mode	is	selected.	You	select	modes	when	flying	by

changing	AUX	channels	on	the	MLP4DSM,	and	you	do	that	by	pushing	in	the	right	stick.

This	changes	the	AUX1	value	from	high	to	low.	Modes	get	selected	when	the	box	under	the	appropriate
value,	“L”	or	“H,”	is	highlighted	(Figure	5-17).	You	highlight	a	box	in	MultiWiiConf	by	clicking	on	the	boxes
until	you	have	the	settings	you	want	and	then	pressing

“Save.”	In	general,	I	find	the	cell	phone	apps	easier	for	tweaking	settings,	which	is	why	we	added	the
Bluetooth	connection.
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Figure	5-17	With	only	the	“H”	box	selected,	a	low	value	on	AUX1	will	give	manual	mode	This	completes
the	construction	and	initial	tuning	of	the	X4Wii	(Figure	5-18).	We	started	with	a	stock	frame	and	motors,
but	this	little	drone	can	do	many	things	that	its	stock	cousins	can’t.	We	can	change	the	RC	rates	and
adjust	the	PIDs	to	fine-tune	the	X4Wii’s	flying	to	our	individual	tastes.	Thanks	to	the	Bluetooth	module,	we
can	easily	connect	to	ground	control	station	software	on	a	computer	or	smartphone.	We	can	also	start
learning	how	to	fly	in	rate	mode.	In	short,	the	X4Wii	has	many	of	the	features	of	larger,	hobby-grade
drones	in	a	small,	safe,	and	cheap	to	maintain	package.

Figure	5-18	The	completed	X4Wii
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Now	that	we’ve	seen	how	much	difference	the	flight	controller	makes,	it’s	time	to	dig	in	and	see	how	one



works.	As	makers,	we	learn	how	things	work	by	building	them,	right?	So,	we	shall	build	a	flight	controller
from	separate	modules	and	then	write	the	code	that	makes	it	fly.
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By	building	the	X4Wii,	we	learned	what	a	difference	a	flight	controller	can	make.	This	made	me	all	the
more	curious	to	find	out	what’s	going	on	in	there,	so	in	fine	maker	style,	we	will	build	our	own!	Instead	of
a	single,	integrated	flight	controller,	we	will	build	a	modular	one,	combining	a	standard	Arduino-
compatible	CPU	with	an	accelerometer/gyro	module,

radios,	and	a	custom	motor	controller	to	create	our	hardware	platform.

By	upgrading	key	components	from	what	is	integrated	in	the	MicroMWC,	we	will	gain	significant
functionality—such	as	altitude	hold	and	heading	hold—and	still	have	future	expandability.	Later,	the
modular	nature	of	the	system	will	allow	us	to	upgrade	to	a	better	barometric	pressure	sensor	if	one
becomes	available,	or	use	an	even	faster	processor.	It’s	like	moving	up	from	a	boom	box	to	a	component
stereo.

As	with	any	modern	gadget,	our	flight	controller	will	need	software.	While	we	could	port	the	MultiWii
software	we	used	with	the	X4Wii	to	our	new	hardware	platform,	that	wouldn’t	teach	us	anything	new
about	how	flight	control	software	works.	So,	we	will	write	our	own!

While	it	takes	many	person-years	of	effort	to	create	a	really	complete	flight	control	system,	by	leveraging
existing	code	and	keeping	our	initial	scope	modest,	we	can	quickly	create	a	flight	control	system	that	not
only	works,	but	makes	it	easy	to	see	how	it	works.

Given	the	highly	experimental	nature	of	our	controller,	it	seems	best	to	once	again	use	the	frame,	motors,
and	props	from	a	stock	drone.	Keeping	the	design	as	small	as	possible,	but	allowing	for	a	heavier
controller,	we	will	move	to	geared	motors	instead	of	direct	drive.

Geared	motors	can	lift	more	payload	for	a	given	amount	of	power	because	they	use	a	larger	prop.
However,	the	larger	prop	and	the	gear	train	make	the	system	less	responsive.

There	is	always	a	trade-off	in	aviation.
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In	the	spirit	of	making	it	clear	how	this	drone	works,	we’re	not	going	to	hide	our	custom	controller	away
inside	the	body.	A	window	cut	into	the	top	of	the	case	will	allow	us	to	show	off	our	work	and	perhaps
explain	to	the	next	generation	of	drone	makers	that	this	part	is	the	radio,	this	part	is	the	gyro,	and	so
forth.	So,	with	credit	to	the	clear	plastic	model	of	a	human	with	removable	organs,	we	will	call	this	design
the	Visible	Drone.

A	Teensy	CPU

The	processor	in	the	Visible	Drone	will	be	upgraded	significantly	from	the	one	in	the	X4Wii.

It’s	not	that	the	8-bit	CPU	on	the	MicroMWC	was	having	trouble	keeping	up.	It	can	consistently	run	loop
times	around	2	milliseconds,	which	means	500	updates	per	second.	Still,	the	reasons	for	wanting	a	more
powerful	CPU	are	twofold.	Having	power	to	spare	will	allow	for	future	expansion,	but	more	importantly,
we	want	to	move	up	to	a	processor	with	a	hardware	floating-point	unit.

To	understand	what	a	floating-point	number	is,	see	the	sidebar	on	the	subject.	While	an	8-bit	Arduino	can
do	floating-point	arithmetic,	it	must	do	so	in	software,	and	this	gets	too	slow	on	older	CPUs.	Hardware
floating	point	is	fast	enough	to	use	in	a	flight	control	loop,	which	means	that	we	can	avoid	difficult	code
optimizations	that	also	make	the	code	far	less	readable.	It	will	allow	us,	in	fact,	to	take	an	academic	code
example	and	run	it	as	is.

Floating	point	makes	the	code	easier	to	write	and	easier	to	read.

Floating-Point	Numbers

Computers	use	floating-point	numbers	like	we	With	an	exponent	of	–5,	we	get	1	x	2^–5,	which	use
scientific	notation,	only	in	binary	instead	of	is	1/32	or	0.03125.	This	allows	the	representation	base	10.
Both	consist	of	a	main	part,	or	mantissa,	of	very	large	and	very	small	numbers	without	and	an	exponent.
The	exponent	says	how	far	left	loss	of	precision.



or	right	to	move	the	decimal	point,	thus	the

name	“floating	point.”	For	example,	with	a	mantissa	of	1.000	and	exponent	of	5,	we	get	1	x	2^5,

or	32.

In	another	move	to	keep	the	coding	easy,	we	will	choose	a	processor	that	can	be	programmed	using	the
Arduino	integrated	development	environment.	Currently,	the	Teensy	3.2

from	PJRC	(Figure	6-1)	looks	like	the	best	combination	of	small	size,	the	latest	32-bit	CPU

with	hardware	floating	point,	and	plenty	of	fast	ports.	As	we	shall	see	when	we	start	programming	it,	it
takes	a	couple	of	tweaks	to	the	Arduino	IDE	to	support	this	board,	but	with	those	done	it	feels	very
familiar.
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Radios

Figure	6-1	The	Teensy	3.2	comes	with	a	lovely	pinout	card

Radios

We	can	use	the	same	radio	control	(RC)	transmitter	with	the	Visible	Drone	that	we	used	with	the	X4Wii
since	a	single	transmitter	can	be	used	with	multiple	aircraft,	but	we	will	need	a	new	RC	receiver.	It	must
support	the	same	DSM2	standard	as	the	MLP4DSM	transmitter,	but	that	leaves	many	choices	from
several	companies.

Historically,	RC	receivers	simply	talked	directly	to	servos.	When	gyro	stabilizers	first	appeared,	they	just
plugged	inline	between	the	two,	using	these	same	servo	connections.

The	trouble	is	that	with	lots	of	channels,	each	one	having	three	wires	(two	for	power	and	one	for	signal),
this	adds	up	to	lots	of	wires.	Today	we	have	several	standards	available	that	put	all	the	channels	on	a
single	connection.

We	will	talk	about	various	RC	radio	standards	in	Chapter	24,	but	interestingly,	the	one	we	will	use	wasn’t
originally	developed	as	an	external	interface	at	all.	Spektrum,	a	maker	of	RC

radios	and	owner	of	the	DSM2	standard,	started	making	little	secondary	remote	receivers	that	could	be
placed	in	multiple	locations	on	a	model	for	better	reception.	It	turns	out	that	the	simple	three-wire	serial
interface	they	use	to	talk	to	the	main	receiver	is	also	easy	to	read	directly	with	an	Arduino,	which	is	just
what	we	will	do.



Several	companies	make	Spektrum-compatible	satellite	receivers.	(“Satellite”	refers	to	the	fact	that	they
are	remote,	not	that	they	receive	signals	from	orbit.)	For	this	design,	we	will	use	the	Lemon	RX	DSM2
satellite.	This	tiny	board	communicates	nicely	with	our	transmitter,	weighs	less	than	a	gram	out	of	its
case,	and	costs	well	under	$10.
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IMU/AHRS

Like	with	the	X4Wii,	we	will	also	add	a	Bluetooth	radio	to	the	Visible	Drone	for	real-time	telemetry	and
ease	of	parameter	changes.	We	will	use	an	HC-06	module	instead	of	the	HB-02	we	used	before,	but	they
differ	only	in	the	type	of	physical	connection—plug	versus	pins.	More	significantly,	since	we	are	writing
this	control	system	ourselves,	we	can	feed	it	any	data	that	we	want	to	see	and	we	can	use	the	same
channel	to	send	commands	back	to	the	drone.	Figure	6-2	shows	the	HC-06	module	with	the	Lemon	RX
DSM2	receiver.

Figure	6-2	The	Lemon	RX	receiver	and	HC-06	Bluetooth	module

IMU/AHRS

IMU	stands	for	inertial	measurement	unit	and	AHRS	stands	for	attitude	and	heading	reference	system.
The	latter	term	covers	a	broader	range	of	systems	that	include	noninertial	sensors	like	magnetometers
and	barometers.	In	the	academic	literature	on	the	subject—and	there	are	decades	of	research	out	there—
the	latter	are	often	referred	to	as	MARG	systems,	for	the	magnetic,	angular	rate,	and	gravity	sensors	they
include.

Almost	all	micro	quads	today	claim	six-axis	stabilization.	A	more	technical	description	is	that	they
measure	rotation	rates	around	three	axes	and	acceleration	rates	in	three	directions,	making	what	is
known	as	a	six	degrees	of	freedom	or	6DOF	system.	We’re	going	to	improve	on	that!

Today,	you	can	get	a	10DOF	sensor	module	that	fits	in	the	same	space	and	talks	to	the	same	interface,
though	it	does	cost	all	of	$10	instead	of	$3.	The	GY-88	module	(Figure	6-3),	available	from	several
sources,	includes	an	accelerometer/gyro	chip	like	other	small	flight	52
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Power

controllers,	but	adds	a	magnetometer	and	a	barometer.	That’s	3	new	degrees	of	freedom	to	describe	the
direction	of	the	Earth’s	magnetic	field	and	1	more	for	altitude	on	top	of	the	6	we	already	had,	giving	10.

Figure	6-3	The	GY-88	module	includes	a	compass

Power

For	this	design	we	will	stick	with	1S	LiPos,	meaning	single-cell	lithium	polymer	batteries.	As	drones	get
larger,	they	tend	to	use	higher-voltage	LiPos	of	3S	or	more.	The	higher	voltage	means	that	less	current
and	therefore	smaller,	lighter	wires	are	needed	to	deliver	the	same	amount	of	power.	For	the	small,
coreless	motors	in	this	design,	we	can	get	enough	power	through	small	wires	using	only	a	1S	source.
Making	the	motor	wires	any	lighter	would	just	make	them	hard	to	work	with,	so	there	is	little	to	be	gained
by	using	a	more	complex	and	expensive	battery.

Modern	electronics	like	to	have	clean,	consistent	power,	but	the	voltage	coming	from	batteries	varies	with
load	and	their	state	of	charge.	Our	1S	LiPos	will	run	from	4.2V	down	to	3.7V	or	so	during	a	normal	flight.
Also,	many	of	our	modules	require	a	5V	supply.	All	of	this	can	be	solved	with	a	DC-DC	voltage	step-up
module	like	the	one	shown	in	Figure	6-4.	Connect	a	1S	LiPo	on	one	side	and	get	up	to	2	amps	of	clean	5V
power	on	the	other.
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Circuit	Board	with	Motor	Controllers

Figure	6-4	A	1S	LiPo	and	this	DC-DC	convertor	give	clean	5V	power

Circuit	Board	with	Motor	Controllers

In	the	small	quads	we	have	looked	at	so	far,	everything	is	integrated	into	a	single	circuit	board,	including
the	motor	controllers.	This	makes	sense	as	the	circuits	are	simple	and	these	small	quads	need	to	be	as
light	as	possible.	In	larger	quads	using	brushless	motors,	a	complex	controller	with	its	own	processor	is
needed	for	each	motor,	and	the	current	requirements	vary	widely,	so	these	electronic	speed	controllers
(ESCs)	tend	to	be	separate	units.	The	Visible	Drone	design	exists	in	an	odd	gap	in	between.	We	are	using
simpler,	brushed	motors,	but	building	a	modular	control	system.

Most	of	the	available	brushed	motor	controllers	are	for	land	vehicles	and	thus	are	too	big	and	heavy.	Also,
they	have	additional	circuitry	for	going	forward	and	in	reverse,	which	we	do	not	need.	Well,	we	were
going	to	need	some	kind	of	circuit	board	to	connect	everything	together	anyway,	and	it	only	takes	a	couple
of	parts	per	motor,	so	we’re	going	to	build	our	own	motor	controllers!

The	scale	of	our	controller	project	makes	it	well	suited	for	testing	on	a	breadboard,	but	we	will	need
something	a	little	more	robust,	not	to	mention	smaller	and	lighter,	for	flying.

Thankfully,	one	can	get	custom	circuit	boards	fabricated	quickly	and	cheaply	now	and	the	tools	to	design
them	are	free	and	easy	to	use,	so	we	will	use	a	custom	PC	board	for	our	motor	controllers	and	the
connections	between	all	the	other	modules.
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Frame/Motors/Props

Everything	we	have	talked	about	so	far	could	be	the	brains	of	a	car,	a	robot,	or	anything	that	uses	motors
to	move	and	needs	to	know	its	position.	Of	course,	that’s	part	of	the	point.	We	are	using	drones	as	a
vehicle	to	learn	general	control	systems	engineering	concepts.	All	of	these	components,	from	the	RC
radios	to	the	motor	controllers,	can	be	used	in	projects	far	removed	from	building	drones.	But	this	time
we	are	building	a	drone,	so	let’s	choose	the	frame,	motors,	and	props.

In	between	the	little	direct-drive	micro	drones	with	brushed	motors	like	the	X4Wii	and	the	large,	hobby-
grade	multirotors	that	use	brushless	motors	(also	direct-drive),	there	exists	a	world	of	mostly	toy	drones
with	brushed	motors	running	larger	props	through	gears.	This	allows	them	to	run	slower	and	more
efficiently,	which	in	turn	means	they	can	carry	more	payload—so,	let’s	build	a	geared	drone	this	time.

I	like	to	stay	as	small	as	possible	for	most	drone	projects	because	I	can	fly	the	resulting	product	in	a	small
space	and	the	hazards	of	crashing	it	into	things	are	mostly	to	my	drone	and	not	to	the	things	I	hit	(like	the
neighbor’s	car).	While	you	can	get	geared	drones	as	small	as	the	Hubsan	X4s,	we	will	need	a	little	more
space	for	all	the	components	in	our	control	system.	The	Syma	X5	(Figure	6-5)	has	a	nice	roomy	case,	and
spare	parts	are	widely	available.	I	got	the	bind	and	fly	(BNF)	version	without	a	transmitter.	There	are	also
crash	kits,	but	again	they	don’t	come	with	screws,	so	the	BNF	version	worked	out	better	this	time.

Figure	6-5	The	Visible	Drone	project	starts	with	a	stock	Syma	X5



Chapter	6
55

Weight	Budget

As	mentioned,	I	think	our	new	modular	controller	will	be	really	cool	looking,	so	I’m	going	to	chop	a	hole	in
the	top	of	that	case	and	put	in	a	clear	window—but	we	will	cover	that	in

Chapter	13.

Weight	Budget

We	will	need	a	few	other	parts	like	pins,	plugs,	and	wires,	and	we	won’t	really	know	what	the	circuit
board	weighs	until	much	later	the	project,	when	the	design	is	complete	and	back	from	the	fab.
Nonetheless,	it	is	our	duty	as	aircraft	designers	to	do	a	weight	budget	and	check	the	results	against	our
available	thrust.	Table	6-1	shows	our	best	available	estimates.

Table	6-1	Weight	budget	for	the	Visible	Drone

Item

Grams

Teensy	3.2

2.7

Lemon	RX	DSM2	satellite	receiver

1

HC-06	Bluetooth	module

3.5

GY-88	10DOF	sensor	module

2

19	0.1”	pins	&	4	motor	plugs

1

Circuit	board

5

Matek	DC-DC	1S	to	5V	step-up	convertor

1.8

Frame/motors/props	from	Syma	X5C

64

680	mAh	1S	LiPo

16.2

Total

97.2

For	comparison,	a	stock	Syma	X5C	flies	at	an	all-up	weight	(AUW)	of	85.6	grams,	making	our	modular
controller	design	almost	12	grams	heaver.	This	compares	to	a	measured	thrust	of	41.7g	per	motor,	for	a
total	of	166.8	grams	of	thrust.	That’s	a	thrust	to	weight	ratio	of	only	1.7,	a	little	low.	We	like	to	see	a	ratio
of	2	or	higher.	But	that	AOW	number	for	the	stock	X5	is	stripped.	Most	of	them	fly	with	a	camera,	bigger
landing	gear,	and	prop	guards,	easily	making	them	as	heavy	as	ours.	The	Visible	Drone,	like	the	stock	X5,
will	be	a	gentle	flyer.
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Basic	I/O	Code	7

In	this	chapter	we	will	create	a	basic	framework	for	our	new	flight	controller	code	and	learn	to
communicate	with	some	of	our	key	peripherals,	including	the	radios	and	motors.	We	will	use	the
framework	we	build	here	as	the	platform	for	the	next	few	chapters,	where	we	will	add	the	IMU	and	mode
functions.

The	figures	in	this	section	show	the	circuit	being	built	up	on	a	breadboard.	If	you	plan	to	use	exactly	the
same	circuit	as	shown	in	the	following	chapters	in	your	own	project,	then	you	can	skip	directly	to	building
all	of	this	on	the	printed	circuit	board	that	we	will	lay	out	later.

Time	to	write	some	code!

Setting	Up	the	IDE

As	mentioned	in	the	previous	chapter,	the	Teensy	3.2	processor	can	be	programmed	using	the	Arduino
IDE.	This	can	be	downloaded	from	www.arduino.org/software#ide,	where	there	are	also	instructions	on
how	to	install	it.	Using	this	IDE	with	the	Teensy	3.2	requires	that	you	install	Teensyduino,	a	package	from
PJRC	(the	designers	of	the	Teensy),	that	includes	the	Teensyloader	program	and	some	Teensy-specific
libraries.	This	package	is	available	at

www.pjrc.com/teensy/teensyduino.html.	First	install	the	Arduino	IDE,	then	this	package.

With	the	included	Teensyloader	program	running,	you	can	upload	code	to	a	Teensy	just	like	any	Arduino.
Open	the	Arduino	IDE,	connect	the	Teensy	by	USB,	and	set	up	the	IDE	as	shown	in	Figure	7-1.
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Setting	Up	the	IDE

Figure	7-1	Arduino	IDE	settings	for	the	Teensy	3.2

To	verify	that	everything	is	working,	it	is	traditional	to	run	the	Blink	example	program.

Open	this	sketch	with	File	➙	Examples	➙	Basics	➙	Blink	on	the	Arduino	IDE	menu,	then	press	the	upload
button.	After	the	program	is	compiled,	you	should	be	able	to	see	the	download	progress	on	the	little
Teensyloader	screen	(Figure	7-2).

Figure	7-2	Teensyloader	uploads	code	to	the	Teensy	3.2

If	this	sketch	uploads	and	runs	correctly,	you	will	see	an	amber	LED	on	the	Teensy	blink,	one	second	on,
one	second	off.	Working?	Great!
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Main	Loop

Most	flight	control	systems	will	have	at	least	two	main	loops,	called	inner	and	outer	or	fast	and	slow.
There	may	also	be	background	tasks	and	interrupt-driven	tasks	and	more	complex	task	scheduling
systems,	but	we’re	trying	to	keep	it	simple,	so	we	will	stick	to	a	fast	and	a	slow	loop	for	now.	We	will	be
indirectly	using	interrupt	processing,	but	we	will	do	it	through	established	libraries.

The	code	for	this	project	can	be	downloaded	from	GitHub	at	github.com/

dmcgriffy/DroneControlSystem	or	directly	from	www.makedrones-

book.com/projects/VizDrone	.

The	fast	loop	runs	the	essential	flight	stuff.	This	includes	reading	the	accelerometers,	gyros,	and	control
inputs;	computing	our	position	and	any	needed	corrections;	and	finally	updat-ing	the	motor	speeds.	All	of
this	can	be	done	in	two	or	three	milliseconds	even	on	a	slow	8-bit	processor.	We	will	set	our	inner	loop
target	time	to	two	milliseconds.	The	inner	loop	code	should	be	able	to	execute	quite	a	bit	faster	than	this,
but	we	will	run	it	at	exactly	two-millisecond	intervals	for	consistency.	Finally,	after	the	flight	control	is
done,	we	read	any	pending	telemetry	messages.	Reading	on	the	fast	loop	helps	keep	the	input	queue	from
overflowing,	but	we	only	write	on	the	slow	loop.	Here	is	what	the	inner	loop	looks	like:

#define	FASTLOOPTARGET	(2000)	//	length	of	inner	control	loop	in	microseconds	unsigned	long
fastLoopLength;

unsigned	long	fastLoopStart	=	0;

void	loop()	{



//	the	fast	loop	for	flight	control

unsigned	long	fastLoopEnd	=	micros();

fastLoopLength	=	fastLoopEnd	-	fastLoopStart;

if	((fastLoopLength)	>	FASTLOOPTARGET)

{

fastLoopStart	=	fastLoopEnd;

readIMU();	//	read	raw	gyro/accel/mag

calcIMU();	//	calculate	current	yaw/pitch/roll

doMode();	//	calculate	yaw/pitch/roll	commands

doPID();	//	smooth	yaw/pitch/roll	commands

doMix();	//	convert	cmds	to	motor	speeds

writeMotors();	//	write	to	pwm

mspRead();	//	check	for	new	telemetry	msgs

fastLoopTiming	=	micros()	-	fastLoopEnd;

}

The	first	line	defines	the	loop	length.	Two	thousand	microseconds	is	our	two-millisecond	target.	Ignoring
the	declarations,	at	the	start	of	each	pass	through	the	main	program	loop	we	check	to	see	if	enough	time
has	passed.	If	so,	we	reset	the	clock	and	run	through	the	list	Chapter	7
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of	fast	loop	calls.	Finally,	the	time	it	took	to	process	the	fast	loop	is	recorded.	We	hope	that	this	stays
significantly	lower	than	our	target	loop	time.

The	slow	loop	has	much	the	same	structure.	The	tasks	in	our	slow	loop	will	all	be	communications	for	now,
in	particular	the	sending	of	all	our	telemetry	data.	We	can	trade	off	the	speed	of	this	loop	against	the
amount	of	data	to	be	sent	in	each	pass.	The	baud	rate	of	the	Bluetooth	connection	(115,200)	limits	the
total	amount	of	data	that	can	be	sent.	With	an	update	rate	of	10	per	second	we	can	still	send	plenty	of
data	in	each	pass.	Here	is	the	slow	loop	code:

#define	SLOWLOOPTARGET	(100)	//	length	of	outer	control	loop	in	milliseconds	unsigned	long
slowLoopLength;

unsigned	long	slowLoopStart	=	0;

void	loop()	{

...

//	the	slow	loop	for	communications

unsigned	long	slowLoopEnd	=	millis();

slowLoopLength	=	slowLoopEnd	-	slowLoopStart;

if	((slowLoopLength)	>	SLOWLOOPTARGET)

{

slowLoopStart	=	slowLoopEnd;

long	slowLoopTimingStart	=	micros();

mspWrite();

slowLoopTiming	=	micros()	-	slowLoopTimingStart;



}

Right	now,	we	only	have	one	task	in	the	slow	loop:	the	sending	of	telemetry	messages.

Doing	the	sending	here	guarantees	that	we	will	send	messages	at	most	10	times	per	second.

RC	Receiver

Now	let’s	put	the	radio	into	radio	control	by	connecting	the	Lemon	RX	receiver.	First,	we	must	bind	the
receiver	to	our	transmitter.	In	order	to	put	the	receiver	in	bind	mode,	a	sequence	of	pulses	must	be
applied	to	the	power	pins.	Since	the	receiver	needs	only	3.3V

and	doesn’t	draw	much	power,	it	is	possible	to	actually	power	the	unit	off	of	a	data	pin	on	a	5V	Arduino.
This	would	make	it	easy	to	pulse	the	power	to	the	receiver,	except	that	we’re	not	using	a	5V	Arduino.	The
Teensy	uses	5V	power,	but	only	3.3V	so-called	logic	levels.

After	considering	more	and	more	complex	circuits	to	allow	the	Teensy	to	control	the	power	to	the	Lemon
RX	receiver,	I	finally	realized	that	adding	all	this	circuitry,	which	we	will	never	need	while	flying,	was	the
wrong	approach.	Instead,	I	recommend	that	you	just	get	any	old	5V	logic	level	Arduino	and	perform	this
simple	process.	I	used	an	old	Arduino	Uno	that	I	had	lying	around,	and	they	are	available	retail	from
places	like	Radio	Shack	and	Frys.
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Temporarily	solder	some	pins	on	the	end	of	the	receiver	cable	so	that	they	can	be	plugged	directly	into	the
headers	on	the	Arduino.	Now	connect	the	red	(or	leftmost,	looking	down	at	the	receiver),	wire	to	pin	D5
on	the	Arduino,	the	black	(or	middle)	wire	to	pin	D4,	and	the	yellow	(or	rightmost)	wire	to	pin	D0.	You	can
see	how	this	looks	in	Figure	7-3.

Figure	7-3	Fritzing	and	actual	images	of	using	an	Arduino	Uno	to	bind	the	Lemon	RX	receiver	You	can
download	the	code	for	the	binding	process	at	http://www.makedronesbook.com/

projects/VizDrone.	Remember	to	change	the	port	settings	in	the	Arduino	IDE	to	match	the	board	you	are
using,	and	then	set	them	back	for	programming	the	Teensy	later.	Download	and	run	spekbind,	and	the



receiver	should	momentarily	start	a	fast	blink.	Once	the	receiver	is	ready,	hold	down	the	left	stick	on	the
transmitter	and	turn	it	on.	The	transmitter	should	beep	and	the	receiver	blink	pattern	should	change.

With	the	receiver	bound	to	the	transmitter,	let’s	wire	it	up	to	the	Teensy	3.2	and	update	our	code	to	read
from	it.	This	receiver	takes	3.3V,	as	mentioned,	but	this	is	no	problem	now	since	the	Teensy	3.2	outputs	up
to	250	mAh	of	3.3V	power,	regulated	down	from	its	5V

input.	This	means	we	can	just	wire	the	receiver	straight	to	the	Teensy	as	shown	in

Figure	7-4.

Figure	7-4	The	Lemon	RX	receiver	gets	its	power	from	the	Teensy	3.2	CPU
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We	only	receive	data	on	this	connection,	since	there	are	no	settings	to	send	back	to	the	receiver.	The	data
stream	consists	of	frames	at	11-millisecond	intervals,	each	containing	eight	16-bit	values,	a	header,	and
seven	channel	values.	For	radios	with	more	than	seven	channels,	two	frames	are	needed	to	transmit	all
the	values.	Strangely,	the	channels	seem	to	be	in	random	order,	so	we	must	pay	attention	to	the	channel
value	in	bits	11–14.	A	picture	will	make	it	clearer,	so	look	at	Figure	7-5.

Figure	7-5	The	DSM	radio	format	includes	seven	channels	in	each	frame	We	will	use	the	standard
Arduino	Serial	library	to	read	from	the	receiver.	We	will,	however,	have	to	use	a	serial	event	interrupt
instead	of	just	letting	the	library	buffer	for	us	since	we	need	to	know	the	timing	of	the	arriving	bytes	in
order	to	determine	when	a	frame	starts.

The	interrupt	handler	buffers	the	new	bytes	and	parses	the	frame	if	it	is	complete.	The	code	looks	like
this:

//	RX	interrupt

void	serialEvent1()	{

checkForNewFrame();

	

//	put	data	in	buffer

while	((Serial1.available())	&&	(rxBufPos	<	RX_BUFFER_SIZE))

rxBuf[rxBufPos++]	=	(char)Serial1.read();

//	parse	frame	if	done

if	(rxBufPos	==	SPEK_FRAME_SIZE)

parseRXData();

}

Parsing	the	raw	receiver	data	into	real	channel	values	inevitably	involves	some	of	that	messy	integer	math
we	are	trying	to	avoid.	But	we	have	a	4-bit	channel	number	and	a	10-bit	value	packed	into	2	bytes,	so	the
code	will	end	up	looking	something	like	the	following	no	matter	how	you	do	it:

//	parse	raw	serial	data	into	channels

void	parseRXData()	{

//	convert	to	channel	data	in	the	1000-2000	range

#define	SPEK_FRAME_SIZE	16	//	1024	mode
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#define	SPEK_CHAN_SHIFT	2	//	Assumes	10	bit	frames,	that	is	1024	mode.

#define	SPEK_CHAN_MASK	0x03	//	Assumes	10	bit	frames,	that	is	1024	mode.

for	(int	b	=	2;	b	<	SPEK_FRAME_SIZE;	b	+=	2)

{

uint8_t	bh	=	rxBuf[b];

uint8_t	bl	=	rxBuf[b+1];

uint8_t	spekChannel	=	0x0F	&	(bh	>>	SPEK_CHAN_SHIFT);

if	(spekChannel	<	RC_CHANS)

rcValue[spekChannel]	=	988	+	(((uint16_t)(bh	&

SPEK_CHAN_MASK)	<<	8)	+	bl);

}

//	constrain	outputs	and	implement	deadband

#define	DEADBAND	(10)

#define	DEADTOP	(MIDRC	+	DEADBAND)

#define	DEADBOT	(MIDRC	-	DEADBAND)

for	(int	i=0;	i<4;	i++)

{

rcValue[i]	=	constrain(rcValue[i],	MINRC,	MAXRC);

if	((rcValue[i]	>	DEADBOT)	&&	(rcValue[i]	<	DEADTOP))

rcValue[i]	=	MIDRC;

}

}

Note	that	this	routine	also	implements	a	deadband	on	the	input	values.	This	means	that	when	you	hold	the
sticks	near	enough	to	the	middle	of	the	ranges,	the	values	will	be	converted	to	exactly	the	midpoint.	This
helps	eliminate	small	drift	in	roll,	pitch,	and	yaw.

Bluetooth

The	HC-06	Bluetooth	module	requires	four	wires	for	transmit,	receive,	and	power.	It	uses	the	same	5V



power	as	the	Teensy.	Figure	7-6	shows	both	the	Bluetooth	and	RC	radios	wired	up	on	a	breadboard.

Figure	7-6	The	Bluetooth	and	RC	radios	both	use	the	2.4	GHz	radio	band	Chapter	7
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We	will	use	the	MultiWii	serial	protocol	(MSP)	for	telemetry,	which	means	that	we	will	be	able	to	use
existing	ground	control	station	software	like	MultiWiiConf.	This	protocol	is	designed	to	be	simple	and
efficient.	The	ground	station	requests	updates	and	sends	commands.	The	drone	sends	the	requested
messages	and	updates	its	settings	as	requested.	To	request	an	update,	the	ground	station	just	sends	the
update	message	with	a	zero	data	size.

Each	message	starts	with	“$M”	and	either	“<”	or	“>”,	depending	on	whether	the	message	is	to	or	from
the	drone.	For	example,	to	request	the	current	roll,	pitch,	and	yaw,	collectively	called	attitude,	the	ground
station	would	send:

"$M<",	108,	0,	<crc>

The	drone	might	then	respond	with:

"$M>",	108,	6,	<roll>,	<pitch>,	<yaw>,	<crc>	The	number	108	stands	for	the	MSP_ATTITUDE
command.	The	<crc>	at	the	end	of	each	message	stands	for	cyclic	redundancy	check,	which	in	this	case
means	an	exclusive-or	of	each	byte	in	the	message.	It	is	an	8-bit	value.	The	<roll>,	<pitch>,	and	<yaw>
values	are	all	16-bit.

To	send	a	message,	we	have	routines	that	send	the	preamble,	write	data	to	the	buffer,	then	calculate	the
CRC	and	send	it.	See	the	online	source	code	for	details,	but	as	an	example,	here	is	the	code	to	send	the
message	we	have	been	talking	about:

void	writeMSP_ATTITUDE()	{

mspWriteStart(MSP_ATTITUDE);

mspWriteWord(IMURoll*10);

mspWriteWord(-IMUPitch*10);

mspWriteWord(-IMUHead);

mspWriteEnd();

}

Note	that	*10	on	roll	and	pitch.	It’s	that	pesky	integer	math	again.	You	can	multiply	by	10

and	still	not	overflow	the	range	of	a	16-bit	integer,	so	this	allows	one	decimal	place	of	precision.	This
apparently	isn’t	needed	for	yaw.

To	parse	the	incoming	MSP	message,	we	will	use	a	state	machine.	This	is	just	a	fancy	way	of	saying	that
we	will	wait	for	a	“$”,	then	wait	for	an	“M”,	and	so	on.	In	the	case	of	an	error—for	example,	if	we	don’t	get
an	“M”	after	a	“$”—we	go	back	to	the	start.	We	call	the	condition	Found	“M”	a	state.	Once	we	have	read
the	“$M<”	preamble,	we	read	the	length	byte,	then	loop	in	the	same	state	while	reading	the	data	bytes.
Figure	7-7	shows	this	in	a	state	diagram.

Figure	7-7	This	state	diagram	shows	how	to	parse	an	MSP	message
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Having	a	diagram	like	this	to	work	from	makes	it	easier	to	write	the	code.	The	resulting	code	looks	like



this:

enum	{MSPSTATE_BEGIN,	MSPSTATE_DOLLAR,	MSPSTATE_M,	MSPSTATE_LT,	MSPSTATE_DATA}

mspState	=	MSPSTATE_BEGIN;

int	mspBytesRemain	=	0;

void	mspRead()	{

//	read	available	messages

while	(Serial.available())

{

char	ch	=	0x7f	&	Serial.read();

switch	(mspState)	{

case	(MSPSTATE_BEGIN)	:	mspState	=	(ch	==	'$')	?	MSPSTATE_DOLLAR	:

MSPSTATE_BEGIN;	break;

case	(MSPSTATE_DOLLAR)	:	mspState	=	(ch	==	'M')	?	MSPSTATE_M	:

MSPSTATE_BEGIN;	break;

case	(MSPSTATE_M)	:	mspState	=	(ch	==	'<')	?	MSPSTATE_LT	:

MSPSTATE_BEGIN;	break;

case	(MSPSTATE_LT)	:

mspState	=	MSPSTATE_DATA;

mspBytesRemain	=	ch	+	2;	//	data+cmd+chksum

if	(mspBytesRemain	==	0)

{

evaluateMSPCmd();

mspBufPosIn	=	0;

mspState	=	MSPSTATE_BEGIN;

}

break;

case	(MSPSTATE_DATA)	:

mspInBuf[mspBufPosIn++]	=	ch;

if	(--mspBytesRemain	==	0)

{

evaluateMSPCmd();

mspBufPosIn	=	0;

mspState	=	MSPSTATE_BEGIN;

}

break;

}

}



}

Near	the	end	of	this	routine,	the	real	work	gets	done	in	the	call	to	evaluateMSPCmd().	When	we	get	a
request	for	an	update,	which	is	most	of	what	MultiWiiConf	sends,	we	just	set	a	flag	noting	the	request.
The	update	actually	gets	sent	later	in	the	slow	loop	to	make	sure	we	don’t	send	more	than	10	per	second
and	take	time	away	from	flight	control.	Actual	commands	like	changes	to	PID	settings	or	even	RC	stick
positions	get	handled	as	they	are	received.

Like	with	the	RC	receiver	code,	we	will	use	the	standard	Arduino	Serial	library	to	implement	our
telemetry.	In	this	case	we	can	let	the	library	do	the	queuing	since	we	don’t	need	to	know	the	exact	time
when	a	byte	comes	in.	We	just	need	to	read	the	queue	often	enough	to	keep	it	from	overflowing—hence
the	read	in	the	fast	loop.	The	only	complexity	is	that	Chapter	7
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we	actually	need	two	input	queues,	since	we	can	get	messages	from	either	USB	or	Bluetooth.	You	can	see
the	details	in	the	file	MSP.cpp	in	the	source	code.

Motors

After	the	complexity	of	implementing	telemetry,	controlling	the	motors	is	easy.	We	drive	the	motors	with
pulse	width	modulation	(PWM)	from	a	digital	output	on	the	Teensy.	The	actual	motor	driver	circuit	we	will
cover	in	a	later	chapter.	Right	now,	let’s	look	at	the	software	required.

Pulse	width	modulation	conveys	information	by	the	length	of	each	pulse.	Our	motor	responds	mostly	to
the	duty	cycle,	or	ratio	of	on	time	to	off	time,	but	it	turns	out	the	rate	or	frequency	at	which	those	pulses
occur	still	represents	an	interesting	compromise.	Too	low	and	we	would	see	the	motor	pulse,	but	we	don’t
need	to	go	that	low.	At	moderate	frequencies,	in	the	few	hundred	to	few	thousand	cycles	per	second
range,	the	pulses	become	audible	as	a	high-pitched	whine.	But	we	can’t	just	keep	going	higher.

Our	motor	driver	circuit,	like	most,	uses	a	field	effect	transistor	(FET)	to	turn	on	and	off	the	large	flow	of
current	based	on	the	input	from	the	Arduino.	It	turns	out	that	in	our	application,	the	FET	uses	power
mostly	when	switching,	so	the	faster	we	switch,	the	more	power	it	must	dissipate	as	heat.	Motor	PWM	for
small,	brushed	motors	like	the	ones	we	are	using	here	often	runs	at	8	kHz.	While	high	pitched,	most
people	can	hear	a	sound	in	this	range.

We	will	start	there,	but	consider	going	higher	if	the	sound	turns	out	to	be	a	problem.

The	code	for	this	is	simpler	than	the	description.	We	use	the	standard	Arduino	analog	Write()	calls:

uint16_t	motor[4];

uint8_t	PWM_PIN[4]	=	{20,21,	22,	23};

void	writeMotors()	{

for	(int	i=0;	i<4;	i++)

analogWrite(PWM_PIN[i],	(motor[i]-1000)/4);

}

void	initMotors()	{

for	(int	i=0;	i<4;	i++)	{

motor[i]	=	1000;

pinMode(PWM_PIN[i],OUTPUT);

analogWriteFrequency(PWM_PIN[i],	8000);

}

writeMotors();

}

The	values	in	the	variable	motor[4]	range	from	1,000	to	2,000.	This	represents	the	range	of	standard
servo	PWM	in	microseconds,	but	they	are	just	arbitrary	numbers	for	us.	The	1,000



gets	subtracted	off	and	divided	by	4	to	give	a	number	in	the	range	of	0	to	256	for	the	actual	PWM	register.
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If	we	were	controlling	a	naturally	stable,	fixed-wing	aircraft,	we	could	just	connect	the	RC

radio	to	the	motors	or	servos	and	be	done.	In	fact,	we	wouldn’t	need	a	processor	at	all,	as	evidenced	by	all
the	RC	planes	that	flew	for	decades	with	no	stabilization	or	automatic	control.

However,	our	modern	quadcopter	designs	do	need	stabilization,	and	in	order	to	stabilize	a	quadcopter	we
must	understand	what	makes	it	fly.	Thus,	our	next	stop	will	be	a	brief	sum-mary	of	multirotor
aerodynamics.
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Quadcopters	basically	have	no	aerodynamics,	so	this	will	be	a	pretty	short	chapter,	right?

Well,	it’s	true	that	some	of	the	usual	factors,	like	drag,	are	insignificant	for	drones,	but	drones	do	have	a	few	unique
properties.	And	the	laws	of	physics	apply	to	all,	so	at	least	some	of	the	basics	must	be	the	same,	starting	with	this:	it
takes	lift	to	make	something	go	up.

Lift	and	Thrust

The	most	basic	equation	in	flight	says	that	lift,	the	upward	force	on	the	aircraft,	must	equal	weight,	the	downward
force	due	to	gravity.	Certainly	this	still	applies	to	multirotors,	but	where	fixed-wing	aircraft	use	thrust	to	create
forward	motion	and	then	use	wings	to	convert	this	forward	motion	into	lift,	we	skip	all	that.	We	just	point	the	props
up,	so	lift	equals	total	thrust,	as	shown	in	Figure	8-1.

Of	course,	this	only	applies	when	level.	If	the	drone	gets	tilted,	either	by	the	wind	or	because	of	control	inputs,	then
only	a	portion	of	the	total	thrust	gets	converted	to	lift.	The	rest	becomes	horizontal	thrust	and	accelerates	the	drone
forward,	backward,	or	sideways.

Figure	8-2	shows	this	relationship.
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Figure	8-1	When	hovering	level,	weight	=	lift	=	total	thrust

Figure	8-2	Only	part	of	the	total	thrust	becomes	lift	when	the	drone	is	tilted	70
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Pitch	and	Roll

Thus,	if	we	are	to	maintain	our	hover—that	is,	if	we	want	to	keep	lift	equal	to	weight—we	must	increase	the	total
thrust	when	the	drone	tilts	over.	We	will	accommodate	this	in	our	control	system	with	a	correction	factor	applied	to
the	throttle	value.

Pitch	and	Roll

Pitch	means	tilting	forward	and	backward.	Roll	means	tilting	side	to	side.	As	noted,	when	the	drone	is	tilted,	we	get
some	amount	of	horizontal	thrust,	and,	of	course,	drones	use	this	to	maneuver.	When	we	want	to	tilt	in	a	given
direction	we	just	decrease	the	thrust	on	the	motors	in	that	direction	and	increase	the	thrust	on	the	motors	in	the
opposite	direction.

Figure	8-3	shows	how	this	so-called	differential	thrust	creates	a	rotational	force.

Figure	8-3	Differential	thrust	creates	a	rotational	force

If	we	keep	applying	differential	thrust	to	our	drone,	it	will	roll	faster	and	faster,	eventually	doing	flips	and	more.
This	may	be	what	the	aerobatics	pilot	wants,	but	it’s	not	what	we	expect	when	flying	in	angle	mode.	In	this,	our
usual	mode,	the	desired	angle	of	the	drone	is	proportional	to	the	angle	of	the	stick.	When	you	move	the	stick	to	a
new	angle,	the	flight	control	system	applies	differential	thrust	just	long	enough	to	rotate	the	drone	to	the	desired
angle.	It	will	then	use	small	amount	of	differential	thrust	to	hold	it	there	until	you	move	the	stick	again.

Yaw

Yaw	is	rotation	around	the	vertical	axis,	the	way	a	car	turns.	While	most	people	understand	that	you	can	speed	up
the	motors	on	one	side	and	make	the	drone	tilt,	it	is	less	obvious	what	makes	it	yaw.	Instead	of	differential	thrust,
we	use	differential	torque.	It’s	one	of	those	ideas	that	is	clever	in	its	very	simplicity.
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As	each	motor	turns	its	prop	and	the	prop	pushes	against	the	air,	the	motor	must	in	turn	push	back
against	something.	That	something	is	the	frame	of	the	quadcopter.	This	torque	would	make	our	drones
spin	around	if	all	the	motors	turned	in	the	same	direction.	By	having	half	of	the	motors	spin	clockwise	and
half	counterclockwise,	the	torque	cancels	out,	resulting	in	zero	rotational	force.

Then,	when	we	want	to	make	our	drone	yaw,	we	just	make	the	half	of	our	motors	spinning	in	the	opposite
direction	spin	a	little	faster.	To	keep	the	total	thrust	the	same,	we	slow	down	the	other	motors	a
corresponding	amount.	The	difference	between	the	push	back	of	the	motors	in	each	direction,	the
differential	torque,	creates	the	desired	rotational	force	on	our	drone.	Figure	8-4	illustrates	how	this
works.

Figure	8-4	The	differential	torque	between	the	high-and	low-speed	motors	results	in	rotational	force
While	gravity	gives	us	a	nice	absolute	reference	for	pitch	and	roll	angles,	we	also	need	to	measure	the
Earth’s	magnetic	field	in	order	to	get	an	absolute	reference	for	yaw.	We	need	to	move	from	a	6DOF	sensor
to	our	10DOF	sensor.	Just	stabilizing	yaw,	with	no	absolute	reference,	can	be	enough	for	just	flying
around.	But	for	true	autonomous	flight,	we	need	to	know	which	way	is	north.
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Translational	Lift

So	far	we	have	looked	at	lift,	roll/pitch,	and	yaw.	The	aerodynamics	describe	how	the	drone	uses	the	air	to
do	what	we	command	with	our	stick	movements.	The	next	two	items,	translational	lift	and	vortex	ring
state,	describe	the	sometimes	surprising	ways	that	the	air	reacts	to	the	drone.

While	helicopters	and	multirotors	can	hover,	it	turns	out	that	it	helps	to	keep	moving.	Multirotors,	like	the
helicopters	they	share	their	strange	aerodynamics	with,	create	lift	more	efficiently	when	moving
horizontally	through	the	air.	To	understand	why	this	would	be	so,	first	consider	hovering	in	place.

As	seen	in	the	first	part	of	Figure	8-5,	when	in	a	stationary	hover,	the	air	going	through	the	rotor	is
moving	straight	downward.	Our	aircraft	has	to	work	harder	to	maintain	altitude	when	the	air	it’s	in	is
moving	downward.	It’s	like	hanging	on	a	rope	that	is	slowly	being	lowered	down.	You	have	to	climb	just	to
stay	in	the	same	place.

Figure	8-5	Translational	lift	occurs	when	the	rotor	pushes	on	air	that	is	not	already	traveling	downward
In	the	second	part	of	Figure	8-5,	we	start	moving	forward.	The	air	entering	the	rotor	comes	from	in	front
rather	than	above,	and	thus	it	is	not	already	moving	downward.	Once	you	are	moving	fast	enough,	you	are
always	in	clean	air,	not	the	turbulent,	downward-moving	air	you	just	pushed	on	a	minute	ago.	To	stretch
the	rope	analogy,	as	soon	as	you	pull	on	the	rope	and	it	starts	to	move	downward,	instead	of	climbing,	you
just	grab	the	next	rope	over	that	isn’t	moving	yet.

We	call	this	increased	lift	with	horizontal	motion	translational	lift.	It	occurs	whenever	the	air	moves
horizontally	across	the	rotor,	whether	you	are	moving	forward	or	flying	into	the	wind	to	maintain	a	fixed
position.	This	comes	up	for	us	as	drone	pilots	when	we	turn	from	flying	with	the	wind	to	flying	into	it,	or
the	other	way	around.	This	changes	our	effective	air	speed	and	in	turn	the	amount	of	throttle	required	to
maintain	a	constant	altitude.



Chapter	8
73

Vortex	Ring	State

Vortex	Ring	State

To	help	understand	this	next	effect,	visualize	a	smoke	ring.	Smoke	rings	occur	when	a	column	of	smoke
gets	pushed	relative	to	the	air	around	it.	The	interface	between	the	moving	and	nonmoving	air	creates
turbulence,	leading	to	swirls	or	vortices.	When	these	all	line	up	just	right,	you	get	a	smoke	ring,
technically	called	a	vortex	ring.	When	a	rotating	prop	pushes	a	column	of	air,	a	similar	thing	happens	and
we	get	a	vortex	ring	around	the	tip	of	each	prop.	As	the	air	rotates	around	the	prop	tip,	some	of	it	comes
around	and	pushes	back	down	on	the	prop,	canceling	some	of	the	lift	from	that	portion	of	its	length.
Under	normal	circumstances,	these	vortex	rings	don’t	affect	our	performance	too	much,	as	shown	in	the
first	half	of	Figure	8-6.

Figure	8-6	Prop	tip	vortices	get	much	larger	when	descending

However,	when	descending	rapidly,	the	additional	upward	air	movement	increases	the	effective	angle	of
attack	of	the	prop	blades	and	thus	increases	the	size	of	the	vortices,	as	seen	in	the	second	half	of	Figure
8-6.	As	the	vortices	become	larger,	they	reduce	lift	and	our	rate	of	descent	increases.	Add	power	to	stop
the	descent	and	the	vortices	get	bigger	yet,	creating	a	vicious	cycle	that	helicopter	pilots	know	as
“settling	with	power.”

As	multirotor	pilots,	we	experience	the	vortex	rotor	state	(VRS)	as	an	inability	to	power	out	of	a	descent
coupled	with	increased	turbulence.	Full	power	may	not	be	enough	to	slow	your	descent	and	prevent	a
crash,	making	you	think	your	battery	must	be	low.	Then,	when	taking	off	again	(assuming	the	crash	wasn’t
bad!),	full	power	makes	your	drone	head	for	the	sky.	Thankfully,	there’s	a	simple	answer.

Just	don’t	go	straight	down!	Whenever	descending	rapidly,	be	careful	to	also	maintain	some	forward
speed.	Of	course,	in	a	drone	backward	or	sideways	will	do	just	as	well.	By	moving	horizontally,	we
continually	fly	out	of	the	vortex	rings	we	are	creating	instead	of	going	down	through	them.
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Now	that	we	understand	the	basic	aerodynamic	forces	acting	on	our	drones,	we	can	create	a	control
system	that	uses	these	forces	to	make	our	drone	do	what	we	want.	But	in	order	to	control	our	position	we
must	know	our	position,	and	for	this	we	start	with	an	inertial	measurement	unit	(IMU).	Inertia	describes
the	tendency	of	objects	at	rest	to	stay	at	rest	and	objects	in	motion	to	stay	in	motion.	In	other	words,
inertia	embodies	Newton’s	first	law	of	motion.

Inertia	explains	why	you	get	thrown	back	into	your	seat	when	the	car	you	are	in	accelerates	or	why	you
get	thrown	to	the	side	when	the	car	turns.	Your	body	tried	to	stay	in	one	place	when	the	car	moved	or
tried	to	keep	moving	in	a	straight	line	when	the	car	turned.

By	way	of	ingenious	design,	engineers	have	built	tiny	structures	into	integrated	circuits	that	measure
these	forces.



When	these	chips	measure	straight-line	acceleration,	we	call	them	accelerometers.	While	accelerometers
will	detect	the	acceleration	of	the	drone	due	to	its	own	thrust,	we	primarily	use	accelerometers	in	drones
to	detect	the	constant	force	of	gravity.	When	trying	to	keep	a	drone	up,	it’s	important	to	know	which	way
is	down.

When	our	integrated	circuits	measure	rotation,	we	call	them	gyroscopes.	Large	spinning-disk	gyroscopes
were	used	for	this	job	in	the	past,	and	the	name	has	stuck	even	though	today’s	chips	operate	on	a
different	principle,	as	we	will	see.	In	drones,	we	use	gyroscopes	to	stabilize	our	rotation.	They	will	not	tell
us	which	way	we	are	facing,	but	they	will	let	us	keep	facing	the	same	way.

By	combining	accelerometers	to	determine	the	direction	of	gravity	and	gyros	to	determine	our	rotation
rates	we	can	keep	ourselves	level	with	the	horizon	and	keep	ourselves	from	spinning	around,	but	we	can’t
tell	which	way	we’re	going.	In	other	words,	we	have	an	absolute	reference	for	roll	and	pitch	but	not	yaw.
Enter	the	magnetometer.
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Our	magnetometers	work	like	little	compasses	in	three	dimensions.	By	adding	this	data	to	our	inertial
sensors,	we	can	hold	an	absolute	heading.	With	a	new	sensor	comes	a	new	acronym.	We	now	call	the
system	an	attitude	and	heading	reference	system	(AHRS),	since	it	can	give	us	a	complete	and	absolute
reading	of	our	direction.

Sometimes	we	need	to	know	not	just	exactly	where	we	are	heading,	but	exactly	where	we	are—for
example,	for	complete	autonomous	waypoint	navigation.	To	accomplish	this	we	will	have	to	add	more
sensors,	like	an	altimeter	and	GPS,	but	those	are	subjects	for	later	chapters.

Gyros

Engineers	have	developed	a	number	of	interesting	devices	for	stabilizing	aircraft	over	the	years.	Orville
Wright,	in	one	his	few	developments	independent	from	Wilbur,	built	a	wing	leveler	that	used	vanes	to
measure	air	currents,	but	it	never	worked	very	well.	Lawrence	Sperry	built	the	first	really	functional
autopilot	around	the	same	time,	using	spinning	gyroscopes	for	attitude	reference.	Gyroscopes	were	the
Sperry	family	business,	Lawrence’s	father	having	coinvented	the	gyrocompass	and	gyro	stabilizers	for
ships.

A	little	more	recently,	in	1963,	scientists	developed	the	laser	interferometry	or	ring	laser	gyroscope.	This
operates	by	sending	a	laser	beam	in	two	directions	around	a	path	and	noting	the	resulting	interference
patterns.	As	you	rotate	the	system,	the	light’s	path	is	longer	in	one	direction	and	shorter	in	the	other
simply	because	you	have	moved	the	point	at	which	they	meet.	The	different	path	lengths	change	the
interference	patterns	(known	as	the	Sagnac	effect),	and	this	can	be	measured	to	determine	the	rate	of
rotation.	Very	cool	technology,	but	it	has	remained	too	expensive	to	see	much	use	in	model	aviation.

The	integrated	circuit	gyros	we	put	into	our	modern	drones	are	based	on	yet	another	technology:	micro
electrical	mechanical	systems	(MEMS).	Sometimes	called	vibrating	structure	gyroscopes,	the	IEEE	has
standardized	the	name	of	these	components	as	Coriolis	vibratory	gyroscopes,	since	they	depend	on	the
same	Coriolis	force	that	makes	storms	turn	one	way	in	the	Northern	Hemisphere	and	another	in	the
Southern	Hemisphere.	Gaspard-Gustave	de	Coriolis	described	this	effect	in	1835	after	noting	that	long-
range	cannon	shots	tended	to	land	to	the	right	of	their	target	in	the	North	and	to	the	left	in	the	South.	To
see	how	this	works,	try	the	following	thought	experiment.

Imagine	a	tiny	ball	bouncing	back	and	forth	from	the	front	to	the	back	of	your	drone.	Now,	just	as	the	ball
has	bounced	off	the	back	and	is	heading	toward	the	front,	imagine	the	drone	turns	right.	If	the	little	ball
isn’t	connected	to	the	drone	it	will	keep	flying	in	the	same	direction	and	thus	land	to	the	left	of	where	it
otherwise	would	have	on	the	drone.	In

Figure	9-1	the	green	bar	represents	the	deflection	of	the	ball’s	path,	relative	to	the	drone,	due	to	rotation.
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Figure	9-1	The	ball	ends	up	in	the	same	place	(it’s	the	drone	that	moved!)	In	much	this	same	way,	tiny
vibrating	structures	inside	the	chips	we	put	in	our	drones	get	pushed	to	the	left	or	right	as	they	get
rotated.	By	measuring	this	deflection,	the	chip	can	then	tell	us	how	fast	it	is	rotating.	Several	such
structures	are	then	used	to	measure	rotation	in	different	directions.

Accelerometers

Unlike	the	wide	variety	of	gyroscope	designs	operating	on	different	principles,	all	accelerometers	work
basically	the	same	way.	They	measure	the	force	exerted	by	a	weight	as	the	frame	it	is	held	in	gets
accelerated.	Usually,	the	weight	is	on	the	end	of	a	spring	and	we	measure	the	deflection	of	the	spring.
Sometimes	piezoelectric	sensors—crystals	that	produce	a	voltage	when	pressed	on—are	used	to	measure
the	force	instead.

The	integrated	circuit	accelerometers	in	our	drones	use	MEMS	technology	like	the	gyros.	In	this	case	the
structures	consist	of	a	small	mass	held	in	place	by	springy,	flexible	arms.	Small	fingers	on	the	side	of	the
mass	move	relative	to	fixed	fingers	in	the	frame,	which	creates	a	variable	capacitor	that	can	be	measured
to	determine	how	far	the	mass	has	deflected	the	spring	arms.	Each	of	these	structures	can	measure
acceleration	in	only	one	or	two	directions,	so	several	such	structures	must	be	used	to	get	a	three-
dimensional	measure	of	acceleration.

Measuring	acceleration	can,	of	course,	tell	us	how	fast	we	are	going.	If	we	accelerate	at	5

miles	per	hour	(mph)	per	second	for	3	seconds,	then	we	are	going	15	mph.	If	we	then	stop	accelerating
and	travel	at	15	mph	for	1	hour,	we	travel	at	15	miles,	so	we	can	use	acceleration	to	find	distance	as	well,
though	this	takes	extremely	accurate	measurements.	If	we	are	actually	going	a	little	more	or	less	than	15
mph,	the	error	gets	compounded	every	hour	we	drive.

Some	drones	use	acceleration	to	determine	velocity	and	thus	position,	but	this	is	usually	only	done	in
advanced	drones	and	as	an	addition	to	GPS.	In	this	case	we	need	only	use	this	Chapter	9
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so-called	inertial	navigation	between	GPS	updates,	which	are	generally	from	1	to	10	times	per	second,	so
errors	don’t	have	time	to	accumulate	too	much.	Nonetheless,	such	a	system	puts	a	premium	on	vibration
reduction	in	the	control	system	since	vibrations	can	add	up	to	look	like	straight-line	motion	to	an
accelerometer.

More	importantly	for	us,	in	addition	to	their	being	affected	by	the	motion	of	our	drones,	gravity	pulls	on
the	little	weights	in	the	accelerometers,	thus	telling	us	which	way	is	down.

It	is	this	information	that	we	will	make	use	of	as	we	combine	accelerometer	and	gyro	data	to	create	a
complete	inertial	measurement	unit.	In	Figure	9-2	you	can	see	how	the	deflection	of	the	horizontal	and
vertical	springs	changes	as	the	drone	tilts	forward.

Figure	9-2	By	comparing	the	deflection	of	the	two	balls	on	springs,	we	can	determine	the	direction	of
gravity	Of	course,	real	gyro/accelerometer	chips	like	the	MPU-6050	we	chose	have	much	more
complicated	structures	than	these	examples.	The	springs	are	really	flexible	arms	and	there	are	lots	of
little	fingers	sticking	out	of	the	structures,	which	form	variable	capacitors	by	which	to	measure	their
movement.	These	tiny	changes	are	detected,	digitized,	and	made	available	to	us	as	a	few	values	on	the
inter-integrated	circuit	(I2C)	bus.	It’s	the	job	of	our	IMU	code	to	read	this	data	and	make	sense	of	it.

IMU

The	IMU	reads	the	raw	data	from	the	sensor	chips,	combines	it,	and	converts	the	results	to	values	we	can
use	like	roll,	pitch,	and	yaw.	We	will	use	the	Arduino	Wire	library	to	communicate	with	the	MPU-6050
chip.	Our	first	messages	to	this	chip	must	be	initialization	codes.

These	set	parameters	for	how	to	scale	and	filter	the	results	before	giving	them	to	us.	While	these	settings
are	critical,	and	may	need	to	change	if	the	fast	loop	timing	changes,	the	code	is	highly	specific	to	the
application	and	unlikely	to	get	reused,	so	let’s	move	on	to	reading	the	sensors.

Once	during	each	fast	loop,	we	call	the	routines	readIMU()	and	calcIMU().	The	first	one	reads	the	raw
values	and	the	second	calculates	roll,	pitch,	and	yaw	from	these	values.	We	78
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keep	these	functions	separate	so	that	other	functions,	in	particular	calibration	routines,	can	read	the	raw
values	and	do	other	things	with	them.	To	read	a	set	of	values	from	the	I2C

bus,	we	make	a	request	and	then	read	bytes	until	the	response	is	complete.	In	our	case	we	will	read	seven
16-bit	values,	for	a	total	of	14	bytes.	The	request	looks	like	this:

//---------------------

//	read	gyro	and	accel

void	requestIMU()

{

Wire.beginTransmission(MPU);

Wire.write(0x3B);	//	starting	with	register	0x3B	(ACCEL_XOUT_H)

Wire.endTransmission(true);

Wire.requestFrom(MPU,14,true);	//	request	a	total	of	14	registers

}

When	reading	the	response,	we	also	check	for	any	bus	errors.	When	the	message	is	complete,	we	have	to
do	some	of	that	ugly	integer	math	to	combine	the	bytes	into	16-bit	words.	Here’s	the	result:

//---------------------

//	read	available	IMU	bytes	and	process	if	full	message

uint8_t	imuBufPos	=	0;

uint8_t	imuBuf[14];



void	readIMU()

{

//	read	the	whole	IMU	set

requestIMU();

while	(imuBufPos	<	14)	//	block	until	enough	data	read

{

if	(Wire.available()	>	0)

{

imuBuf[imuBufPos++]=Wire.read();

if	(Wire.getError()	!=	0)

i2cErrorCnt++;

debugVals[2]	=	i2cErrorCnt;

}

}

if	(imuBufPos	==	14)

{

Acc[0]=imuBuf[0]<<8|imuBuf[1];	//	0x3B	(ACCEL_XOUT_H)	&	0x3C	(ACCEL_XOUT_L)	Acc[1]=imuBuf[2]
<<8|imuBuf[3];	//	0x3D	(ACCEL_YOUT_H)	&	0x3E	(ACCEL_YOUT_L)	Acc[2]=imuBuf[4]<<8|imuBuf[5];	//
0x3F	(ACCEL_ZOUT_H)	&	0x40	(ACCEL_ZOUT_L)	Tmp=imuBuf[6]<<8|imuBuf[7];	//	0x41
(TEMP_OUT_H)	&	0x42	(TEMP_OUT_L)	Gyro[0]=imuBuf[8]<<8|imuBuf[9];	//	0x43	(GYRO_XOUT_H)	&
0x44	(GYRO_XOUT_L)	Gyro[1]=imuBuf[10]<<8|imuBuf[11];	//	0x45	(GYRO_YOUT_H)	&	0x46
(GYRO_YOUT_L)	Gyro[2]=imuBuf[12]<<8|imuBuf[13];	//	0x47	(GYRO_ZOUT_H)	&	0x48	(GYRO_ZOUT_L)

	

//Acc[2]	=	-Acc[2];

imuBufPos	=	0;

}

}
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Now	for	the	fun	part,	the	calculations!	We	can	choose	from	several	thoroughly	researched	algorithms,
including	the	Kalman	filter	(which	we	will	revisit	later),	the	complementary	filter,	and	the
Mahony/Madgwick	algorithm.	The	Madgwick	implementation	of	Mahony’s

method	has	the	advantage	of	being	available	as	simple	source	code	with	clear	rights.	It	also	has	a	history
of	working	successfully	in	other	model	aircraft	projects.	Finally,	since	it	is	implemented	with	quaternions,
the	Madgwick	optimized	code	is	extremely	efficient.

What’s	a	quaternion,	you	ask?	Invented	in	1843	by	Rowan	Hamilton,	who	was	so	pleased	with	the	thought
that	he	carved	the	formula	into	the	bridge	he	was	crossing	in	Dublin	when	he	came	up	with	it,
quaternions	are	used	in	computer	graphics	and	navigation,	among	other	things,	to	represent	rotations.
They	make	some	computations	easier	and	avoid	gimbal	lock.	Gimbal	lock	occurs	in	real	gyroscopes	when
they	reach	some	physical	limit	of	motion.	Something	similar	occurs	in	our	code	when	we	reach	some	limit
of	the	mathematical	representation	of	rotation.	It’s	like	standing	at	the	North	Pole	and	asking	which	way
is	south.

Stripped	of	the	language	of	higher	math,	the	process	goes	something	like	this:

1.	Read	the	raw	gyro	and	accelerometer	data.

2.	Calculate	our	rate	of	change	based	on	current	direction	and	gyro	data.

3.	Determine	the	difference	between	this	gyro-based	estimate	and	an	estimate	from	the	accelerometers.

4.	Correct	the	gyro-based	rate	of	change	by	nudging	it	toward	the	accelerometer—

based	direction	according	to	a	tuning	parameter.

5.	Update	our	direction	estimate	based	on	this	corrected	rate	of	change	and	the

amount	of	time	that	has	passed.

6.	Convert	the	quaternions	to	roll,	pitch,	and	yaw.

Have	a	look	at	the	actual	codebase	to	see	the	details,	or	just	read	about	the	Madgwick

implementation	online.	The	code	in	our	IMU	has	been	changed	to	use	only	our	calibration	data	and	to
output	the	so-called	Tait–Bryan	angles	of	roll,	pitch,	and	yaw.

So	far,	we	have	described	a	6DOF	system,	with	three	degrees	of	freedom	each	for	the	gyros	and
accelerometers.	Now,	let’s	add	three	more	for	the	magnetometers.

Magnetometers

Magnetometers	measure	the	direction	of	the	magnetic	field	passing	through	them.	Usually	the	Earth’s
field	dominates	this	measurement,	but	interference	from	magnetic	fields	generated	by	the	drone’s	own
power	system	can	be	a	problem.	We	get	this	information	in	the	form	of	a	vector,	much	like	the
accelerometer	data,	and	the	magnetometer	data	gets	used	in	the	attitude	calculations	in	much	the	same
way	as	the	accelerometer	data.
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Mathematically	speaking,	this	is	quite	significant.	While	a	6DOF	system	gives	absolute	roll	and	pitch
relative	to	the	Earth’s	surface,	it	can	only	give	yaw	relative	to	where	it	started,	and	that	is	limited	by	gyro
drift.	When	we	move	up	to	a	9DOF	system,	we	can	now	calculate	an	absolute,	three-dimensional	rotation
relative	to	the	Earth.	Our	equations	give	a	single	solution.

Practically,	going	from	six	to	nine	degrees	of	freedom	does	not	buy	us	much	new	functionality	by	itself.	We
could	implement	a	so-called	headless	mode,	where	the	sticks	on	the	transmitter	correspond	to	absolute
directions	like	north	and	south,	instead	of	forward	and	backward	relative	to	the	drone.	While	this	is



interesting,	the	magnetometer	becomes	essential	when	we	add	GPS	and	try	to	do	autonomous	navigation.

With	the	addition	of	the	magnetometer	our	IMU	gets	a	new	name.	Such	systems	are	commonly	known	as
attitude	and	heading	reference	systems	(AHRSs),	or,	in	academic	literature,	magnetic,	angular	rate,	and
gravity	(MARG)	systems.

Next,	we’ll	bring	our	IMU	results	together	with	the	RC	commands.
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In	a	car,	you	turn	the	wheel	and	hold	it	to	make	the	car	turn	at	a	constant	rate.	In	a	fixed-wing	plane,	you
turn	the	control	wheel	for	a	few	seconds	until	the	plane	has	rolled	far	enough,	then	return	the	wheel	to
nearly	zero	to	hold	the	roll	position.	The	roll	angle	determines	the	rate	of	turn,	and	the	control	wheel
determines	this	indirectly	by	controlling	the	rate	of	roll.	In	the	language	of	drones,	we	might	call	the	car
“angle	mode”	and	the	plane

“rate	mode.”	Interestingly,	drone	pilots	will	use	both	of	these	modes	and	several	others,	sometimes
switching	between	several	in	a	single	flight.

The	current	mode	determines	what	the	sticks	on	the	transmitter	mean.	Combine	this	with	our	attitude,
and	the	mode	code	outputs	commands	to	the	mix	code	like	“pitch	forward	strongly”	or	“yaw	left	slightly.”
The	mix	code	takes	these	commands	and	determines	how	much	throttle	to	send	to	each	individual	motor.
In	other	types	of	aircraft,	this	mixing	might	also	control	some	servos	or	possibly	require	complex
sequences	of	movements	(“bank	right,	then	hold	bank	angle”).	By	sticking	to	multirotors,	we	eliminate	a
lot	of	complexity	and	thus	make	it	possible	to	create	something	functional	while	we	learn.

Mode

I’ve	said	that	the	mode	determines	the	meaning	of	the	sticks	on	the	RC	transmitter.	But	before	describing
the	modes	we	will	use	in	detail,	a	word	about	another	use	of	the	word	mode.	RC	transmitters	come	in
mode	1	or	mode	2	(or	some	are	switchable),	which	in	this	case	means	that	the	right	stick	or	the	left	stick
controls	the	throttle.	One	can	reorder	the	channels	in	software,	of	course,	but	the	throttle	stick	usually
doesn’t	have	a	spring,	so	this	makes	a	real	difference.	Almost	all	transmitters	used	with	drones	use	mode
2,	which	means	throttle	on	the	left.	Now	that	we	know	which	stick	controls	the	throttle,	we	can	dig	in	and
figure	out	what	the	other	sticks	do.

The	different	control	systems	have	different	names	for	the	various	modes,	even	though	the	functionality
remains	very	similar.	What	we	will	call	angle	mode	corresponds	to	stabilize	83
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mode	in	ArduCopter.	In	MultiWii,	the	closest	thing	to	the	rate	mode	we’re	about	to	implement	is	what’s
called	manual	mode,	though	the	two	are	not	exactly	the	same,	as	we	shall	see.	As	we	add	sensors,	we
must	add	modes	to	use	them.	We	could	add	altitude	hold	mode	to	use	the	barometer	data,	and	if	we	add
GPS	we	will	need	modes	for	that	too.	Right	now,	let’s	look	at	the	two	basic	modes,	which	depend	only	on
inertial	sensors—angle	mode	and	rate	mode.

Angle	Mode

Almost	all	toy-class	drones	run	in	angle	mode.	In	fact,	if	a	toy	drone	has	two	different	modes,	they	are
probably	just	two	versions	of	angle	mode	with	different	tuning	parameters.	Beginners	find	angle	mode
intuitive,	as	the	angle	of	the	stick	corresponds	directly	to	the	angle	of	the	drone.	It	also	has	the	advantage
that	when	you	let	go	of	the	sticks,	the	drone	goes	back	to	level	and	at	least	stops	accelerating,	even	if	it
does	not	stop	moving.

When	flying	in	angle	mode,	the	angle	of	the	drone	with	respect	to	the	ground	is	proportional	to	the	angle
of	the	control	stick.	As	we	saw	when	tuning	the	X4Wii,	several	settings	can	modify	this	relationship	even
before	we	really	do	the	mode	calculation.	The	RC	rate	determines	the	ratio	between	the	angle	of	the	stick
and	the	angle	of	the	drone.	The	drone	might	move	20	degrees	when	the	stick	moves	10	degrees	or	only	5,
which	would	be	an	RC

rate	of	2	or	0.5,	respectively.	The	RC	exponential	setting	takes	this	straight-line	ratio	and	flattens	it	out
near	0	so	that	we	can	make	fine	control	adjustments	more	easily.

To	calculate	the	final	desired	angle	for	roll	and	for	pitch,	we	first	convert	the	RC	value	to	a	float	in	the
range	–1	to	1,	then	multiply	this	by	the	RC	rate	and	a	parameter	called	maxAngle,	which	determines	the
actual	drone	angle	when	the	RC	value,	as	modified	by	the	rate,	reaches	1.	To	find	the	command	value—the
force	by	which	we	wish	to	rotate	the	drone—we	take	the	difference	between	the	desired	angle	and	the
actual	angle.	Divide	this	difference	by	90	degrees	and	we	have	a	measure	between	–1	and	1,	which	we	call
axisCmd	and	which	a	control	systems	engineer	would	call	the	error	because	the	control	system	is	trying	to
drive	this	difference	to	0.	Here’s	the	code	for	pitch	and	roll:

//	pitch/roll:	axis	cmd	=	imu	angle	-	rc	angle



axisCmd[1]	=	-((float)IMURoll	-	maxAngle	*	rcRate[1]	*	(float)((int16_t)rcValue[1]

-	(int16_t)MIDRC)	halfRange)	90.0f;

axisCmd[2]	=	-((float)IMUPitch	-	maxAngle	*	rcRate[2]	*	(float)((int16_t)rcValue[2]

-	(int16_t)MIDRC)	halfRange)	90.0f;

We	interpret	the	yaw	stick	in	rate	mode	even	when	the	system	overall	is	in	angle	mode.	It	would	be
awkward	to	have	to	hold	the	stick	to	the	left	or	right	the	whole	time	we	wanted	to	face	in	that	direction.
Instead,	the	stick	controls	the	rate	of	change	of	yaw.	A	small	deflection	might	mean	“turn	5	degrees	per
second,”	where	in	true	angle	mode	it	would	mean	“face	5	degrees	to	the	right.”	Similarly,	when	we	center
the	stick,	the	drone	keeps	pointing	where	it’s	pointing.	It	doesn’t	snap	back	to	north.

To	control	the	yaw	rate,	we	must	first	compute	it	by	taking	the	difference	between	the	current	heading
and	the	previous	heading.	The	function	circleDiff()	does	this	correctly,	even	when	the	two	directions	are
either	side	of	north.	The	next	line	smooths	the	yaw	rate	84
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Mix

to	eliminate	noise	and	vibration.	The	general	form	of	�	=	1	−	�	�	+	�	���������	can	be	used
anywhere	a	signal	needs	to	be	cleaned	up.	When	�	is	near	0,	the	signal	passes	nearly	unchanged.	When	it
is	near	1,	the	output	changes	very	slowly,	responding	only	to	the	average	of	the	input.

Once	we	have	computed	the	yaw	rate,	the	code	for	yaw	looks	much	like	the	code	for	roll	and	pitch.	We
just	take	the	difference	between	the	actual	and	desired	values.	The	code	ends	up	like	this:

const	float	yawRateSmooth	=	0.01f;

//	compute	and	smooth	the	yaw	rate

float	yawRate	=	deltat_inv	*	circleDiff(IMUHead,	prevHead);

yawRate	=	(yawRateSmooth	yawRate)	+	((1.0f-yawRateSmooth)	prevYawRate);

prevYawRate	=	yawRate;

	

//	yaw:	axis	cmd	=	imu	rate	-	rc	rate

axisCmd[3]	=	(yawRate	-	90.0f	rcRate[3]	(float)((int16_t)rcValue[3]

-	(int16_t)MIDRC)	halfRange)	90.0f;

prevHead	=	IMUHead;

In	the	next	section,	we’ll	cover	full	rate	mode,	where	pitch	and	roll	are	handled	the	same	as	yaw	has	been
here.

Rate	Mode

What	we	will	call	rate	mode	many	people	know	as	acro	or	acrobatic	mode.	MultiWii	calls	this	manual
mode,	though	that	seems	less	descriptive	since	we	still	stabilize	the	drone	in	this	mode.

Rate	mode	does	not	require	any	absolute	reference	to	the	ground.	The	drone	will	just	keep	rolling	left	as
long	as	you	hold	the	stick	to	the	left,	no	matter	which	way	is	up.	As	such,	we	do	not	need	accelerometers
to	implement	rate	mode,	and	historically,	when	gyros	and	accelerometers	were	in	separate	chips	and
harder	to	get,	many	pilots	flew	exclusively	in	rate	mode	with	nothing	but	gyros.

In	our	control	system,	however,	we	have	accelerometers.	In	some	cases	you	might	want	to	avoid	using
them	to	avoid	the	noise	the	sensors	introduce,	but	it	doesn’t	seem	to	be	a	problem	here,	so	we	will	simply
calculate	roll	and	pitch	rates	from	the	IMU’s	existing	roll	and	pitch	angle	outputs,	just	as	we	did	with	yaw
above.	In	fact,	the	code	is	so	similar,	we	won’t	take	up	space	repeating	it	here.

Mix

When	I’m	flying	out	in	public	and	someone	stops	to	ask,	“How	does	that	work?”	more	often	than	not	what
they	want	to	know	is	something	about	how	the	mixing	works.	It’s	a	natural	enough	question.	You	can	see
the	control	sticks	on	the	transmitter	and	clearly	the	motors	are	the	things	being	controlled,	but	how	does
one	lead	to	the	other?
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We	covered	most	of	the	answer	back	in	Chapter	8,	really.	For	example,	we	saw	how	turning	the	motors
faster	on	one	side	and	slower	on	the	other	can	make	the	drone	roll.	The	code	for	this	is	pretty	simple	too.
First	we	set	the	output	for	all	motors	based	on	the	throttle	(axisCmdPID[0]),	then	we	modify	each
individual	motor	based	on	the	appropriate	axis	(roll	in	the	following	example),	scaled	by	the	current
throttle:

//	set	throttle

for	(int	i=0;	i<4;	i++)

motorCmd[i]	=	(int16_t)axisCmdPID[0]	/	throttleCorrection;

	

//	apply	roll

motorCmd[0]	+=	(int16_t)(axisCmdPID[0]	*	(-axisCmdPID[1]));

motorCmd[1]	+=	(int16_t)(axisCmdPID[0]	*	(-axisCmdPID[1]));

motorCmd[2]	+=	(int16_t)(axisCmdPID[0]	*	(	axisCmdPID[1]));

motorCmd[3]	+=	(int16_t)(axisCmdPID[0]	*	(	axisCmdPID[1]));

The	pitch	and	yaw	sections	are	similar,	except	for	which	motor	speeds	go	up	and	which	go	down.

One	fine	point	and	one	huge	subject	are	hiding	in	that	example.	As	we	saw	in	Figure	8-2,

when	a	drone	is	tipped	to	the	side,	only	part	of	the	thrust	becomes	lift.	Dividing	by	throttleCorrection,	a
measure	of	this	reduction	calculated	for	us	by	the	IMU,	adds	a	little	thrust	to	make	up	for	this.	It’s	a	fine
point,	but	it	makes	our	drone	fly	a	little	easier.

Now	for	the	big	subject:	perhaps	you	noticed	that	while	our	mode	code	used	the	variable	axisCmd	as	its
output,	the	input	here	is	actually	called	axisCmdPID.	The	PID	here	is	an	algorithm	that	effectively	does	a
little	smoothing	in	between	the	mode	and	mix	sections.	This	topic	deserves	a	chapter	of	its	own.

86
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Hidden	between	mode	and	mix	we	find	the	proportional–integral–derivative	(PID)	controller.	On	the	one
hand,	it’s	just	a	little	smoothing	filter	applied	to	the	axis	commands	before	sending	them	to	the	motors.
On	the	other	hand,	as	a	drone	maker	and	pilot,	you	may	well	spend	more	time	dealing	with	PIDs	than	any
other	component	of	the	control	system—not	changing	the	algorithm,	since	that	comes	in	but	a	few
standard	flavors,	but	tuning	the	PID’s	parameters.	And	few	things	will	make	as	much	difference	in	how
your	drones	fly!

The	Algorithm

As	with	gyroscopic	stabilization,	at	least	some	of	the	credit	for	the	PID	algorithm	goes	to	the	Sperry
family.	In	this	case	it	was	Elmer	Sperry,	father	of	Lawrence,	who	built	the	first	autopilot	for	airplanes;	he
came	up	with	the	idea	while	working	on	an	autopilot	for	Navy	ships.	He	noticed	that	the	helmsmen	would
compensate	for	not	just	the	current	course	error,	but	the	immediate	history	of	that	error	and	any	sudden
changes	in	the	error.	He	was	implementing	this	with	pneumatic	systems,	but	the	principle	remains	the
same	to	this	day.

P—Proportional

When	the	person	at	the	helm	moves	the	rudder	further	as	the	ship	gets	further	off	course

—that	is,	if	the	rudder	position	is	proportional	to	the	course	error—then	that	person	at	the	helm	is	acting
as	the	“P,”	or	proportional,	part	of	the	algorithm.	Similarly,	if	you	press	the	accelerator	pedal	of	your	car
harder	in	proportion	to	how	much	your	speed	is	below	the	target,	you	are	implementing	the	“P”	part	of	a



PID	controller.

The	“P”	term	controls	the	overall	force	the	control	system	will	use	to	achieve	the	desired	output.	Not
enough	“P,”	and	your	drone	won’t	have	the	power	to	respond	to	your	control	inputs.	The	controls	will	feel
mushy.	Too	much	“P,”	and	your	drone	will	overreact	and	possibly	oscillate	wildly.
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I—Integral

So	now	you	go	up	a	hill	in	your	car	and	slow	down	a	bit,	making	you	press	the	pedal	harder.	Perhaps	this
is	enough	to	hold	your	new,	slower	speed,	but	there	is	a	persistent	error	of	a	couple	of	miles	per	hour.
When	you	give	it	a	bit	more	gas	to	fix	this	ongoing	error,	you	are	now	adding	the	“I,”	or	integral,	part	of
the	algorithm.

A	mathematician	might	describe	an	integral	as	the	area	under	a	curve.	In	Figure	11-1,	the

blue	line	represents	the	error	and	the	red	line	the	area	under	this	curve,	or	the	sum	of	past	errors.	As
long	as	the	error	stays	positive	(the	green	areas),	then	the	larger	the	area	gets,	the	higher	the	red	line
goes.	When	the	blue	line	goes	below	the	axis	we	say	the	resulting	area	is	negative	and	subtracts	from	the
total.	When	we	add	up	all	the	areas	we	get	the	sum	of	all	past	error.

Figure	11-1	The	red	line	is	the	sum	of	all	past	values	of	the	blue	line	The	“I”	term	corrects	for	long-term
error	to	make	sure	that	the	output	finally	reaches	the	desired	value.	This	also	causes	the	output	to	reach
the	desired	value	faster.	Increasing	“I”

makes	your	drone	feel	snappier,	responding	quicker	to	control	inputs,	but	too	much	can	cause	overshoot
and	oscillation,	much	like	too	much	“P.”

D—Derivative

If	the	integral	term	is	about	the	long-term	error,	the	derivative	or	“D”	term	is	about	the	instantaneous
response.	In	the	moment	when	you	first	hit	that	hill	and	your	car	begins	to	slow	down,	you	might	just	give
a	bit	of	extra	gas	to	keep	it	from	slowing	down	too	much	88
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while	you	find	the	right	pedal	position	to	maintain	your	speed.	The	“D”	term	responds	to	the	change	in	the
error,	not	the	current	size	of	the	error.

A	mathematician	would	probably	describe	the	derivative	of	a	curve	as	the	slope	at	a	point.

If	we	plot	the	speed	of	your	car	versus	time,	then	as	you	start	up	the	hill,	the	curve	will	slope	downward.
Similarly,	if	you	don’t	take	your	foot	off	the	gas	quickly	enough	when	the	road	levels	out,	your	speed	might
suddenly	increase	and	the	plot	of	your	speed	will	slope	upward.	In	Figure	11-2,	the	red	line	is	above	zero
when	the	blue	line	is	rising	and	below	zero	when	it	falls.

Figure	11-2	The	“D”	term	depends	on	the	slope	of	the	error

The	“D”	term	makes	the	immediate	response	faster	and	can	help	prevent	overshoot	and	damp	out
oscillations.

PID	or	Pee-Eye-Dee?

How	do	you	pronounce	“PID”?	Does	it	rhyme	always	use	the	short	version	inside	my	head.	But	with
“squid,”	or	do	you	pronounce	each	letter	in	pronouncing	the	letters,	like	“Pee-Eye-Dee,”

the	acronym?	I’ve	met	professional	control	sys-seems	to	be	the	more	common	usage,	among	tems
engineers	who	say	it	both	ways,	and	I	both	engineers	and	drone	pilots.
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Implementation

For	an	algorithm	that	has	so	many	uses	and	that	gets	so	much	academic	attention,	implementing	it	is
pretty	easy.	There	are	a	couple	of	fine	points	between	theory	and	practice	even	here,	though.

In	theory,	the	integral	or	sum	of	all	past	errors	will	just	keep	getting	larger	and	larger	if	it	is	not	corrected
completely.	In	practice,	it	rarely	works	out	well	to	let	a	variable	increase	without	limit,	so	actual	PID
implementations	usually	include	a	limit	on	possible	runaway	integrals,	called	integral	windup.	We	see	this
in	the	following	code,	where	constrain()	is	used	in	the	calculation	of	pid_isum:

//	compute	PID	for	each	axis

for	(int	i=0;	i<MYPIDITEMS;	i++)

{

e	=	axisCmd[i];

pid_isum[i]	=	constrain(pid_isum[i]	+	(e	*	deltat),	-1,	1);	//	constrain	to	stop	windup	pid_ddt[i]	=	(e	-
prevE[i])	/	deltat;

axisCmdPID[i]	=	(pid_p[i]	*	e)	+	(pid_i[i]	pid_isum[i])	+	(pid_d[i]	pid_ddt[i]);	prevE[i]	=	e;

}

Tuning

Tuning	a	PID	can	be	as	simple	as	turning	a	knob	on	your	transmitter	until	your	drone	flies	better,	or	as
complex	as	a	full	functional	analysis	of	the	system	followed	by	an	algorithmic	calculation	of	the	tuning
parameters.	We	will	use	an	iterative	process	of	changing	a	value	(perhaps	with	your	smartphone)	and
doing	short	flight	tests	until	a	satisfactory	result	is	obtained.

Theory

The	following	process	assumes	a	starting	point	with	“P”	set	to	some	low	value,	0.5	or	less,	and	“I”	and	“D”
set	to	0.	At	each	step,	change	the	parameter	in	question	using	the	Bluetooth	connection	to	your	computer
or	smartphone,	then	take	a	short	flight	to	test	the	results.	A	few	seconds	is	usually	enough.

1.	Increase	“P”	until	oscillations	begin.	Reduce	to	half	this	amount.

2.	Increase	“I”	if	needed	to	make	control	response	quicker.	If	oscillations	occur,	back	off	some	and	leave
it.

3.	Increase	“D”	if	needed	to	make	response	to	disturbances	quicker.

4.	As	“I”	and	“D”	are	increased,	“P”	may	need	to	be	decreased	some.

This	will	all	make	more	sense	with	an	example.	Let’s	say	the	setpoint	represents	the	desired	roll	angle	of
our	drone,	shown	in	Figures	11-3	through	11-5	by	a	blue	line.	It	starts	out	at	the	center,	moves	quickly	to
one	extreme,	then	moves	more	slowly	to	the	other	extreme	90
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and	suddenly	back.	The	green	lines	show	the	output	of	the	PID	controller	and	the	red	lines	show	the
resulting	roll	angle	of	our	hypothetical	drone.

In	Figure	11-3,	we	start	with	“P”	set	to	0.5,	which	is	a	little	low.	The	resulting	angle	does	not	move	as	far
as	the	setpoint.	As	we	increase	“P”	to	1,	the	result	gets	closer	to	the	setpoint,	and	the	little	oscillations	are
starting	to	get	very	noticeable.	By	the	time	we	have	“P”	set	to	2,	the	oscillations	are	too	much,	so
according	to	our	procedure,	we	back	off	and	set	it	to	1.

Figure	11-3	Even	with	“P”	turned	up	until	the	oscillations	get	bad,	the	output	still	does	not	reach	the
setpoint	A	drone	with	too	little	“P”	just	won’t	have	the	maneuvering	power	to	respond	to	your	control
inputs	or	disturbances	from	the	wind.	The	word	“wobble”	comes	to	mind.	With	too	much	“P,”	we	get
oscillations.	This	might	seem	a	lot	like	the	low-“P”	wobble,	but	it	will	usually	be	faster.	The	drone	drives
itself	back	and	forth	instead	of	just	flopping	around.

In	Figure	11-4,	we	add	a	new,	cyan-colored	line	to	show	how	the	integral	term	adds	up.	In	the	top	graph,
we	leave	“I”	at	0.	You	can	see	that	the	integral	just	keeps	getting	bigger	or	Chapter	11
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smaller	as	long	as	we	hold	position,	since	we	are	doing	nothing	to	correct	the	error.	In	the	middle	graph,
we	set	“I”	to	0.5,	which	just	corrects	out	the	error,	but	also	adds	to	the	oscillations.	With	“I”	set	to	1,	the
oscillations	are	increasing,	not	decreasing,	so	we	must	back	off	a	bit,	according	to	our	process.	We	will	go
forward	with	“I”	set	0.8.

Figure	11-4	Increasing	I	brings	the	output	up	to	the	setpoint	but	adds	more	oscillation	Setting	“I”	to	0
works	fine	sometimes,	so	it’s	hard	to	say	what	too	little	“I”	looks	like,	except	that	a	little	more	makes
everything	a	little	snappier.	Too	much	“I”	creates	obvious	hard,	fast	oscillations,	much	the	same	as	with
“P.”

At	this	point,	the	oscillations	are	too	high	to	tolerate,	but	just	watch	what	the	“D”	term	can	do!	After
trying	several	values,	a	“D”	of	around	1.4	seems	to	most	perfectly	damp	out	the	oscillations	without
slowing	down	the	response	or	creating	oscillations	of	its	own.	In	the	third	graph	we	can	see	that	pushing
“D”	up	to	3	creates	unacceptable	ringing	in	the	output.
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Figure	11-5	Increasing	“D”	can	damp	out	the	oscillations	from	“P”	and	“I,”	or	add	more	of	its	own	Too
little	“D”	does	not	make	a	signature	of	its	own;	it	simply	allows	the	“P”	and	“I,”	oscillations	to	continue.

Set	right,	“D”	damps	these	oscillations	out.	Set	“D”	too	high	and	we	get	oscillations	again,	but	often	faster
those	caused	by	“P”	or	“I.”	They	may,	in	fact,	be	too	fast	to	see	directly	as	many	drone	control	systems	run
PID	loops	500	times	a	second,	but	the	drone	will	become	unflyable	nonetheless.

The	final	result	looks	quite	flyable.	At	each	fast	setpoint	change,	the	PID	controller	gives	an	immediate
strong	response,	followed	by	a	strong	response	in	the	other	direction	to	stop	the	motion	as	the	setpoint	is
reached.	There	is	a	single	wobble	after	that	as	the	system	locks	on	to	the	new	position,	and	then	it	stays
perfectly	flat.
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Practice

Getting	your	PIDs	tuned	right	can	be	frustrating,	especially	when	more	than	one	parameter	needs	changing	and	the
resulting	oscillations	keep	crashing	your	drone.	But	most	people	need	never	find	themselves	in	this	situation.	In	fact,	in
the	most	common	case—trying	to	make	a	working	drone	fly	a	little	better—turning	PIDs	can	be	both	easy	and	satisfying.

If	your	drone	flies	well	now	but	you	would	like	it	to	be	either	smoother	or	quicker	in	its	control	response,	then	the	PID
adjustments	should	be	easy.	Actually,	I	would	always	start	by	adjusting	the	RC	parameters,	but	assuming	you	have	done
that,	you	can	almost	always	just	move	“P,”	“I,”	and	“D”	up	and	down	in	equal	proportion.	If	the	current	settings	are	1,
0.1,	and	0.01,	then	adjusting	up	by	10%	gives	1.1,	0.11,	and	0.011.	Move	up	or	down	in	small	increments	and	you	should
be	able	to	tell	that	it’s	getting	worse	before	things	get	so	bad	as	to	cause	crashes.

If	you’ve	just	built	a	brand	new	drone,	however,	or	made	a	major	modification	like	changing	motors	or	props,	then	you
might	have	to	make	more	drastic	changes.	If	possible,	find	someone	else	who	has	built	a	drone	using	similar	components
and	start	with	their	values.	I	give	working	values	for	all	the	projects	in	this	book,	for	example.	If	you	can’t	manage	that,
the	default	values	in	the	popular	flight	control	systems	are	often	better	than	starting	with

“D”	and	“I”	at	0.	Some	flight	control	systems,	like	ArduCopter,	allow	you	to	tune	parameters	in	flight	using	your	RC
radio,	which	can	make	the	process	much	faster;	some	can	even	perform	an	autotune	and	get	to	workable	settings	by
themselves.

If	you	have	a	completely	new	codebase	or	otherwise	are	starting	from	scratch,	then	some	kind	of	test	rig	will	allow	you
to	debug	the	code	without	crashing	and	breaking	something.

Figure	11-6	shows	the	test	rig	I	used	to	debug	the	PID	algorithm	in	the	Visible	Drone’s	code.

The	PID	algorithm	is	one	of	the	most	useful	and	important	algorithms	in	control	systems	engineering.	For	me,
understanding	PIDs	really	starts	to	unlock	the	mystery	of	how	things	work.	There	really	is	more	going	on	than	meets	the
eye,	but	it	is	a	process	that	we	can	understand	and	use	to	make	our	machines	work	better.	Your	drone	will	respond
better.

Your	robot	arm	will	move	more	smoothly.	Your	coffee	pot	will	hold	a	more	precise	temper-ature.	Not	bad	for	less	than	10
lines	of	code!
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Figure	11-6	This	rig	allows	a	new	PID	implementation	to	be	tested	without	crashes	Chapter	11
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Motor	Controllers

If	small,	smart	flight	controllers	count	as	one	of	the	breakthroughs	that	make	drones	possible,	then	surely	the	ease	with
which	one	can	design	small	circuit	boards	and	have	them	fabricated	must	be	a	part	of	the	story.	An	individual	maker	can
use	one	of	a	selection	of	open	source	tools	to	design	a	custom	circuit	board	and	have	it	fabricated	in	small	quantities	in	a
reasonable	time	for	a	reasonable	price.



While	these	tools	and	services,	combined	with	a	little	surface	mount	soldering,	make	it	possible	to	design	and	build	a
controller	every	bit	as	integrated	as	the	tiny	toy	drones,	we	will	not	target	quite	that	level	of	integration.	Circuit	board
design	for	things	like	blinking	lights	or	even	motor	controllers	is	pretty	simple.	Adding	things	like	the	radio	frequency
(RF)	components	of	the	receivers	and	the	high-frequency	digital	signals	of	the	processor	can	make	the	component	layout
much	more	critical	and	thus	require	a	great	deal	of	research	into	chipset	data	sheets.	Fun	as	that	reading	might	be,	we
will	compromise	and	build	our	controller	out	of	modules.

Our	circuit	board	will	provide	power	to	the	different	modules	and	connect	each	to	the	Teensy	CPU’s	various	ports.	I
could	not	find	a	widely	available	brushed	motor	controller	module	to	use,	so	we	will	have	to	include	that	on	our	board	at
the	component	level.	That	turns	out	to	be	only	two	components	per	motor,	so	building	that	part	will	be	easy.

At	each	step	in	the	design,	we	must	compromise	between	the	ability	to	construct	the	results	with	only	the	soldering	skills
required	of	any	other	Arduino	project	and	keeping	the	size	and	weight	low	enough	that	the	drone	will	actually	fly.
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I	have	used	Fritzing	to	design	the	circuit	board	for	this	project.	Fritzing,	available	from	fritz-

ing.org,	wins	for	being	the	most	commonly	used	design	tool	and	for	having	a	direct	connection	to	a	circuit	board	fab	with
reasonable	single-piece	rates.	The	design	software	is	free,	so	I	recommend	that	you	download	it	and	open	the	final
design	file	for	this	project,	available	at	www.makedronesbook.com/projects/VizDrone,	even	if	you	don’t	intend	to	modify
the	design	or	order	one.	It	will	be	easier	to	see	what’s	going	on	when	you	can	zoom	in	and	out	or	turn	the	layers	on	and
off.

Component	Placement

Our	board	design	should	maximize	ease	of	construction,	while	keeping	size	and	weight	down.	Measuring	the	interior
space	available	in	the	Syma	X5	body,	the	biggest	board	we	can	fit	in	there	will	be	about	55	mm	square.	The	mounting
screws	go	in	three	of	the	four	corners	of	a	25	mm	square.

The	Teensy	goes	in	the	middle,	so	that	we	can	get	to	the	USB	port.	The	surface	mount	parts	in	the	motor	controllers	go
on	the	corners	to	make	soldering	them	as	easy	as	possible.	To	save	space,	the	gyro	board	will	go	up	above	the	Teensy	on
a	header	and	the	RC	and	Bluetooth	radios	will	be	kept	off	the	main	board.	This	has	the	advantage	of	allowing	us	to
reposition	the	radios	if	there	is	any	interference	trouble.

Next,	we	add	the	power	module	at	the	back,	behind	the	Teensy.	It	fits	on	the	connectors	labeled	J1	and	J2.	Along	the
edges	go	the	sockets	for	the	motors	and	solder	pads	for	the	LEDs.	The	theory	here	is	that	motors	get	changed	fairly
often,	so	using	sockets	prevents	tearing	up	the	circuit	board	with	repeated	soldering	and	desoldering.	Finally,	we	have
headers	for	the	various	ports	and	the	component	placement	is	complete,	as	shown	in

Figure	12-1.
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Power	Input	and	Distribution

Figure	12-1	The	surface	mount	components	are	on	the	edges	to	make	soldering	easier	Power	Input	and	Distribution

The	power	system	starts	with	a	1S	LiPo	battery,	which	will	output	between	4.2	and	3.7	volts	as	it	discharges.	The	motors
run	directly	off	this	voltage	with	the	positive	side	connected	directly	and	the	negative	controlled	by	the	processor.	The
circuit	board	traces	for	these	connections	need	to	be	as	wide	as	possible	because	they	will	carry	fairly	large	currents.

Each	motor	can	draw	close	to	2	amps,	for	a	total	of	6	to	8	amps	at	full	throttle.

Everything	but	the	motors	gets	powered	through	the	Maytek	voltage	booster.	This	module	takes	the	varying	voltage	from
the	battery	and	gives	us	a	steady	5V.	The	5V	distribution	is	shown	in	red	in	Figure	12-2.	The	RC	receiver	only	takes	3.3V,
which	the	Teensy	conveniently	provides,	and	is	shown	in	blue.	The	unregulated	positive	voltage	off	the	battery	feeds	the
motors	directly	and	is	shown	in	purple.	Ground	distribution	is	black,	of	course.	The	ground	plane	has	been	removed	for
clarity.
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Figure	12-2	Power	distribution	for	the	Visible	Drone	(red	is	5V,	blue	is	3.3V,	and	purple	is	battery	voltage)	Also	included
as	part	of	the	power	system	is	a	large	capacitor,	C1,	which	protects	the	input	of	the	power	conditioner	module	from
spikes	as	the	motors	power	up.	And	so	that	the	processor	can	monitor	the	power	system,	we	include	a	pair	of	10K
resistors,	R5	and	R6,	as	a	voltage	divider	and	connect	the	result	to	one	of	the	Teensy’s	analog	input	pins.	When	two
resistors	are	placed	in	series	like	this,	the	midpoint	will	be	at	half	the	voltage	that	is	put	on	the	ends.	We	use	this	to
bring	the	4.2V	LiPo	cell	voltage	down	to	a	range	that	the	Teensy	can	measure.

Motor	Controller

We	will	use	the	simplest	possible	motor	controller	circuit	for	the	Visible	Drone.	Most	small	motor	controllers	use	metal
oxide	semiconductor	field	effect	transistors,	called	MOSFETs	or	just	FETs,	but	some	require	more	complex	circuits.	Ours
will	use	a	single	FET	and	a	single	resistor,	as	we	will	see—but	first,	some	explanation	of	what	is	not	included.
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To	go	forward	and	in	reverse	requires	at	least	four	FETs	per	motor	instead	of	the	single	FET

we	use,	but	forward	is	enough	for	this	application.	Some	designs	would	use	a	pull-down	resistor	on	the	input	to	make
sure	the	motor	doesn’t	come	on	when	the	processor	boots	up	in	a	strange	state.	This	hasn’t	proven	to	be	a	problem	with
the	fast-booting	and	reliable	Arduinos,	though,	and	perhaps	more	to	the	point,	the	consequences	of	accidentally	running
a	motor	in	a	quad	this	size	are	not	too	serious.

Finally,	this	motor	controller	design	does	not	include	flyback	or	protection	diodes.	When	driving	an	inductive	load—that
is,	one	that	uses	coils	like	motors	and	solenoids—the	same	mechanism	that	we	drive	with	current	will	often	produce
current	when	pushed	back	the	other	way.	Solenoids	can	easily	produce	three	times	their	original	drive	voltage,	in
reverse,	when	released.	This	current	needs	somewhere	to	go!	A	diode	placed	across	the	load	the	right	way	will	take	this
flow	instead	of	the	FET,	which	may	not	be	able	to	take	this	higher,	negative	voltage.

In	our	application,	the	reverse	voltage	should	never	get	higher	than	what	we	drive	the	motors	with,	since	they	are
unlikely	to	spin	faster	by	themselves	than	when	we	are	driving	them.	Also,	the	FET	we	have	chosen	has	a	body
protection	diode.	Putting	this	current	through	that	diode	doesn’t	keep	it	out	of	the	FET	overall,	but	it	seems	to	be
enough	for	this	application.	Few	brushed	motor	drivers	for	small	drones	include	protection	diodes.

Choosing	a	FET

If	you	search	for	“FET”	at	Digi-Key	or	Mouser	easy	challenge	at	only	3.7V;	nonetheless,	our	Electronics,	you	will	get	a
bewildering	list	of	Vdss,	or	voltage	from	drain	to	source,	must	be	results	with	over	a	dozen	attributes	each.	For	our
higher	than	that.	Finally,	the	tough	one:	current	application	only	a	few	of	these	specs	matter.	handling.	If	the	FET	has
much	internal	resistance	First,	we	can	filter	by	package.	We	want	an	when	on	(Rds),	it	will	dissipate	too	much	power
SOT-23	surface	mount.	Next,	we	have	to	be	able	and	get	too	hot.	A	low	Rds	will	give	a	high	Id,	or	to	control	it,	so	it	must
work	with	3.3V	logic	lev-drain	current.	Our	motors	can	only	draw	about	2

els.	This	really	means	that	the	FET	must	turn	on	amps	each,	but	it’s	good	to	have	some	overhead	with	anything	over
1.8V,	so	we	need	a	FET	with	a	in	this	area,	so	we’ll	choose	a	FET	with	more	like	Vgs	<=	1.8.	Our	FET	must	also	be	able
to	handle	6	or	8	amps,	since	they	are	still	available	and	the	operating	voltage	of	our	motors.	This	is	an	inexpensive.

The	one	component	other	than	the	FET	that	we	do	include	is	a	current	limiting	resistor.

When	first	turning	on,	the	gate	input	of	a	FET	acts	like	a	capacitor	charging	up	and	it	can	sink	a	great	deal	of	current.
Trying	to	sink	too	much	current	out	of	an	Arduino	pin	could	cause	actual	damage,	or	(much	more	likely)	could	cause	a
voltage	sag	inside	the	processor	that	causes	a	freeze	or	reboot.	Neither	will	make	for	a	good	flight,	so	we	add	a	small
100-ohm	resistor	between	the	Arduino	and	the	FET.



Chapter	12
101

Schematic	and	Layout

Schematic	and	Layout

We	need	to	add	connectors	for	the	various	ports	and	solder	pads	for	the	LEDs,	but	these	connectors	all	go
directly	to	Arduino	pins.	They	must	be	pins	capable	of	pulse	width	modulation	(PWM),	but	otherwise	this
is	simple	wiring	from	one	header	pin	to	another	as	far	as	circuit	board	design	goes.	As	mentioned,
keeping	the	RF	and	high-frequency	digital	signal	local	to	each	module	keeps	the	routing	rules	simple.	The
result	is	shown	as	a	schematic	in

Figure	12-3.

Figure	12-3	The	complete	schematic	for	the	Visible	Drone	controller

Figure	12-4	shows	the	final	circuit	board	layout.	The	colors	are	yellow	for	the	top	layer	data,	green	for	the
bottom	layer	data,	red	for	the	+5V	regulated	supply,	purple	for	the	raw	battery	power,	black	for	ground,
and	finally	blue	for	the	single	3.3V	power	supply	line	from	the	Teensy	to	the	RC	radio.
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Schematic	and	Layout

Figure	12-4	The	complete	Visible	Drone	controller	circuit	board	layout

Figure	12-5	shows	what	the	board	looks	like,	fresh	from	the	factory.

Figure	12-5	The	front	and	back	of	the	circuit	board	as	it	comes	from	the	factory	Chapter	12
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Construction

Construction	will	be	easiest	if	you	solder	in	the	surface	mount	components	before	adding	the	motor
sockets	and	headers.	A	100-ohm	resister	and	a	FET	go	in	each	corner,	as	shown	in	Figure	12-6,	and	the
100-microfarad	capacitor	and	the	two	100K-ohm	resistors	go	in	the	space	that	will	be	under	the	voltage
booster	module.

Figure	12-6	The	discoloration	around	the	FET	is	leftover	flux,	not	burned	board	SMC	Soldering—Hot	Air
Versus	Iron

Drones	have	forced	me	to	learn	how	to	solder	recommend	investing	in	a	hot	air	soldering	sta-surface
mount	components	(SMCs).	When	the	tion.	Not	only	does	it	make	the	SMC	soldering	FETs	blew	on	my
favorite	controller,	I	got	out	my	easy,	but	it	has	many	other	uses,	like	shrinking	smallest-tipped	soldering
iron,	some	copper	heatshrink	tubing	or	flowing	hot	melt	glue	into	braid,	and	some	ChipQuick	and	I
managed	to	little	crevices.	For	less	than	a	hundred	bucks,	it’s	replace	them.	While	doing	surface	mount
solder-a	tool	worth	having.

ing	with	such	gear	is	certainly	possible,	I	highly

With	all	the	SMC	components	in	place,	let’s	build	the	power	system.	First	solder	the	battery	cable	to	the
two	pins	nearest	the	word	in.	The	wires	should	come	out	the	bottom	of	the	module,	opposite	where	the
components	are.	And	of	course,	red	is	positive	and	black	is	negative.	Next,	solder	pairs	of	straight	pins
into	the	remaining	holes.	The	result	should	look

like	Figure	12-7.	When	it	is	complete,	you	can	solder	it	to	the	board.	Clip	the	pins	off	on	the	bottom	once
you	are	done.
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Figure	12-7	The	Maytek	voltage	booster	with	battery	lead	installed	(the	inset	shows	how	to	test	the
power	before	adding	any	more	components)

Even	the	best	manufacturers	make	mistakes,	so	I	recommend	checking	the	power	and	ground	to	each
module	before	adding	it	to	the	board.	The	inset	in	Figure	12-7	shows	how	to	test	the	Teensy’s	power.	You
can	use	Figure	12-4	as	a	guide	to	the	power	distribution.

Assuming	it	all	checks	out,	you’re	ready	to	add	the	processor	and	gyro	module.

Solder	straight	pins	into	all	of	the	GY-88’s	holes	and	those	on	the	outside	of	the	Teensy	3.2.

We	don’t	need	any	of	the	inside	pins	or	the	pads	on	the	bottom.	They	should	look	like	the	ones	in	Figure
12-8.	The	female	pins	with	the	larger	plastic	case	will	be	used	to	hold	the	gyro	module	up	above	the	CPU.

Figure	12-8	The	Teensy	and	GY-88	modules	with	pins	soldered	on
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We	will	now	work	from	the	inside	out,	putting	the	rest	of	the	parts	on	the	circuit	board.	The	Arduino	is	in
the	middle,	so	we	solder	it	next,	followed	by	a	row	of	seven	female	to	male	header	pins	for	the	gyro	board.
These	will	let	the	GY-88	sit	above	the	Teensy.	Now,	solder	straight	pins	in	all	the	holes	for	the	various
ports	with	the	long	side	on	the	top.	Finally,	put	the	micro	JST	sockets	in	for	the	motors,	being	careful
which	way	they	go.	One	of	them	faces	in	the	opposite	direction,	as	shown	in	Figure	12-9.

Figure	12-9	Note	the	one	motor	socket	in	the	lower	right	that	faces	in	the	opposite	direction	You	might
have	noticed	as	you	soldered	the	sockets	in	for	the	motors	that	they	don’t	fit	in	the	holes.	OK,	this	was
originally	a	mistake,	but	I	have	left	it	this	way	so	that	if	you	would	rather	just	solder	the	motors	to	the
board	instead	of	using	plugs	and	sockets,	the	pads	are	big	enough	for	easy	soldering.	Given	that	they
don’t	fit	very	well,	I	do	recommend	reinforc-ing	with	a	little	hot	melt	glue.

This	completes	the	construction	of	the	controller	for	the	Visible	Drone.	It	weighs	in	at	a	few	grams	more
than	the	original	controller,	but	it	has	much	more	power,	more	sensors,	and	more	connectivity.
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Construction	and	Tuning	13

We’ve	been	through	several	chapters	now	getting	the	pieces	ready.	We’ve	been	putting	together	flight
control	software,	starting	from	the	aerodynamics.	We	have	built	a	controller	to	run	it	on,	from	power
distribution	to	motor	controllers.	Now	it’s	time	to	put	it	all	together	into	a	drone.

Install	the	Controller	and	Connect	the	LEDs

Getting	inside	the	Syma	X5	case	means	removing	a	lot	of	little	screws,	but	they	do	give	it	strength	when
it’s	all	put	together.	Once	inside,	unscrew	the	existing	controller	and	cut	all	the	LED	and	motor	wires.
Now	screw	in	our	new	controller	with	the	USB	port	facing	the	back	where	the	battery	goes	in.	Next,
solder	the	existing	LED	wires	to	the	new	LED	pads	on	each	side	of	our	circuit	board.	Red	and	yellow	are
positive.	Black	and	white	are	negative.

The	result	should	look	like	Figure	13-1.

Figure	13-1	The	existing	LED	wires	connect	directly	to	the	new	controller	107

Connect	the	Motors

Connect	the	Motors

The	design	as	shown	calls	for	putting	plugs	on	the	motors	and	sockets	on	the	main	circuit	board.	Given



the	likelihood	of	changing	motors	over	time,	this	saves	possible	damage	to	the	circuit	board	each	time	you
unsolder	and	resolder	something.	On	the	other	hand,	the	motors	in	this	geared	design	are	much	better
protected	and	should	last	much	longer	than	the	direct-drive	motors	we	used	in	the	X4Wii.	You	could	skip
the	plugs	and	sockets	and	just	solder	the	motors	to	the	board.	Assuming	you	do	put	sockets	on	the	board,
though,	let’s	crimp	some	plugs	on	the	motors.

It’s	pretty	small	work,	and	the	crimp	tool	(mine’s	an	AMP	29004-1)	isn’t	as	cheap	as	you	might	like,	but	I
still	recommend	using	plugs	on	your	motors.	The	crimp-on	ends	come	in	strips	that	you	can	easily	break
apart	by	bending	them	back	and	forth	a	bit	with	long-nose	pliers.	Then	put	a	single	end	into	the	crimp	tool
as	shown	in	the	first	half	of	Figure	13-2,

being	careful	not	to	put	any	pressure	on	the	crimp	tool	before	you’re	ready.	I	find	that	crimping	makes	the
pin	too	wide	to	fit	in	the	plastic	holder	easily,	but	a	quick	squeeze	with	the	long-nose	pliers	gets	it	back
into	shape.	Using	the	little	tab	to	hold	it,	stick	each	pin	in	one	side	of	the	plug	body,	as	seen	in	the	second
half	of	Figure	13-2.	Be	sure	to	get	the	polarity	right!	White	and	red	go	on	the	left	as	shown.

Figure	13-2	First	crimp	the	ends	on	the	motor	wires,	then	stick	them	into	the	plug	body	108
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With	the	plugs	on	the	ends	of	the	motor	wires,	install	the	drive	units	in	the	frame	and	plug	them	in.	Each
motor	goes	to	the	nearest	corner,	of	course,	and	assuming	you	put	the	sockets	on	the	board	correctly,	one
of	them	will	face	in	the	opposite	direction.	The	result	looks

like	Figure	13-3.

Figure	13-3	Be	careful	to	get	the	polarity	correct	as	you	wire	the	motors!

Install	the	Radios

The	physical	installation	of	the	radios	consists	of	stuffing	them	down	into	the	spaces	under	each	side	of
the	main	circuit	board.	The	HB-02	Bluetooth	module	plugs	in	using	short,	female	header	wires.	Make	sure
the	Vcc	wire	goes	toward	the	front	of	the	drone,	where	the	voltage	booster	module	is.

We	will	have	to	make	a	cable	for	the	RC	receiver.	Cut	the	cable	that	comes	with	the	Lemon	RX	receiver
and	solder	it	to	half	of	a	standard	servo	extension.	Since	servo	connectors	are	symmetrical,	it	doesn’t
matter	which	way	you	solder	the	cable;	just	be	sure	when	you	plug	it	in	to	get	the	direction	right.	The
power,	which	starts	on	the	left	side	of	the	receiver	as	you	look	into	the	socket,	should	end	up	toward	the



front	of	the	drone,	the	same	as	the	Bluetooth	module.	Figure	13-4	shows	how	it	looks	inside	with
everything	installed.
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Complete	the	Frame

Figure	13-4	With	both	radios	installed,	it’s	starting	to	get	a	little	crowded	Complete	the	Frame

We’re	going	to	want	to	get	to	the	USB	port	on	the	Teensy,	so	we	will	have	to	make	the	hole	that	once	held
the	power	switch	big	enough	to	get	a	USB	cable	through.	The	thin	plastic	of	the	Syma	X5	shell	cuts	easily
with	an	X-Acto	knife.	Carefully	cut	just	inside	the	two	screw	posts	up	to	just	above	the	words	ON	and	OFF,
as	shown	in	Figure	13-5.

It	would	be	a	shame	to	cover	up	all	that	cool-looking	hardware,	so	next	we’ll	cut	a	hole	in	the	top	and
install	a	window.	Try	to	cut	right	at	the	edge	of	the	dome	as	shown	in

Figure	13-6.
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Complete	the	Frame

Figure	13-5	The	existing	hole	must	be	widened	to	allow	a	USB	cable	through	Figure	13-6	Remove	the
dome	so	we	can	see	our	new	controller
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Ground	Test

The	dome	that	we	cut	out	of	the	original	top	will	be	our	guide	for	cutting	a	window.	Any	thin,	clear	plastic
will	do.	The	plastic	lid	used	here	once	covered	a	buttermilk	pie.	Simply	cut	around	the	dome,	leaving
about	a	quarter	inch	extra.	Now,	hold	the	new	window	over	the	hole	in	the	shell	top	and	cut	slits	along	the
ridges	of	the	arms,	from	the	outside	to	the	edge	of	the	hole.	This	creates	tabs	that	fit	into	the	body	in
between	the	arms.	Add	a	little	decoration,	and	some	colored	props,	and	we	have	Figure	13-7.

Figure	13-7	The	Visible	Drone

Put	all	those	little	screws	back	in,	and	construction	is	complete.	Are	we	ready	to	fly?	Maybe.

Perhaps	we	should	do	some	testing.

Ground	Test

Connect	the	Visible	Drone	to	your	computer	via	USB.	You’ve	already	checked	the	power	supplies	to	all	the
modules,	so	the	likelihood	of	smoke	at	this	point	is	low.	Lights	should	immediately	glow	on	the	power
module	and	the	gyro	module.	To	really	make	some	lights	glow,	try	the	VisDroneBlink	sketch,	available	at
www.makedronesbook.com/projects/

VizDrone.	If	this	program	works	correctly,	the	LED	pods	on	the	arms	should	start	blinking	in	sequence.	No
problems?	Let’s	load	the	flight	code!
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Ground	Test

We	have	to	use	USB	to	load	new	code,	of	course.	For	telemetry	data,	we	could	connect	via	Bluetooth,	but
that	would	require	a	battery,	which	in	turn	could	then	run	the	motors.	The	way	our	power	system	works,
the	motors	will	never	run	when	on	USB	power,	which	makes	our	first	tests	safer.

Don’t	Use	USB	and	a	Battery	Together!

You	should	never	plug	in	a	USB	cable	and	a	battery	at	the	same	time.	This	is	true	for	most	drones.	Small
differences	between	the	voltages	in	the	two

supplies	could	lead	to	large	current	flows	where	they	were	not	designed	to

go.

The	latest	flight	code	for	the	Visible	Drone	is	available	at	www.makedronesbook.com/

projects/vizdrone.	Load	this	sketch	into	the	Arduino	IDE	and	upload	it	to	your	drone.	If	all	is	well,	a	few
seconds	after	the	processor	reboots,	the	LEDs	will	flash	around	a	few	times.

Next,	let’s	see	if	all	the	sensors	are	working.

In	MultiWiiConf,	connect	to	the	Visible	Drone’s	USB	port	and	press	start.	Several	fields	on	the	screen
should	turn	green.	The	version	will	display	23.	And	if	you	pick	up	your	drone	and	move	it	around	you
should	see	all	the	flight	indicators	track	your	movements.	The	graphs	should	show	the	data	as	well,	as	we
can	see	in	Figure	13-8.	If	this	all	works,	then	let’s	try	the	RC	radio.

Figure	13-8	The	flight	info	and	graphs	should	respond	to	the	Visible	Drone	Chapter	13
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Flight	Test	and	Future	Work

Turn	on	the	Blade	MLP4DSM.	After	several	seconds	the	light	on	the	Lemon	RX	receiver	in	the	drone
should	come	on.	Note	that	sometimes	if	the	transmitter	or	receiver	loses	its	connection	and	reconnects,
the	receiver	light	will	blink.	Other	than	telling	you	that	there	was	a	loss	of	connection,	this	doesn’t	affect
anything.	Now	when	you	move	the	sticks	on	the	transmitter,	you	should	see	the	RC	values	changes	on	the
MultiWiiConf	screen,	as	shown	in	Figure	13-9.

Figure	13-9	The	RC	values	should	change	when	you	move	the	transmitter	sticks	Flight	Test	and	Future
Work

The	flight	code	we	loaded	comes	with	a	reasonable	set	of	default	parameters,	so	you	shouldn’t	have	to
change	anything	to	fly.	You	may	wish	to	change	the	RC	rate	or	expo	settings,	as	these	are	more	a	matter
of	taste	than	of	finding	some	optimum	value.	The	procedure	for	this	is	the	same	as	what	we	did	with	the
X4Wii	in	Chapter	5.

The	process	for	powering	up	and	taking	off	goes	like	this:

1.	Put	a	battery	in	the	compartment	and	plug	it	in.

2.	Place	the	drone	on	a	perfectly	level	surface	and	wait	for	the	flashes.

3.	Arm	the	drone	by	pressing	in	on	the	right	stick.

4.	Test	the	motors	with	a	short	blip	on	the	throttle.

That’s	it.	Go	fly!	The	Visible	Drone	as	constructed	here	is	pretty	heavy	for	its	power	system.

This	means	that	it	will	only	climb	slowly	and	can	have	trouble	pulling	out	of	rapid	descents.

This	drone,	like	the	Syma	X5	it	is	based	on,	seems	to	suffer	more	than	small,	direct-drive	114
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Flight	Test	and	Future	Work

drones	from	translational	lift	changes	and	seems	especially	prone	to	vortex	ring	state	trouble	when
coming	down.	Both	of	these	factors	lead	to	this	drone	flying	best	when	in	constant	forward	motion.

There	is	so	much	we	haven’t	covered—there	are	many	fascinating	things	in	the	code	that	there	was	not
space	to	mention,	and	you	may	have	noticed	that	we	haven’t	actually	used	the	compass	or	barometer	yet.

The	Visible	drone	and	its	drone	control	system	serve	as	a	platform—a	platform	for	future	development	and
a	platform	for	learning.	But	we’ve	made	it	halfway	through	this	book	without	spinning	a	brushless	motor.
We	will	remedy	this	situation	next.
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A	Bigger	Frame	14

It’s	time	to	build	The	Big	One—the	S500	(Figure	14-1).	We’re	not	going	to	set	any	records	for	size,	but	this
drone	will	literally	be	in	a	different	class.	It	will	weigh	well	over	the	250-gram	limit	for	requiring
registration	with	the	FAA	in	the	US.	In	fact,	the	frame	alone	will	weigh	more	than	that.	Despite,	or
perhaps	because	of	this	heavier	frame,	one	of	the	main	goals	of	this	drone	design	will	be	to	carry	a	useful
payload.	Like	most	people,	I	will	probably	load	a	camera	and	gimbal	on	it	first,	but	the	possibilities	are
endless.

Figure	14-1	The	completed	S500	drone
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The	S500	Kit

The	other	design	goals	for	the	S500	include	using	brushless	motors	with	electronic	speed	controllers	and
using	one	of	the	most	powerful	of	the	open	source	drone	control	systems

—ArduCopter.	This	firmware	will	let	us	integrate	the	latest	sensors	quickly	and	tap	into	a	world	of	more
powerful	ground	control	software.	This	control	system	with	all	of	its	peripheral	parts	will	weigh	more	than
the	last	complete	drone	we	built,	but	it	will	be	controlling	motors	that	more	than	make	up	for	the	added
weight.

Unlike	the	little	brushed	motors	of	our	previous	drones,	which	come	in	three	or	four	sizes,	brushless
motors	come	in	dozens	of	sizes,	all	with	different	power	ratings,	propeller	mountings,	etc.	To	make	sure
you	have	a	combination	of	frame,	motor,	and	prop	that	will	work,	look	for	examples	of	successful	builds	by
others	or	kits	based	on	the	parts	you	are	interested	in.	The	DJI	Flamewheel	450	and	550	quadcopters	set
the	standard	in	this	size	range.	The	S500	frame	we	are	starting	with	is	right	in	that	range	at	480
millimeters,	but	by	using	off-the-shelf	components	and	an	open	source	controller,	we	will	be	able	to	add
many	advanced	features.

The	S500	Kit

The	S500	drone	frame	kit	can	be	ordered	from	several	sources,	including	Hobby	King.	It	comes	in	two
versions,	one	with	power	distribution	integrated	into	the	frame	and	the	one	we	will	use,	which	comes	with
a	separate	power	distribution	board.	Figure	14-2	shows	what	comes	in	the	kit.

Figure	14-2	Contents	of	the	S500	frame	kit
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Follow	the	Instructions

Be	careful	to	get	one	that	includes	the	carbon	fiber	rods	in	the	arms.	Some	of	the	cheap	knockoffs	don’t
include	this,	and	they	are	not	nearly	as	strong.	You	can	tell	by	looking	for	little	slots	in	the	back	of	the
arms	that	show	the	rods,	as	seen	in	Figure	14-3.

Figure	14-3	The	slots	in	the	bottom	of	the	arm	allow	you	to	see	the	carbon	fiber	rod	inside	Follow	the
Instructions

Like	the	famous	IKEA	instructions,	the	single	page	that	comes	with	the	S500	frame	doesn’t	even	try	to	use
words,	so	there	is	no	chance	of	bad	translation.	There	is	no	sense	in	repeating	everything	here,	but	I	will
point	out	some	exceptions	to	how	they	show	to	build	it.

To	begin	with,	don’t	do	step	1.	The	directions	show	to	mount	the	motors	first,	but	we’re	going	to	wait	until



later,	after	we	have	everything	else	mounted	on	the	arms.	Step	2	covers	building	the	undercarriage.	There
are	two	rods	that	mount	underneath	the	frame	on	which	a	platform	for	strapping	the	battery	can	slide.
The	set	screws	that	hold	the	rods	in	place	are	rather	hard	to	screw	in,	but	there	are	convenient	holes	in
the	frame’s	bottom	plate	for	setting	them.

The	plastic	parts	that	ride	on	the	rails	can	be	snapped	into	place	by	putting	them	in	a	little	sideways	and
twisting.	You	can’t	do	this	once	they	are	both	secured	to	the	battery	plate,	so	snap	them	in	before	using
the	bevel-headed	screws	to	secure	this	plate.	The	resulting	undercarriage	can	be	seen	in	Figure	14-4.
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Follow	the	Instructions

Figure	14-4	The	rails	allow	the	small	plate	to	be	repositioned	easily	The	set	screws	for	the	rods	are
accessible,	so	they	can	be	repositioned.	The	mounts	for	the	rods	can	even	be	moved,	as	there	are	extra
sets	of	holes	drilled	in	the	bottom	plate.	The	battery	should	be	positioned	in	the	middle	if	it	is	the	only
thing	under	there.	We	can	move	the	battery	back	and	perhaps	even	move	the	rods	out	of	the	way	later,
when	it’s	time	to	hang	a	gimbal	on	the	front.

The	rest	of	the	instructions	can	be	followed	as	shown,	until	the	very	end.	Since	we	are	going	to	be	going
back	into	the	middle	of	this	frame	to	mount	various	control	system	components,	just	put	one	screw	in	the
top	of	each	arm	to	hold	them	in	place.	With	this	done	it	looks	like	Figure	14-5	and	you	can	start	to	tell	that
this	is	going	to	be	a	strong	frame.

Figure	14-5	The	S500	frame	complete
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Follow	the	Instructions

Since	it	is	put	together	with	screws,	too	heavy	for	our	smaller	drones,	the	S500	will	be	easy	to	maintain.
Spare	parts	are	readily	available	and	not	too	expensive.	Let’s	add	some	motors,	and	it	will	start	looking
more	like	the	powerful	drone	it	will	be.
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Install	the	Power	System	15

Let’s	start	strapping	hardware	to	that	big	frame.	As	usual,	the	first	thing	to	add	is	power.

One	reason	for	this	is	simply	that	power	wiring	is	much	thicker	and	harder	to	route,	so	we	do	it	first	and
route	the	smaller	stuff	around	it.	Also,	once	we	know	where	the	power	wiring	goes	we	can	arrange	certain
other	things,	like	the	magnetometer,	away	from	this	wiring	since	the	high	currents	can	cause	magnetic
interference.

Our	power	distribution	system	must	take	power	from	the	battery	and	get	it	to	the	four	electronic	speed
controllers	(ESCs).	The	rest	of	the	control	system	runs	on	a	regulated	5V

supply	instead	of	battery	voltage,	so	that	will	get	wired	separately.

We	will	also	mount	the	motors,	to	complete	the	power	system,	though	we	will	only	wire	up	the	one	whose
ESC	we	wired	power	to.	This	way	we	can	safely	test	one	complete	power	to	ESC	to	motor	path	without
powering	up	the	others.

In	the	following	chapter	we	will	explain	enough	about	how	brushless	motors	and	ESCs	work	so	that	all	of
the	testing	and	tuning	that	follows	will	make	sense.

Mount	the	ESCs

ESCs	are	generally	mounted	on	the	arms	of	multirotors.	They	pair	with	the	motors	on	the	ends	of	the
arms,	so	this	makes	basic	sense.	It	also	keeps	the	changing	currents	of	the	motor	outputs	away	from	the
magnetometer	and	radios,	where	it	will	cause	less	interference,	and	should	help	with	cooling.

In	this	case,	I	have	chosen	to	mount	the	ESCs	on	the	bottom	of	the	arms.	This	takes	them	out	of	the	direct
prop	wash,	so	the	cooling	effects	might	not	be	as	great.	Large,	1	1/2”	clear	heat	shrink	tubing	holds	the
ESCs	to	the	arms,	as	seen	in	Figure	15-1.	They	come	wrapped	in	one	layer	of	heat	shrink,	so	this	shouldn’t
compromise	cooling	any	further	and	it	provides	a	very	secure	mount.	The	motors	we	have	chosen	should
only	draw	10	to	14	amps	123
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compared	to	the	20-amp	rating	of	the	ESCs,	so	we	should	be	fine	(and	if	not,	we	can	always	upgrade	to
30A	ESCs).

Figure	15-1	Clear	heat	shrink	tubing	holds	the	ESC	in	place

What	we	lose	in	cooling	by	mounting	under	the	arms,	we	gain	in	wire	routing	simplicity.

The	motor	wires	are	wire-tied	to	the	frame	to	isolate	their	movement	from	the	solder	joints.	The	power
and	signal	wires	from	each	ESC	fit	neatly	through	the	tunnels	in	the	arms	into	the	space	between	the
upper	and	lower	plates	of	the	frame.	And	this	is	just	where	we	will	do	the	power	distribution	wiring.

Wire	the	Power	Distribution	Board

As	mentioned,	the	S500	frame	kit	comes	in	two	versions:	one	has	the	power	distribution	built	into	the
lower	frame	plate	and	the	other,	which	we	are	using	here,	comes	with	a	separate	power	distribution
board,	shown	in	Figure	15-2.	This	board	has	two	sets	of	connected	solder	pads,	one	for	the	positive	leads
and	one	for	the	negative.	Power	comes	in	from	a	battery	connector	and	goes	out	to	each	ESC.

Obviously,	be	sure	to	connect	all	the	positive	or	red	wires	to	the	positive	pads,	which	are	the	inner	circle,
and	the	negative	or	black	wires	to	the	negative	pads	on	the	outer	circle.

Any	ESC	can	be	wired	to	any	set	of	pads.	With	the	first	ESC	connected,	it	should	look	like

Figure	15-3.
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Wire	the	Power	Distribution	Board

Figure	15-2	The	power	distribution	board	that	came	with	the	S500	frame	kit	Figure	15-3	We	wire	only
one	ESC	first,	so	we	can	test	which	direction	the	motor	spins	Why	only	wire	one,	with	everything	else
tucked	out	of	the	way?	Well	apparently,	the	easiest	way	to	make	a	brushless	motor	turn	the	correct
direction	is	to	wire	it	up,	make	it	spin,	and	swap	any	two	wires	if	it	goes	the	wrong	way.	The	next	chapter
should	help	explain	why	this	works.
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Mount	the	Motors

The	motors	mount	directly	to	the	frame,	using	screws	provided	with	the	S500	frame	kit.

Each	motor	sits	on	top	of	the	circle	at	the	end	of	an	arm.	Then,	since	we	have	chosen	to	mount	the	ESCs
under	the	arms,	the	motor	wires	can	be	routed	down	through	the	frame	and	then	immediately	wire-tied
down.	Be	sure	to	screw	the	motors	down	pretty	tight	as	they	can	be	subject	to	a	lot	of	vibration.	Figure
15-4	shows	how	this	looks	from	underneath.

Figure	15-4	The	motor	wires	are	routed	along	the	underside	of	the	arm	Don’t	Trim	the	Motor	Wires!

The	wires	that	come	out	of	the	motor	are	the	remove	for	soldering.	Therefore,	I	highly	recom-same
magnetic	wire	that	the	coils	are	made	of	mend	that	you	do	all	the	necessary	trimming	to	internally.	This
means	that	each	strand	is	individ-the	output	wires	of	the	ESC,	which	are	normal	ually	covered	in	enamel.
The	high	melting	point	copper,	and	use	the	pre-tinned	ends	that	the	of	this	enamel	makes	it	ideal	for	high-
motor	comes	with.

performance	motors,	but	it	is	also	very	hard	to
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Determine	Direction

Figure	15-5	shows	how	the	motor	sits	in	the	middle	of	the	frame	end.	It	turns	out	that	this	provides	pretty
good,	but	not	perfect,	protection	for	the	motor	in	a	crash.	You	can	go	ahead	and	solder	the	one	motor	to
the	ESC	we	wired	power	to	earlier.	Put	some	heat	shrink	tubing	on	before	you	solder,	but	don’t	shrink	it
down	yet	and	leave	the	other	motors	undone	until	you	make	sure	this	one	is	spinning	in	the	right
direction.	For	the	first	one,	just	trim	the	ESC	wires	and	connect	them	in	order.	As	the	next	chapter	will
show,	all	you	have	to	do	to	reverse	the	direction	is	swap	any	two	of	the	three	wires.

Figure	15-5	The	larger	end	of	the	frame	provides	some	protection	for	the	motor	Determine	Direction

We	have	now	put	together	enough	of	the	power	system	to	test	and	see	which	way	the	motors	spin.	You	will
need	a	charged	3S	LiPo.	Capacity	doesn’t	matter	right	now.	First,	with	the	one	ESC	wired	to	the	one
motor,	check	all	the	connections	once	more	for	proper	polarity.	Make	sure	that	when	the	battery	plug	is
lined	up	with	the	socket,	the	red	wires	go	together	and	the	black	wires	go	together.	I	have	seen	examples
of	batteries	using	the	same	connector	with	different	polarity	for	different	drones.	Look	good?	Plug	in	the
battery	and	see	what	happens.

We’re	mostly	looking	for	no	smoke	here.	There	should	be	no	loud	pops.	The	ESC	that	is	getting	power	will
probably	play	you	a	little	song,	but	it	might	also	make	no	noise,	Chapter	15
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Determine	Direction

depending	on	the	mode	it	is	in.	ESCs	are	known	for	playing	different	little	tunes	as	a	form	of	feedback	on
what	they	are	doing.	I	find	attempts	to	annotate	these	melodies	in	ASCII-art	in	the	middle	of	badly
translated	English	most	entertaining.	Assuming	everything	looks	OK,	or	perhaps	especially	if	it	doesn’t,
unplug	the	battery.

Check	Those	Cables!

I	have	received	a	number	of	cables,	both	signal

and	power	wiring,	that	came	from	the	factory

wrong.	I	have	burned	out	regulators	(which	are

actually	easy	to	replace	with	a	hot	air	reflow	station),	and	I	got	a	nice	pop	out	of	a	PX4	power

module	that	had	its	battery	connector	put	on

the	wrong	way.	In	Figure	15-6,	note	that	if	you

plugged	in	the	battery	sitting	next	to	it,	red

would	go	to	black	and	black	to	red.

Figure	15-6	This	bad	cable	popped	a	hole	in	the

chip	when	plugged	in

Next,	we	are	going	to	add	the	RC	receiver	so	that	we	can	make	a	motor	spin.	We	just	need	to	plug	the
ESC’s	signal	cable	into	the	throttle	channel	on	the	receiver,	which	is	channel	3.

The	ESC	will	provide	power	to	the	receiver.	In	Figure	15-7	you	can	see	that	for	channel	3

you	plug	into	the	fourth	slot,	since	the	first	one	is	the	combined	output	that	we	will	use	later	to	connect	to
the	flight	controller.

Figure	15-7	A	single	ESC	plugged	directly	into	channel	3,	which	is	the	throttle	128
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For	this	test,	make	sure	there	are	no	props	installed.	You	might	want	to	put	a	bit	of	tape	on	the	motor’s
axle	if	you	are	having	trouble	seeing	which	way	it	is	spinning.	Next,	turn	on	your	transmitter	and	pull	the
throttle	all	the	way	down.	Now	plug	in	the	battery.	The	red	light	on	the	receiver	should	come	on	solid,
meaning	that	it	has	established	a	link	with	the	transmitter.	If	this	looks	good,	slowly	move	the	throttle	up
until	the	connected	motor	starts	to	spin.	Check	Figure	15-8	to	see	which	way	each	prop	should	spin
(clockwise	or	counterclockwise).

Figure	15-8	Swap	ESC	wires	as	needed	to	get	the	correct	prop	rotation	If	the	one	motor	you	wired	spins
in	the	correct	direction,	then	go	ahead	and	shrink	the	heat	shrink.	If	not,	just	unsolder	it	and	swap	any
two	of	the	wires	between	the	ESC	and	the	motor.	Whichever	way	makes	the	first	motor	spin	in	the	right
direction,	we	can	do	the	same	on	the	opposite	arm.	The	motors	on	the	other	two	arms	should	spin	in	the
other	direction,	so	swap	the	wires	or	don’t	as	appropriate.	Figure	15-9	shows	examples	of	swapped	and
un-swapped	motor	wiring.
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Figure	15-9	Swapping	any	two	wires	makes	the	motor	turn	the	other	way	You	can	also	complete	the
wiring	of	the	power	distribution	board	at	this	time.	When	it’s	done,	the	result	should	look	like	Figure	15-
10.	We	may	use	some	of	those	empty	slots	later	to	power	video	gear.

Figure	15-10	The	power	distribution	board	with	all	of	the	ESCs	wired

Now	that	we	have	mounted	and	wired	all	the	motors	and	their	ESCs,	in	the	next	chapter	we	will	talk
about	how	these	components	work.	It’s	a	fascinating	story.
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Their	ESCs

Aside	from	its	size,	what	really	sets	this	bigger	drone	apart	from	the	other	projects	we’ve	done	are	the
brushless	motors	and	the	electronic	speed	controllers	(ESCs)	that	it	takes	to	run	them.	Technically,	the
single	FET,	fed	by	a	single	resistor,	that	we	used	to	drive	each	motor	in	the	Visible	Drone	counts	as	an
electronic	speed	controller,	but	our	brushless	motors	need	much	more.

Brushes,	as	contained	in	the	small	coreless	motors	we	used	previously,	fail	very	quickly	at	the	high	speeds
these	motors	turn.	Eliminating	them	adds	a	great	deal	to	the	long-term	reliability	of	brushless	motors,	but



it	means	we	need	a	more	complex	speed	controller.

ESCs	take	the	current	from	the	battery	and	switch	it	to	the	different	coils	in	the	motor	at	just	the	speed
commanded	by	the	control	system.	They	are	really	amazing	pieces	of	kit,	as	we	shall	see	in	a	minute.	But
first,	a	little	about	the	history	of	a	variety	of	brushless	motors.

Brushless	Motors

Many	people	had	their	first	introduction	to	brushless	motors	back	in	the	days	of	floppy	disks,	though	they
probably	didn’t	know	it.	These	motors	were	not	fast	or	powerful,	but	they	were	very	reliable,	which	was
important	given	the	constant	use	that	floppies	once	received.	This	reliability	stems	directly	from	the	lack
of	brushes	for	which	they	are	named.

In	a	brushed	motor,	the	coils	move,	so	to	get	the	current	to	the	coils,	springs	hold	stationary	brushes
against	rings	on	the	spinning	axle.	These	brushes	are	usually	small	blocks	or	strips	of	metal.	In	a	direct
current	(DC)	motor,	the	rings	are	split	into	sections	that	go	to	the	different	coils,	but	the	splits	cause
faster	wear	and	can	spark.	In	most	alternating	current	(AC)	motors,	unsplit	rings	are	used,	which	don’t
spark	but	still	wear	out.

In	a	brushless	motor,	we	reverse	the	usual	structure	and	have	a	moving	permanent	magnet	going	around
a	set	of	stationary	coils.	Figure	16-1	shows	the	type	of	motor	we	are	using	opened	up	so	you	can	see	the
coils	and	magnets.	The	coils	can	be	connected	directly	131
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to	the	electronics	with	no	rings	or	brushes	or	anything.	The	electronics	must	then	turn	on	each	coil	in	turn
so	that	the	magnets	get	pulled	around	at	the	desired	rate.	Of	course,	the	electronics	must	know	the
position	of	the	motor	in	order	to	do	this	correctly.

Figure	16-1	This	motor	has	12	coils	and	14	magnets

In	large,	industrial	AC	motors,	the	position	is	usually	determined	with	some	sort	of	optical	encoder.
Gimbals	have	IMUs	similar	to	our	drones	to	determine	their	position.	But	both	of	these	systems	require
extra	components	and	wiring.	Because	they	generally	run	fast	and	in	the	same	direction,	the	brushless
motors	we	use	to	drive	propellers	can	use	a	simpler	and	very	clever	solution,	which	we	will	discuss	in	a
minute	when	looking	deeper	into	ESCs.

First,	a	bit	more	about	how	the	drive	works.

The	brushless	motors	we	use	in	RC	aircraft	power	systems,	and	those	in	brushless	gimbals,	and,	in	fact,
the	large	majority	of	AC	motors	in	the	world,	are	three	phase.	In	motors,	this	means	that	however	many
coils	they	have,	they	will	be	wired	in	groups	of	three.	These	groups	of	coils	will	then	be	energized	in
sequence	so	that	as	you	move	around	the	motor	you	pass	coils	from	group	A,	then	B,	then	C,	then	A	again
and	so	on.	Remember,	these	coils	are	stationary.	Around	them	move	a	series	of	permanent	magnets	with
alternating	poles	facing	in,	first	north,	then	south,	then	north	again.



At	the	point	in	the	sequence	pictured	in	Figure	16-2,	the	first	A	coil	is	drawing	magnet	X	to	it	with	a	north
magnetic	field;	coil	B	has	just	pulled	magnet	Y	in	with	a	south	field,	and	since	magnet	Z	has	passed	it,	coil
C	will	now	switch	off	for	a	moment,	then	switch	to	a	south	field.	As	the	sequence	continues,	magnet	X	will
get	drawn	in	turn	to	A,	B,	and	C,	then	the	next	A.
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Figure	16-2	Brushless	motors	usually	have	three	sets	of	coils,	here	labeled	A,B,	and	C

While	you	might	expect	that	we	need	six	wires,	two	per	coil	group,	to	control	this	motor,	the	coils	are
actually	wired	in	series	so	that	we	only	need	a	total	of	three	wires,	labeled	P1,	P2,	and	P3.

Brushless	motors	may	have	as	few	as	4	or	as	many	as	24	or	more	coils.	The	number	of	magnets,	or	poles,
must	be	different	and	is	usually	slightly	greater.	This	ensures	that	the	coils	and	poles	don’t	start	out
perfectly	lined	up	such	that	the	motor	can’t	tell	which	way	to	go.

Low-power,	low-speed	motors	can	get	away	with	fewer	coils.	Brushless	gimbal	motors	usually	have	lots	of
coils	to	optimize	positional	accuracy	over	speed	or	complexity.

I	chose	EMax	MT2216	II	KV810	motors	for	this	drone—or	rather,	that’s	what	I	have	on	mine	now.	(I
originally	used	some	generic	2212	13T/1000KV	motors	that	didn’t	work	out.)	What	do	all	these	numbers
mean?	Except	for	the	last	one,	not	much	to	us.	The	first,	four-digit	number	in	a	brushless	motor
description	gets	broken	up	into	two	two-digit	numbers,	here	22	and	16.	In	our	case	these	are	the	width
and	height	of	the	stator,	or	internal,	coils.	In	other	cases,	these	numbers	represent	the	size	of	the	outer
case.	The	last	number,	KV810,	relates	the	no-load	speed	of	the	motor	to	the	input	voltage.

Some	motors	also	get	labeled	with	the	number	of	turns	of	wire	around	each	coil,	like	13T

for	13	turns.	The	KV	rating	of	a	motor	depends	largely	on	the	number	of	turns	used,	so	these	numbers	are
directly	(OK,	inversely	for	the	math	geeks	out	there)	related.	In	general,	the	higher	the	number	of	turns,
the	lower	the	KV.	A	lower	KV	rating	means	the	motor	will	be	better	at	swinging	a	large	prop	and	carrying
high	loads.	A	higher	KV	rating	means	the	motor	will	turn	faster	for	a	given	voltage—good	for	small	props
and	fast	quads.	The	RC	car	community	tends	to	use	the	number	of	turns	rating	much	more	than	the	RC
aircraft	world.
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An	electronic	speed	controller,	or	ESC,	takes	power	from	the	battery	and	sends	it	to	the	coils	of	the
attached	brushless	motor	in	such	a	way	as	to	make	it	run	at	the	speed	commanded	at	its	input.	Each	one
contains	several	FETs	to	control	the	power	and	some	sensors	to	determine	the	motor’s	position,	as	well	as
an	embedded	controller	to	tie	it	all	together.

Yes,	each	ESC	has	its	own	small	processor,	and	in	some	cases	you	can	actually	update	the	code,	though
we	won’t	need	to.

As	mentioned	in	the	previous	section,	the	brushless	motors	and	ESCs	we	use	for	RC	applications	are	three
phase.	This	means	that	the	coils	of	the	motor,	however	many	it	has	alto-gether,	are	wired	in	three	groups
(consider	Figure	16-3).

Figure	16-3	These	graphs	show	how	the	three-phase	output	of	an	ESC	energizes	each	coil	group	in
sequence	The	three	outputs	of	the	ESC	each	follow	the	same	pattern	but	start	at	different	times.	You	can
see	how	they	are	distributed	in	the	top	half	of	Figure	16-3,	where	the	blue,	green,	and	red	lines	represent
the	P1,	P2,	and	P3	outputs.	The	bottom	half	isolates	only	the	first	two	outputs	so	that	the	difference
between	them	can	be	more	easily	seen.	When	P1	is	higher,	the	difference	is	shaded	red	and	when	P2	is
higher,	it	is	shaded	blue.	In	the	line	labeled	A,	this	difference	is	redrawn	centered	around	the	origin.

We	label	this	line	A	because	it	shows	the	voltage	delivered	to	the	A	coil	group.	Where	this	is	positive	or
red,	the	coil	generates	a	north	magnetic	field	and	where	it	is	negative	or	blue,	it	generates	a	south
magnetic	field.	Lines	B	and	C	show	the	differences	between	P2	and	P3

and	P3	and	P1,	respectively,	which	will	be	the	voltages	in	the	B	and	C	coil	groups.
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If	the	signals	in	Figure	16-3	were	used	to	drive	the	motor	shown	in	Figure	16-2,	we	would	be	just	at	the
beginning	of	the	timeline	with	coil	group	A	just	starting	to	pull	magnet	X

toward	it.	As	we	follow	the	sequence	of	red	lines,	at	position	1,	magnet	X	will	pass	coil	A.	At	position	3	it
will	pass	coil	B.	After	passing	coil	C	at	position	5,	the	sequence	then	begins	again	as	our	same	magnet	X
will	pass	the	next	coil	in	group	A.	The	blue	lines	similarly	trace	the	route	of	the	Y	magnet.

BECs

Our	ESCs	also	provide	5-volt	power	for	the	flight	control	system	via	a	battery	eliminator	circuit	(BEC).
Instead	of	a	receiver	powering	a	servo	over	the	middle	wire	of	the	servo	cable,	we	run	it	backward.	The
ESC	sends	power	back	along	this	wire	to	the	flight	controller.

Any	one	of	our	ESCs	can	produce	up	to	a	couple	of	amps,	which	is	plenty	of	power	for	our	whole	control
system.	But	they	all	do	this,	and	you	should	not	just	connect	several	sources	of	power	together.	Any	small
differences	among	the	output	voltages	will	result	in	the	ESCs	wasting	current	fighting	amongst
themselves	and	possibly	overheating.

The	traditional	solution	is	to	remove	the	middle	(red)	wire	from	the	connectors	on	all	but	one	of	the	ESC
signal	cables.	Figure	16-4	shows	how	to	slip	a	knife	under	the	clip	that	holds	the	pin	in.	Pull	the	pins	from
three	of	the	four	ESCs	and	cover	them	with	heat	shrink	for	safety	as	shown	in	the	inset	photo.	We’ll	tie
them	back	out	of	the	way	as	we	complete	the	control	system	wiring.

Figure	16-4	Pulling	the	red	pin	from	three	of	the	four	ESCs	prevents	power	supply	trouble	Chapter	16
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Now	that	we	have	powered	our	motors	and	ESCs	and	understand	them,	we	can	wire	them	into	the	control
system.	As	complex	as	they	are,	they	turn	out	to	be	simple,	dependable	things	to	use	in	practice.
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Controller	and	Radios

We’ve	put	in	the	muscle.	Now	it’s	time	to	add	the	brains	(and,	I	suppose,	the	eyes,	ears,	and	mouth,	to
stretch	the	analogy	a	bit).	More	seriously,	we	are	going	to	mount	a	Pixhawk	Lite	flight	controller,	a	GPS
receiver,	the	RC	receiver,	and	the	telemetry	radio,	then	wire	them	all	up.	Oh,	and	a	safety	button—another
new	feature	very	appropriate	to	a	larger,	more	powerful	drone.	Figure	17-1	shows	these	components
wired	together,	but	not	installed.

Figure	17-1	The	central	Pixhawk	Lite	controller	with	three	radios	and	a	power	module	137

Pixhawk	Lite	and	Shock	Mount

I	got	all	of	these	components,	except	for	the	RC	radio,	in	a	single	kit,	but	they	can	also	be	bought
separately.	We’ll	discuss	each	part	in	more	detail	as	we	install	them.	When	we	are	done,	this	will	complete



the	first	round	of	hardware	installation	on	the	big	drone.	We	still	have	a	couple	of	chapters	to	go	before
we	properly	understand	all	this	new	hardware,	but	once	we	do	this,	it	will	be	a	very	capable	drone.	Among
other	things,	this	drone	will	be	able	to	fly	itself.	Using	GPS	and	a	compass,	it	will	be	capable	of	following	a
series	of	waypoints	in	fully	autonomous	flight!

Pixhawk	Lite	and	Shock	Mount

To	make	sure	we	have	power	for	future	expansion,	we	will	put	a	32-bit	Pixhawk	Lite	flight	controller	in
this	drone.	The	Lite	version	of	this	controller	eliminates	a	few	connectors	that	few	people	use	in	favor	of
being	smaller,	lighter,	and	cheaper.

When	last	we	left	our	drone,	we	had	installed	only	the	bottom	plate,	with	the	ESC	power	and	battery
connector	attached.	Push	the	battery	connector	down	through	the	large	hole	in	the	back	of	the	bottom
plate.	Plug	a	six-pin	signal	cable	into	the	power	module,	then	plug	the	power	module	into	the	end	of	the
battery	connector.	Push	the	signal	cable	up	through	the	hole	where	the	battery	connector	comes	down.
Arrange	everything	as	neatly	as	you	can	and	wire-tie	the	parts	in	place	so	they	won’t	move	when	flying
around,	or	especially	when	disconnecting	a	battery.	The	results	should	look	something	like	Figure	17-2.

Figure	17-2	A	close-up	showing	how	the	power	module	fits	below	the	bottom	plate	138
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One	thing	included	in	many	flight	controller	kits,	though	not	the	one	I	got,	is	a	shock	mount.	This	mount
provides	some	level	of	vibration	isolation	between	the	controller	and	the	motors.	As	we	will	cover	in	detail
in	Chapter	22,	more	powerful	motors	can	create	more	vibration	and	more	sophisticated	flight	controllers
can	be	more	sensitive	to	vibration,	so	shock	mounts	become	important	as	drones	get	larger.

We’re	ready	to	mount	the	top	plate,	so	bring	all	the	ESC	signal	cables	and	the	signal	cable	from	the	power
module	up	through	the	big	hole	in	the	middle	of	the	top	plate	and	screw	it	into	place.	Now,	using	double-
stick	foam	tape,	place	the	shock	mount	back	against	the	hole	where	the	ESC	cables	come	up.	You	can	see
the	correct	placement	in	Figure	17-3.

Figure	17-3	The	shock	mount	should	be	placed	up	against	the	large	hole	in	the	top	plate	Using	more
double-stick	foam	tape,	place	the	controller	on	top	of	the	shock	mount	with	the	pins	facing	to	the	rear.	Be
careful	to	align	the	controller	as	well	as	possible	since	this	is	where	the	drone	gets	its	sense	of	up	and



forward,	though	the	firmware	can	compensate	for	small	errors.	Now	route	the	cable	from	the	power
module	up	through	the	center	hole	in	the	top	plate	and	plug	it	into	the	port	on	the	left	side	of	the	flight
controller,	as	seen	in

Figure	17-4.
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Figure	17-4	The	power	module	plugs	into	the	left	side	of	the	Pixhawk	Lite	RC	Radios

I	chose	the	Quanum	i8	(Figure	17-5)	radio	control	transmitter	and	receiver	for	this	drone.

Almost	any	system	with	five	or	more	channels	will	work,	but	I	like	this	set	because	it	has	some	features
designed	specifically	with	drones	in	mind.	Like	with	nearly	all	RC	aircraft	transmitters,	the	first	four
channels	contain	roll,	pitch,	throttle,	and	yaw,	though	not	neces-sarily	in	that	order.

Figure	17-5	The	mode	lights	at	the	top	center	of	this	Quanum	i8	transmitter	suit	drones	perfectly	140
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Many	flight	control	systems	use	channel	5	for	mode	control,	and	the	Quanum	i8	transmitter	handles	this
perfectly.	There	is	a	rotary	knob	with	LEDs	that	show	the	positions.	It	even	comes	with	stickers	to	label
the	different	modes.	Regrettably	there	is	no	PosHold	sticker,	since	position	and	hold	mode	works	very	well
on	this	quadcopter.

The	Quanum	i8	receiver	has	eight	of	the	standard	three-pin	pulse	width	modulation	(PWM)	outputs	that
can	directly	drive	servos	or	ESCs.	In	another	feature	that	supports	drones	well,	the	receiver	also	sends	all
eight	channels	out	on	a	single	output	using	combined	pulse	position	modulation	(CPPM,	or	just	PPM).	This
allows	us	to	connect	the	receiver	to	the	flight	controller	with	a	single	servo	cable,	which	also	serves	to
provide	power	to	the	receiver.

Place	the	receiver	on	the	top	plate,	to	the	right	of	the	controller,	using	double-stick	foam	tape.	The	pins
should	face	to	the	rear,	the	same	as	the	controller.	Run	a	three-pin	servo	cable	from	the	leftmost	port	of
the	receiver	to	the	rightmost	port	on	the	controller	as	seen

in	Figure	17-6.	You	can	also	plug	the	ESC	signal	cables	into	the	controller	at	this	point,	but	be	careful:	the
outputs	on	the	controller	start	with	channel	1	in	the	middle,	not	on	one	end	as	you	might	expect.	Figure
17-7	shows	how	the	motors	are	numbered.

Figure	17-6	The	Pixhawk	Lite	outputs	don’t	start	where	you	might	expect	them	to	Chapter	17
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Figure	17-7	Motor	numbering	for	the	Pixhawk	flight	controller

On	the	other	end	of	the	RC	receiver,	two	antennas	come	out.	With	two	antennas,	one	will	hopefully
continue	getting	a	good	signal	when	the	other	gets	interference.	I	routed	these	down	through	the	slot	in
the	front	of	the	top	plate	and	then	replaced	the	heat	shrink	on	the	forward	ESCs	to	include	them.	This
keeps	them	out	of	the	way,	as	seen	in	Figure	17-8.

Figure	17-8	Putting	the	RC	antennas	in	the	heat	shrink	keeps	them	safe	142
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Telemetry	Radio

For	telemetry,	we	will	use	a	3DR	433	MHz	radio	set.	These	are	widely	available,	fairly	cheap,	and	easy	to
interface	to	an	APM-or	PX4-based	flight	controller.	Note	that	use	of	the	433

MHz	band	in	the	US	requires	a	ham	radio	license.

We	can	actually	do	much	more	than	just	telemetry	(i.e.,	real-time	monitoring	of	flight	information)	with
this	radio.	Basically,	this	link	can	do	anything	a	USB	link	can	do,	though	it’s	not	as	fast.	This	includes
setting	turning	parameters,	creating	autonomous	flight	plans,	and	even	sending	commands	like	“start	the
programmed	mission,”	or	“return	to	land.”

Turn	On	All	Your	Radios

Even	though	for	some	flights	you	may	think	you	might	have	a	log	of	GPS	positions	right	up	to	a	don’t	need
telemetry	or	video	or	whatever,	turn	crash	if	you’re	logging	telemetry	data.	You	might	on	all	the	radios
before	you	fly.	I	have	had	lost	save	your	drone	by	flying	by	video	link	if	your	radio	connection	with	my
drone	and	used	a	view	gets	obstructed	during	a	line-of-sight	flight.

smartphone	to	land	it	via	telemetry.	I	have	even	You	never	know	which	link	will	save	you,	so	turn	used
radio	signal	strength	as	a	tool	to	find	a	them	all	on!

crashed	and	lost	drone.	Your	phone	or	computer

The	telemetry	radio	comes	with	several	cables.	The	one	attached	to	it	includes	a	split	to	send	the
telemetry	data	to	the	on-screen	display	(OSD)	that	will	add	information	to	the	video	downlink.	We	don’t
need	this	now,	but	we	might	later.	One	end	of	each	cable	will	fit	the	telemetry	radio.	Find	one	where	the
other	end	fits	the	telemetry	port	on	the	side	of	the	flight	controller.	Now	check	the	cable	wiring	very
carefully	to	verify	that	it	looks	like

Figure	17-9.

Figure	17-9	Verify	the	cable	wiring	before	powering	up	the	system
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Safety	Switch

To	complete	this	chapter,	we	will	install	the	safety	switch.	When	preparing	for	flight,	you	must	press	and
hold	this	switch	for	several	seconds	before	the	motors	can	be	armed.	This	ensures	that	no	single	action	on
the	RC	transmitter	or	via	telemetry	can	accidentally	arm	them.	As	drones	get	larger	and	more	powerful,	it
becomes	increasingly	important	to	guard	against	spinning	props.	In	addition	to	the	safety	switch,	we	must
always	take	the	time	to	remove	the	props	when	not	required	for	testing	and	make	sure	the	area	is	clear
before	allowing	a	prop	to	spin.

Wiring	the	safety	switch	just	means	wire-tying	the	switch	itself	to	the	bottom	plate	as	shown	in	Figure	17-
10,	then	routing	the	cable	up	through	both	plates	and	plugging	it	into	its	port,	as	seen	in	Figure	17-9.

Figure	17-10	Secure	the	safety	switch	to	the	bottom	plate	with	wire	ties	Testing

Let’s	stop	and	test	what	we’ve	just	installed	before	going	any	further.	First,	plug	the	controller	into	your
computer	via	USB.	You	should	get	blinking	lights	on	both	the	telemetry	radio	and	the	RC	radio.	(And	no
smoke!)	If	you	don’t	see	a	good	response,	immediately	unplug	the	system.	You	might	save	a	component
that	has	its	power	wired	backward	if	you’re	quick!

Next	try	powering	the	system	from	a	battery.	Unplug	the	USB	and	plug	in	a	charged,	3S

lithium	polymer	(LiPo)	battery	pack	and	you	should	get	the	same	response	you	got	previously,	though	you
might	also	get	some	beeps	from	the	ESCs	since	they	are	getting	power	now	too.	If	the	USB	test	worked
and	this	one	didn’t,	check	the	cable	between	the	power	module	and	the	controller.

Leaving	the	quadcopter	powered	up,	plug	the	telemetry	ground	unit	into	a	USB	port	on	your	computer.
The	light	inside	should	come	on	and	within	a	few	seconds	this	light	and	144
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the	one	in	the	telemetry	air	unit	should	both	stay	on	constantly,	meaning	that	they	have	established	a	link.
You	can	now	start	up	your	favorite	MAVLink	ground	station	software	and	connect	to	your	drone.

Personally,	I	don’t	have	an	overall	favorite.	I	use	a	combination	of	Mission	Planner,	QGroundControl,	APM
Planner	(Mac),	and	finally	Tower	on	my	smartphone.	QGroundControl	has	the	slickest	interface.	It
connects	automatically	in	most	cases,	which	really	helps,	and	it	has	great	calibration	screens	for	both
accelerometer	and	compass.	And	it	runs	on	both	Mac	and	Windows.

MissionPlanner	only	runs	on	Windows,	but	it	has	a	built-in	log	viewer	that	I’m	used	to	and	puts	all	the	PID
tuning	parameters	on	one	very	useful	screen.	I	also	tend	to	use	MissionPlanner	for,	well,	planning
missions	(that	is,	creating	autonomous	flight	plans).	QGroundControl	also	does	a	good	job	of	this	so	my
choice	is	mostly	habit.

I	use	APM	Planner,	which	is	Mac	only,	just	for	its	compassmot.	It	produces	a	nice	graph	while	it’s	running
that	lets	you	see	how	good	the	data	is.	I	use	the	Tower	application	when	running	on	a	smart	phone.	Using
a	small	USB	adapter,	it	will	connect	to	the	telemetry	don-gle.	I	always	keep	this	turned	on	when	flying,
though	my	phone	often	sits	in	my	pocket,	just	giving	audio	feedback	on	modes,	battery	state,	and	altitude.

At	the	moment,	the	point	is	only	that	the	radio	calibration	screen	in	Mission	Planner	makes	a	nice	radio
test.	I	recommend	looking	at	the	connection	drop-down	before	and	after	connecting	the	telemetry
receiver	so	you	can	see	which	port	got	added.	Select	that	port	and	a	baud	rate	of	57,600	and	it	should
connect	up.	Once	it	finishes	reading	all	the	parameters	you	can	switch	to	the	Radio	Calibration	screen	in
the	Initial	Setup	category	and	the	graphics	should	respond	to	the	controls	on	your	RC	transmitter	(see
Figure	17-11).

Figure	17-11	Mission	Planner’s	Radio	Calibration	screen	is	a	good	test	of	the	RC	radio	Chapter	17
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This	completes	the	installation	of	everything	we	are	going	to	wire	up	on	the	top	plate,	so	go	around	the
system	and	wire-tie	everything	down.	I	found	that	the	unused	mounting	holes	on	the	corners	of	the	shock
mount	made	good	tie	points.	Shake	your	drone	around	a	little.	Does	anything	move	too	much?	If	so,
reroute	or	use	more	wire	ties.	Their	weight	won’t	matter	this	time.

Two	radios	installed	so	far,	and	one	more	to	go.	In	the	next	chapter	we	will	install	a	GPS

receiver	and	I’ll	explain	a	bit	about	how	it	works.
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The	Global	Positioning	System	(GPS)	allows	our	drones	to	find	their	three-dimensional	position	by
listening	to	the	signals	from	several	satellites.	The	receivers	we	have	today	are	small,	cheap,	fast,	and
accurate.	The	first	GPS	receiver	I	used	was	too	heavy	for	one	person	to	lift.	Thankfully,	the	receivers	and
the	satellites	have	continued	to	evolve.	Figure	18-1

shows	one	of	the	latest	generation	of	satellites.

Figure	18-1	A	GPS	series	IIIa	satellite,	courtesy	NASA

147

History

GPS	found	its	way	into	aircraft	and	survey	crews	years	ago,	but	it	took	the	cell	phone	revolution	to	make
the	receivers	as	small	and	cheap	as	the	one	we	will	use.	The	GPS	receiver	we	will	use	for	our	big	drone,
combined	with	a	three-axis	magnetometer	that	we	will	discuss	in	the	next	chapter,	fits	in	a	little	round
puck	about	two	inches	across.

History

The	Global	Positioning	System	was	conceived	in	the	US	in	1973,	and	the	first	satellite	was	launched	in
1978.	By	the	mid-1980s,	when	I	was	working	on	prototype	GPS	systems	for	the	US	Air	Force	and	Navy,
there	were	still	only	a	few	working	satellites.	The	receivers	we	used	weighed	over	50	pounds	and	cost
$150,000	each.	And	each	one	had	an	external	cesium	clock,	adding	a	few	thousand	to	the	total.

Then,	in	1983,	the	Russians	shot	down	Korean	Airlines	flight	007	when	it	strayed	accidentally	into	their
airspace.	In	response,	Ronald	Reagan	announced	that	the	full	accuracy	of	the	GPS	system	would	be	made
available	to	civilians.	Previously,	the	high-accuracy	part	had	been	encrypted	and	only	a	lower-accuracy
subsystem	was	available	to	the	public.

Today	the	Russians	run	their	own	satellite	positioning	system,	called	GLONASS	(GLobal	NAvigation
Satellite	System).	And	the	latest	models	of	GPS	receivers	for	drones	can	use	GLONASS	and	the	American
GPS	satellites	at	the	same	time.	This	means	that	there	are	more	satellites	available,	which	helps	with	the
reliability	and	accuracy	of	the	results,	as	we	shall	see	in	the	next	section.

Theory

Satellite	navigation	depends	on	the	simple	idea	that	time	equals	distance.	If	we	know	the	time	a	radio



signal	takes	to	travel	from	a	satellite	to	us,	and	we	know	it	goes	at	the	speed	of	light,	then	we	can
compute	the	distance	to	the	satellite.	So,	GPS	satellites	keep	broadcast-ing	messages	like	“I	sent	this
message	at	exactly	03:22:17.64836125	GMT.”	Then	we	just	have	to	know	the	exact	time	when	we	receive
such	a	message.	Knowing	the	current	time	very	accurately	is	part	of	the	trick.

By	noting	exactly	when	we	receive	each	message	by	our	internal	clock	and	taking	the	difference	between
this	and	the	start	time	contained	in	the	message,	we	can	compute	an	estimated	time	of	flight.	Convert
these	times	to	distances	and	include	the	known	positions	of	each	satellite,	and	we	can	begin	to	see	the
geometry	problem.

To	make	it	really	easy	to	see,	let’s	just	consider	two	dimensions	and	three	satellites.	In	the	Theory	frame
of	Figure	18-2,	the	circle	around	each	satellite	represents	our	computed	distance	to	it.	In	other	words,	if
we	only	knew	about	one	satellite,	then	the	circle	around	it	would	represent	all	the	places	we	might	be.
Add	a	second	satellite,	and	the	two	circles	(usually)	intersect	in	two	points.	Add	a	third,	and	there	is	only
one	point	that	we	can	be	at

—our	position!
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Figure	18-2	To	make	GPS	work	in	practice	we	use	Kalman	filters

Since	we	put	three	variables	into	our	equations,	we	should	be	able	to	determine	three	output	quantities,
but	in	our	flat	world	we	have	only	two.	But	nothing	is	lost	here!	The	solution	to	these	equations	also	tells
us	how	far	off	our	local	time	is	from	the	shared	time	of	the	satellites.	This	extremely	accurate	source	of
timing	information	gets	used	in	many	applications	that	don’t	need	position	at	all,	like	keeping	the	clocks
on	cell	phone	towers	synchron-ized.

Of	course,	the	real	world	does	not	really	look	like	a	problem	in	a	geometry	textbook.	The	circles	don’t
actually	line	up,	as	shown	in	the	Practice	frame	of	Figure	18-2.	This	means	we	get	to	use	yet	more
interesting	math!	Instead	of	just	looking	at	one	set	of	measurements,	we	take	the	average	of	lots	of
measurements	over	time.	And	not	just	a	simple	average,	either—a	Kalman	filter	or	other	equally
interesting	data-smoothing	technique.

No	GPS	Without	Einstein

If	you	think	relativity	is	only	for	stars	and	cosmic	do.	If	this	slowing	of	the	clocks	on	the	satellites	rays,
well,	think	again.	Einstein’s	theory	of	relativ-were	not	taken	into	account,	positions	calculated	ity	predicts
that	clocks	on	a	fast-moving	satellite	by	GPS	could	drift	as	much	as	10	kilometers	per	will	run	slower	than
clocks	on	Earth—which	they	day.

The	Kalman	filter	was	developed	by	Rudolf	E.	Kálmán,	among	others,	around	1960	and	can	be	found	in
applications	from	aerospace	to	robotics	to	seismology.	Like	most	algorithms	that	have	a	name,	shelves	full
of	papers	have	been	written	on	the	subject,	but	here’s	a	simple	outline	of	how	it	works.

First,	we	need	a	model	that	can	predict	the	next	value.	In	one	simple	case,	if	we	know	our	altitude	and	our
vertical	speed,	we	can	compute	our	next	altitude.	Then	we	take	some	measurements:	perhaps	a
barometer	reading	and	the	sum	of	our	accelerometer	values.

Now	we	take	a	weighted	average	of	the	altitudes	from	our	three	sources	(the	prediction	and	two
measurements).	The	trick	is	in	the	weights,	of	course.	We	change	the	weights	for	Chapter	18
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each	altitude	value	in	order	to	make	the	total	error—the	difference	between	our	final	output	and	each
value—as	small	as	possible.

To	get	the	most	accurate	positions,	variations	in	the	ionosphere	must	be	taken	into	account.	Radio	signals
travel	at	the	speed	of	light,	as	Einstein	tells	us,	but	the	speed	of	light	varies	a	little	depending	on	what	the
light	is	passing	through.	The	ionosphere,	a	section	of	the	upper	atmosphere	between	75	and	1,000
kilometers	above	the	Earth,	slows	down	the	signals	from	the	GPS	satellites	just	a	bit,	and	it	varies	in
thickness.

In	order	to	compensate	for	the	varying	thickness	of	the	ionosphere,	GPS	satellites	transmit	on	two
different	frequency	bands	(really,	up	to	five	now).	Since	the	amount	that	the	ionosphere	slows	down	the
signals	also	depends	on	the	frequency	of	the	signal,	a	receiver	can	measure	the	difference	in	the	time	of
arrival	of	the	same	message	in	each	band	to	determine	how	much	the	ionosphere	affects	signals	from	a
given	satellite.

Sadly,	most	of	the	GPS	receivers	we	use	in	drones,	like	those	in	cell	phones	and	many	consumer	devices,
only	receive	on	one	of	the	two	primary	GPS	bands	and	so	can’t	take	advantage	of	this	correction.	Because
of	this,	we	need	to	pay	attention	to	space	weather.	Yes,	space	has	weather!

Things	like	solar	storms	can	stir	up	the	ionosphere	and	make	it	thicker.	A	dual-channel	receiver	can
correct	for	this,	but	our	single-channel	receivers	cannot.	There	will	be	days	when	you	are	tracking	lots	of
satellites	and	the	geometry	(or	HDOP,	discussed	in	the	next	section),	looks	good,	but	your	positions	still
seem	awful.	This	could	be	due	to	a	space	storm,	and	there	are	websites	that	will	let	you	predict	and	track
their	effect	on	GPS	signal	quality.

HDOP

HDOP	stands	for	horizontal	dilution	of	precision.	This	measures	the	degree	to	which	a	bad	arrangement	of
satellites,	or	constellation,	degrades	the	accuracy	of	your	position.	With	a	theoretical	accuracy	of	1	meter
but	an	HDOP	of	5,	you	could	be	5	meters	away	from	where	you	think	you	are.

In	the	first	frame	of	Figure	18-3,	a	small	error	in	the	distance	to	one	satellite	results	in	an	error	of	similar
size	in	the	calculated	position.	In	the	second	frame,	the	two	satellites	are	close	together	in	the	sky.	In	this
situation,	a	small	error	in	the	distance	to	one	satellite	results	in	an	error	of	several	times	that	size	in	the
calculated	position.	You	can	see	that	the	red	arrow	representing	the	position	error	is	now	about	four	times
as	long	as	the	blue	arrow	representing	the	original	satellite	position	error.
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Figure	18-3	A	high	HDOP	means	that	position	errors	get	enlarged

Practically,	we	like	to	fly	with	an	HDOP	of	2	or	less.	You	can	set	a	minimum	HDOP	and	number	of
satellites	required	in	the	flight	control	system.	If	these	conditions	aren’t	met,	then	you	can’t	arm	the
motors	in	a	mode	that	requires	GPS.	However,	beware:	you	can	still	switch	into	a	GPS-dependent	mode,
even	when	the	HDOP	is	high,	when	you	are	already	flying.

Installation



With	all	the	complexities	in	the	theory	of	GPS	operation,	the	complexities	of	its	installation	may	seem	a	bit
trivial—but	complexities	they	are,	nonetheless.	The	GPS	unit	I	got	was	wired	for	a	PX4	or	APM	flight
controller,	and	the	Pixhawk	Lite	has	unique	combined	GPS/

telemetry	ports	that	require	some	special	wiring.	We	will	return	to	this	if	we	decide	to	add	an	on-screen
display	(OSD)	unit	that	will	need	the	second	telemetry	port.	For	now,	we	just	have	to	wire	the	GPS
correctly.

Wiring	generally	goes	better	when	the	thing	we	are	wiring	sits	still,	so	let’s	install	the	GPS

mast	before	doing	the	wiring.	You	will	need	four	#4-32	×	3/8”	bolts	with	nuts.	Bolt	the	base	in	place	as
shown	in	Figure	18-4,	lock	the	mast	into	the	base	and	the	top	on	the	mast	with	the	set	screws,	then	stick
the	GPS	puck	on	top	with	the	provided	double-stick	foam	tape.

Now	we	are	ready	for	the	wiring.

My	GPS	actually	came	with	an	extra	empty	plug	for	rewiring,	but	if	you’re	careful	you	can	pull	the	pins
out	and	reinsert	them	without	damaging	the	plug.	Figure	18-5	shows	how	to	slide	a	knife	blade	down	into
the	retaining	clip	and	release	the	pins.
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Figure	18-4	The	GPS	mast	bolts	solidly	to	the	bottom	plate	of	the	frame	Figure	18-5	With	care,	you	can
release	the	pins	without	damaging	the	plug	Red	almost	always	means	positive—in	this	case,	5	volts—so
looking	at	the	pinout	of	the	Pixhawk	in	Figure	18-6	you	can	see	that	the	red	and	black	wires	must	be
swapped.	I	guessed	at	which	wires	were	transmit	(TX)	and	receive	(RX),	but	I	guessed	wrong.	When	I
powered	up	my	flight	controller,	I	got	blinking	lights	on	the	GPS,	but	the	controller	didn’t	recognize	it.	You
can	check	by	connecting	to	your	ground	station	software.	If	the	GPS
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works,	you	will	see	some	status	like	“GPS:	No	Fix.”	If	you	don’t	get	any	kind	of	GPS	status,	try	swapping
the	TX	and	RX	lines.

Figure	18-6	The	Pixhawk	Lite	uses	shared	GPS	and	telemetry	ports

Now	you	should	be	able	to	see	the	GPS	status	in	your	ground	station	software.	To	get	a	fix,	the	drone	will
have	to	be	outdoors	or	at	least	near	a	window.	If	you	power	the	drone	from	a	battery,	you	can	set	it
outdoors,	connect	via	radio	telemetry,	and	watch	on	the	computer	as	your	GPS	acquires	satellites	and	the
HDOP	improves.

In	the	next	chapter,	we	will	discuss	magnetometers,	but	guess	what?	You	just	finished	installing	one.	GPS
units	built	for	use	with	PX4	systems	also	contain	a	three-axis	magnetometer.
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Back	in	Chapter	9,	we	talked	about	adding	a	magnetometer	to	the	mix	to	prevent	drift	in	the	yaw	axis.
When	you	start	doing	navigation,	knowing	your	absolute	direction	becomes	more	important.	You	may
know	where	you	are	and	where	you	want	to	be,	but	if	you	don’t	know	which	way	you	are	pointing,	you
can’t	get	there.

Humans	have	been	using	magnetic	sensing	devices	for	centuries,	and	animals	perhaps	for	millennia.
We’ve	come	a	long	way	from	floating	bits	of	iron,	both	in	our	apparatus	and	in	our	understanding.
Humans	have	learned,	often	by	crashing	ships	onto	rocks,	about	deviation	and	variation,	and	about	the
change	in	variation	over	time.	The	magnetic	variation	of	my	local	airport	has	changed	over	half	a	degree
during	my	lifetime,	as	noted	on	the	aero-nautical	charts.

Practically,	in	the	drone	world,	the	hardware	has	become	pretty	simple.	A	single	chip	with	a	convenient
I2C	interface	gives	us	a	three-axis	measurement	of	the	local	magnetic	field.

Operationally,	compasses	remain,	as	they	have	always	been,	a	bit	of	trouble.	They	must	be	calibrated	(in
our	case	by	doing	the	“magnetometer	dance”—just	wait!),	and	sometimes	we	must	compensate	for
changes	in	the	fields	due	to	the	current	of	the	motors.

We	have	already	installed	a	magnetometer	along	with	the	GPS	unit,	so	this	chapter	will	be	a	discussion	of
how	it	works	and	how	best	to	use	it.

The	Earth’s	Magnetic	Field

We’ve	all	seen	the	basic	picture	of	how	the	magnetic	field	lines	flow	through	the	Earth

(Figure	19-1).	And	if	you	have	played	much	with	magnets,	you	know	that	they	like	to	line	up	a	certain	way,
north	to	south	and	south	to	north.	So,	if	we	let	a	magnet	move	freely	without	any	other	magnets	nearby,	it
will	line	up	with	the	huge	but	weak	magnet	that	is	the	Earth.	Humans	have	long	known	how	to	float	a
lodestone	(a	naturally	magnetic	rock),	or	later	iron	pins,	so	that	they	would	point	toward	magnetic	north.
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Figure	19-1	The	Earth’s	magnetic	field	is	not	quite	aligned	with	the	geographic	north	pole	Notice	the
term	magnetic	pole.	The	first	thing	you	need	to	know	in	order	to	make	use	of	a	compass	for	navigation	is
that	the	magnetic	north	pole	is	currently	several	hundred	kilometers	from	the	geographic	north	pole,	the
axis	that	the	Earth	rotates	around.	And	the	magnetic	north	pole	moves	over	50	kilometers	per	year,	lately
heading	northward	out	of	Canada.	Geologists	tell	us	that	the	Earth’s	magnetic	field	has	flipped	north	for
south	several	times	in	its	history,	though	we	don’t	expect	this	to	affect	navigation	any	time	soon.

We,	or	perhaps	our	computers	on	our	behalf,	must	pay	attention	to	the	difference	between	magnetic	and
geographic	north	when	trying	to	fly	a	magnetic	course	and	track	ourselves	on	a	geographically	oriented
map.	To	get	this	right	requires	an	understanding	of	not	just	the	global	but	also	the	local	differences
between	maps	and	compass	readings.

Declination	and	Deviation

Declination,	more	commonly	called	variation,	measures	the	local	difference	between	magnetic	and	true
north.	This	includes	both	the	difference	because	of	the	different	positions	of	the	poles	and	the	local
differences	caused	by	things	like	differences	in	the	thickness	of	the	Earth’s	crust	of	local	deposits	of	iron
ore.	Humans	have	learned	about	declination	the	hard	way,	often	paying	with	the	lives	of	mariners.
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Christopher	Columbus	noted	that	the	difference	between	magnetic	and	true	north

changed	considerably	as	he	crossed	the	Atlantic	in	the	fifteenth	century.	By	the	seven-teenth	century,	it
was	understood	that	this	difference	also	changes	over	time,	and	that	there	will	be	purely	local	differences.



But	it	wasn’t	until	the	nineteenth	century	that	accurate	and	useful	maps	of	the	resulting	compass
variation	were	available.

Deviation,	as	opposed	to	declination	or	variation,	describes	our	attempt	to	measure	the	Earth’s	magnetic
field,	not	the	field	itself.	It	has	long	been	known,	for	example,	that	any	iron	in	a	ship	can	throw	a	compass
off—a	real	problem	once	the	hulls	began	to	be	made	of	it!	In	the	1800s	John	Gray	and	then	Lord	Kelvin
came	up	with	systems	to	correct	for	this	effect.	Lord	Kelvin’s	system	places	two	large	balls	of	iron,	one	on
either	side	of	the	ship’s	binnacle	or	compass	stand,	which	can	be	moved	to	compensate	for	the	error.
Traditionally	painted	red	and	green	(Figure	19-2),	these	are	commonly	known	as	Kelvin’s	balls.

Figure	19-2	The	red	and	green	balls	on	this	ship’s	binnacle	correct	for	the	presence	of	iron	in	the	ship
Chapter	19
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Magnetoresistance

In	modern	aircraft,	we	still	carry	a	basic	magnetic	compass,	and	it	will	also	include	a	set	of	small	magnets
placed	around	it	to	correct	for	the	presence	of	iron	in	the	structure	of	the	plane.	But	this	correction	is
never	perfect,	so	aircraft	compasses	also	come	with	a	so-called	compass	card.	This	small	card,	placed	next
to	the	compass,	lists	the	remaining	error	at	different	angles	so	the	pilot	can	correct	that	last	degree	or
two.	When	you’re	traveling	at	500

miles	an	hour,	a	small	angle	can	become	a	big	distance	in	a	hurry!

Magnetoresistance

Of	course,	our	drones	don’t	carry	an	iron	needle	floating	in	oil.	They	carry	solid-state	devices	using	a
property	known	as	magnetoresistance.	Scientists	and	engineers	have	discovered	many	different
mechanisms	by	which	the	electrical	resistance	of	a	material	can	be	made	to	vary	with	the	magnetic	field
around	it.	As	they	found	ever	larger	effects	they	had	to	make	up	ever	sillier	names,	like	“giant
magnetoresistance,”	“colossal	magnetoresistance,”

and	even	“extraordinary	magnetoresistance.”	The	magnetometer	chips	in	our	drones	generally	use
anisotropic	magnetoresistance	(AMR),	which	means	that	the	change	in	resistance	varies	with	the
direction	of	the	magnetic	field—a	useful	property	when	you	are	trying	to	find	direction.

Each	of	the	named	types	of	magnetoresistance	may,	in	fact,	be	produced	by	a	combination	of	multiple
underlying	physical	mechanisms.	Without	going	into	all	the	details,	one	out-come	of	the	way	AMR	works
also	has	a	fun	name	that	you	may	hear	used	to	describe	these	systems:	barber-pole	sensors.	AMR	sensors
start	with	a	thin	strip	of	permalloy,	a	nickel-iron	alloy.	But	by	itself	this	will	only	tell	you,	in	effect,	how
close	you	are	to	pointing	to	north,	not	whether	you	are	a	bit	east	or	west.	By	placing	a	series	of	aluminum
strips	across	the	permalloy	at	45-degree	angles,	the	response	to	the	left	and	right	become	different,	and
the	resulting	chip	looks	something	like	a	barber	pole,	as	seen	in	Figure	19-3.

Figure	19-3	The	aluminum	strips	help	determine	left	from	right	and	make	the	structure	look	like	a
barber	pole	158
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Use	in	Drones

Putting	a	modern	magnetometer	into	our	drone	control	system	is	easy.	Choose	a	chip	like	the	HMC5883L
three-axis	magnetometer	that	shares	the	puck	with	our	GPS	receiver.	Now	connect	power	and	the	I2C
interface,	and	you’re	done.	But	building	compasses	was	always	the	easy	part.	Learning	to	use	them	is	the
problem.

All	of	the	things	we’ve	just	talked	about	show	up	in	our	flight	software	and	calibration	processes.	When
you’re	setting	up	a	drone	using	ground	control	station	software,	the	system	can	read	your	position	from
the	GPS	receiver	and,	using	the	Internet,	find	your	local	magnetic	declination.	Alternatively,	you	can	enter
the	value	by	hand.

Next	comes	what	we	call	compass	calibration.	Just	as	they	still	swing	whole	ships	and	planes	around	to
determine	the	deviation	of	their	compasses,	we	get	to	swing	our	drone	around	in	what	is	known	as	“the
compass	dance.”	You	start	the	process	by	choosing	the	compass	calibration	option	in	your	ground	control
station	software,	then	follow	the	instructions	as	you	point	the	drone	in	different	directions	and	twirl
around.	Figure	19-4

shows	a	complete	calibration	using	QGroundControl.

Figure	19-4	This	compass	calibration	screen	guides	you	as	you	do	the	compass	dance	This	process
compensates	for	the	presence	of	lots	of	strong	permanent	magnets	in	the	motors—one	type	of	deviation	in
our	compass	reading.	But	we	also	have	electric	magnets	in	those	motors	and	high	currents	running
through	our	power	system,	which	can	create	magnetic	fields	that	change	during	flight.	Our	large	drone
design,	like	many,	places	the	compass	and	GPS	receiver	on	a	mast,	several	inches	above	the	power	system
and	other	radios.	This	minimizes	the	interference	with	the	compass,	in	our	case	to	acceptable	levels
Chapter	19
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(as	we	shall	see).	To	test	this	and	compensate	for	it	if	necessary,	we	can	perform	the	compassmot	test.

To	perform	a	compassmot,	you	must	first	remove	all	your	props	(we’ll	talk	about	choosing	and	installing
props	in	the	next	chapter)	and	put	them	back	on	so	that	they	will	push	down	instead	of	up.	Either	swap
pairs	or	move	them	each	around	by	one	arm.	Then,	in	a	safe	location	with	no	other	people	too	close,	start
the	compassmot	calibration,	which	will	instruct	you	to	move	the	throttle	up	and	down.	The	system	will
monitor	the	current	being	used	and	the	resulting	magnetic	interference	and	compute	a	correction	factor
for	later	use.

Figure	19-5	shows	the	results	I	got:	less	than	10	percent	interference.	This	low	result	is	not	surprising
since	we	have	a	compass	up	on	a	mast.

Figure	19-5	These	compassmot	results	show	insignificant	interference

Given	that	I	have	demonstrated	the	very	low	level	of	interference	with	this	design,	I	would	actually	not
recommend	running	this	test	on	this	drone	unless	you	have	reason	to	suspect	compass	problems.	First	of
all,	it	is	dangerous	to	run	these	props	up	to	full	speed	anywhere	near	people,	including	yourself.	There	is
also	the	hassle	of	and	room	for	error	when	switching	the	props	around.	And	finally,	it	could	happen	that	a
bad	test	result	gives	a	calibration	that	flies	significantly	worse	than	not	having	done	this	at	all.	I’ve	done
the	test,	so	you	don’t	have	to.	This	is	engineering	at	work.

We	have	hardly	touched	on	the	fascinating	history	of	the	compass,	but	hopefully	you	have	learned	enough
to	know	why	you	must	do	that	funny	dance	when	setting	up	your	drones.

And,	of	course,	you	should	repeat	it	if	you	change	the	hardware,	especially	when	adding	things	with	more
motors,	like	a	gimbal,	or	if	you	change	locations	by	more	than	a	few	miles.	But	enough	theory	for	a	while.
We’re	almost	ready	to	fly!
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We	have	put	all	the	pieces	in	place.	We’ve	done	some	testing.	Hopefully,	you	have	even	gained	some
understanding	of	how	it	all	works.	But	there	comes	a	time	in	the	development	of	any	aircraft	when	you
just	have	to	take	off	and	see	how	it	goes.

Next,	we	will	install	the	props	and	talk	for	a	moment	about	prop	choice.	At	this	point	the	drone	will	look
something	like	Figure	20-1.	Then	we	will	strap	on	a	battery	and	backup	power	meter.

Figure	20-1	The	completed	large	drone	stands	ready	to	fly

161

Install	the	Props

The	systems	will	demand	some	calibration	before	being	willing	to	fly.	We	did	the	magnetometer	in	the
previous	chapter,	but	we	must	still	do	the	radios	and	accelerometers.	You	can	choose	which	flight	modes
you	want	for	which	switch	positions,	and	then,	of	course,	there’s	tuning.

If	you	have	built	something	close	to	the	design	shown,	then	you	can	simply	load	the	tuning	parameters	I
use	from	www.makedronesbook.com/projects/S500.	If	you	have	made	any	important	changes,	like	frame
size	or	motor	specs,	then	you	might	be	better	off	starting	with	the	default	settings	and	tuning	it	yourself.

Install	the	Props

For	initial	flight	testing,	we’ll	use	the	nylon	1045	props	that	commonly	come	with	motors	in	this	size
range.	You	can	get	them	from	multiple	sources	for	a	reasonable	price,	and	they	work	quite	well.	These
props	don’t	come	perfectly	balanced,	however,	so	I	strongly	advise	following	the	prop	balancing
procedure	outlined	in	Chapter	22.

Don’t	Use	Carbon	Fiber	Props	for	Testing

Carbon	fiber	props	are	lighter,	thinner,	stronger,	more	efficient,	and,	per-

haps	most	important,	really	cool	looking!	So	why	not	use	them	on	your

shiny	new	drone?	They	also	spin	a	bit	faster	and	are	sharp	as	razors.	Until

you	have	confidence	in	your	drone	and	your	ability	to	fly	it,	make	the	world	a	little	safer	and	use	plastic
props.



The	EMax	motors	we’re	using	can	accommodate	traditional	props	with	a	hole	all	the	way	through,	or	DJI-
style	self-tightening	props	that	screw	on	directly.	The	traditional	props	we’re	using,	shown	in	Figure	20-2,
require	that	you	choose	the	right	adapter	ring	from	the	provided	set.	Find	the	smallest	one	that	fits	over
the	motor	shaft.	Now,	go	balance	them!

When	installing	props	on	the	motors	for	flight,	the	adapter	ring	side	goes	down.

Figure	20-3	shows	the	proper	direction,	clockwise	or	counterclockwise,	for	each	prop.	If	in	doubt	which
way	a	prop	goes,	just	spin	it	around	a	bit	and	visualize	which	way	pushes	the	air	down.	The	different	color
prop	nuts	match	the	different	directions,	black	for	clockwise	and	silver	for	counterclockwise.
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Install	the	Props

Figure	20-2	These	generic	1045	plastic	props	require	adapters	to	fit	on	motor	shafts	Figure	20-3	Be
sure	your	props	spin	in	the	right	direction	before	flight	Chapter	20
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Connect	the	Battery	and	Voltage	Monitor

You	want	the	prop	nuts	on	pretty	tight,	of	course.	It’s	obviously	bad	if	one	comes	off	in	flight!	But	the
thread	direction	for	each	motor	causes	the	nuts	to	tighten	rather	than	loosen	with	the	force	of	the	motor.
And	if	you	put	too	much	force	on	the	prop	hub,	it	can	crack.	I	tighten	mine	using	no	more	than	an	inch	or
so	of	wrench	length.	If	you	pushed	hard	at	the	end	of	a	six-inch	wrench,	you	would	crack	them	easily.

Connect	the	Battery	and	Voltage	Monitor

Depending	on	what	other	payload	you	strap	to	it,	this	drone	could	carry	a	very	large	battery.	I’ve	done	my
flight	testing	with	3S,	2,700	mAh	batteries	(Figure	20-4),	mostly	because

I	already	had	several.	This	will	be	our	first	time	to	step	up	from	1S	or	single-cell	batteries	to	3S	batteries
that	have	three	cells	in	series.

Figure	20-4	These	2,700	mAh,	25C	battery	packs	worked	well	for	flight	testing	According	to	a	chart	from
the	manufacturer,	the	EMax	2216	motors	with	1045	props	and	3S	batteries	can	draw	nearly	10	amps.
Rounding	up	to	10,	times	4	motors,	gives	us	40	amps	total	current.	If	you	divide	this	by	the	2.7	Ah	rating
of	our	battery,	you	get	just	less	than	15C.	My	packs	are	rated	for	25C,	so	I	have	been	fine.	If	you	want	to
try	anything	smaller,	do	the	math	and	make	sure	your	battery	can	provide	at	least	40	amps,	hopefully	with
a	bit	of	margin.	Anything	with	a	larger	mAh	or	C	rating	will	be	fine	as	long	as	you	don’t	run	it	down	too	far
—which	is	why	you’ll	want	a	voltage	monitor.
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Connect	the	Battery	and	Voltage	Monitor

For	something	less	than	five	bucks,	you	can	buy	a	small	digital	voltage	meter	(Figure	20-5)

with	an	alarm	that	plugs	directly	into	the	balance	plug—the	small	white	one—from	the	battery.	This	way	it
can	monitor	each	cell	individually	and	warn	if	any	one	goes	below	a	set	limit.



Figure	20-5	A	cheap	voltage	monitor	could	save	your	drone

Attach	the	battery	monitor	to	the	battery	with	the	black	or	ground	wire	on	the	left	side	(check	your	unit	to
make	sure	this	is	correct,	though;	it	should	have	some	kind	of	instructions	on	the	back	side).	When
properly	attached,	the	LEDs	will	display	first	the	total	voltage,	then	the	voltage	of	each	cell.	If	any	cell
goes	below	the	limit	an	amazingly	loud	alarm	sounds—loud	enough	that	you	can	hear	it	over	a	powerful
drone	at	a	distance.

The	limit	can	be	changed	using	a	small	button	on	the	top	of	the	unit.	I	set	mine	at	3.7	volts.

This	gives	me	enough	flight	time	and	leaves	the	battery	at	right	about	the	storage	voltage	of	3.75V	(the
voltage	dips	a	bit	under	load,	so	the	final	resting	voltage	will	be	a	bit	higher).
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Radio	and	Accelerometer	Calibration

I	installed	my	voltage	monitor	by	putting	a	wire	tie	around	one	of	the	mounts	that	hold	the	battery	to	the
tubes.	Having	a	bit	of	play	left	makes	it	easier	to	get	the	balance	plug	connected	to	the	unit.	You	can	see
the	results	in	Figure	20-6.

Figure	20-6	The	voltage	monitor	must	be	installed	close	to	the	battery	connector	The	power	adapter	we
installed	earlier	reports	voltage	and	current	to	the	flight	controller,	and	we	can	also	use	telemetry	to
connect	to	a	smartphone	to	give	us	low	voltage	warn-ings.	It’s	a	pretty	cool	system,	but	there	are	lots	of
ways	it	can	go	wrong.	If	you	always	plug	in	that	backup	voltage	monitor,	your	$5	investment	may	well
save	a	$50	battery!

Radio	and	Accelerometer	Calibration

The	APM	flight	stack	won’t	let	you	arm	the	motors	until	you	have	finished	certain	setup	tasks.	We	did	the
compass	calibration	previously,	while	discussing	how	magnetometers	work.	You	must	also	calibrate	the
radio	and	accelerometers.

In	the	days	before	it	was	practical	to	put	computers	in	our	model	aircraft,	advanced	RC

pilots	would	use	complex	transmitters	that	could	save	settings	for	multiple	models.	Today,	the	computer	in
the	model	can	be	set	to	respond	correctly	to	a	standard	transmitter.	All	it	needs	to	know	are	the	minimum
and	maximum	values	that	your	transmitter	puts	out	on	each	channel,	since	these	vary	a	bit	from	one
transmitter	to	another.	Knowing	exactly	what

“all	the	way	down”	translates	to	matters	for	actions	like	arming.	I	like	QGroundControl’s	calibration
screens	the	best,	so	Figure	20-7	shows	that	radio	calibration	screen.
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Radio	and	Accelerometer	Calibration

Figure	20-7	Radio	calibration	tells	the	flight	controller	about	your	transmitter	If	calibrating	the	compass
is	a	dance,	then	perhaps	calibrating	the	accelerometers	is	the	rehearsal.	We	go	through	the	same	basic
positions,	but	instead	of	twirling	around,	we	just	hold	still	in	each	one.	Figure	20-8	shows	this	calibration
screen	in	QGroundControl.

Figure	20-8	Accelerometer	calibration	lets	the	controller	know	which	way	is	down	Chapter	20
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Flight	Modes

Strictly	speaking,	setting	flight	modes	isn’t	required.	By	default	in	APM	all	switch	positions	translate	to
stabilize	mode,	which	is	a	fine	place	to	start.	But	this	drone	can	do	so	much	more!	In	order	to	access	other
modes,	we	have	to	map	the	positions	of	the	channel	5	rotary	switch	on	the	transmitter	to	different	modes.
The	Quanum	i8	transmitter	outputs	values	that	map	perfectly	to	the	default	ranges	in	APM,	so	we	just
have	to	choose	which	modes	to	use.

I’ve	mapped	the	six	positions	on	my	transmitter	to	stabilize,	altitude	hold,	loiter,	position	hold,	auto,	and
return	to	land,	as	you	can	see	in	Figure	20-9.	This	makes	a	useful	sequence	since	I	generally	take	off	in
stabilize,	which	requires	the	least	number	of	sensors,	then	go	to	altitude	hold,	which	adds	the	barometer;
only	if	that	seems	be	working	well	do	I	use	any	of	the	last	three	modes,	which	all	require	GPS.

Figure	20-9	The	default	PWM	ranges	matched	our	transmitter,	making	setup	easy	Initial	Tuning

I’ll	be	honest.	I	figured	that	this	was	a	pretty	typical	setup,	and	I’ve	tuned	enough	drones	to	at	least	my
own	satisfaction	by	now	that	this	one	should	go	easy.	Nope.	The	first	time	I	hit	the	throttle,	it	flipped	on	its
back	with	amazing	speed,	shattering	one	prop.	OK,	I	had	two	motors	plugged	in	backward.	But	the	tuning
still	took	many	flights.	I	believe	that	one	factor	was	doing	testing	with	a	small	battery	and	no	payload—
that	is	to	say,	lighter	than	I	will	168
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Final	Checklist	and	First	Flight

probably	fly	most	of	the	time.	This	meant	I	was	dialing	back	from	twitchy	instead	of	turning	it	up	from
sluggish.	Not	conceptually	harder,	but	it	kept	my	heart	rate	up	and	I	broke	a	few	props.

The	APM	flight	system	used	here,	version	3.3.3,	does	respond	very	nicely	to	being	well	tuned.	For	this
work	I	prefer	the	extended	tuning	screen	in	Mission	Planner	ground	control	station.	There	must	be	a
dozen	different	P	or	PID	controllers	that	can	be	adjusted.	But	it	turns	out	that	you	usually	only	have	to
adjust	the	core	PID	controllers	for	the	roll	and	pitch	rates,	and	the	rest	will	all	fall	into	place.	For	those
key	values,	I	am	currently	flying	at	0.11,	0.00,	0.004.	Since	this	quad	is	symmetrical,	roll	and	pitch	are	the
same,	as	seen	in

Figure	20-10.

Figure	20-10	The	extended	tuning	screen	in	Mission	Planner	is	well	organized	Final	Checklist	and
First	Flight

Consider	carefully	where	to	do	your	first	flight	testing	with	any	drone	this	size.	Unlike	our	previous
projects,	this	one	can	dent	cars,	break	windows,	or	hurt	people	if	it	gets	out	of	control.	A	large,
unobstructed	place	with	no	other	people	around	would	be	best,	but	few	of	us	have	acess	to	an	ideal
location,	so	do	the	best	you	can.	Working	in	a	small	space	with	nothing	but	brick	walls	to	hit	might	be	bad
for	your	drone	but	safer	for	the	world.	When	in	doubt,	err	on	the	side	of	safety.
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Final	Checklist	and	First	Flight

This	Drone	Requires	FAA	Registration

This	drone	weighs	far	more	than	250	grams,	so	really	put	that	number	on	your	drone	before	you	must
register	with	the	FAA	before	flying	it.	It	flight.	The	process	starts	at	www.faa.gov/uas/

won’t	take	you	long	or	cost	you	much,	so	go	do	registration/.

it.	And	then	you	have	to	follow	through	and

Next,	consider	the	weather	conditions	for	your	first	flights.	A	dead	calm	would	be	best.	Try	to	notice	what
time	of	day	tends	to	have	the	least	wind	in	your	area.	You	might	also	check	the	space	weather	at	a	site	like
www.uavforecast.com	to	make	sure	nothing	funny	happens	to	your	GPS	signals.

With	time	and	place	chosen,	prepare	the	drone:

1.	Check	for	any	unplugged	cables	or	loose	parts.

2.	Check	the	props	for	damage	or	missing	balance	tape.

3.	Turn	on	your	transmitter	and	make	sure	the	throttle	is	all	the	way	down,	with	the	mode	set	to	stabilize.

4.	Strap	on	a	battery,	connect	it	to	the	voltage	monitor,	and	check	that	you	have	enough	power	to	fly,
around	12.5	volts	total.

5.	Check	the	polarity	and	plug	the	battery	into	the	main	XT60	connector.

6.	(Optional)	Connect	to	the	telemetry	via	your	smartphone	or	computer	and	check	the	status.

7.	Wait	for	a	3D	GPS	lock	and	an	HDOP	of	less	than	2	(ideally	close	to	1).

8.	Check	that	the	area	is	clear	and	arm	the	motors	by	holding	the	left	stick	down	and	to	the	right.

9.	Slowly	raise	the	throttle.	The	motors	should	all	start.

Raise	the	throttle	more,	and	you	will	fly!	If	the	drone	flies	well	in	stabilize	mode,	then	stay	there.	I	find
this	one	much	easier	to	hover	in	altitude	hold,	but	staying	in	stabilize	requires	the	least	number	of	sensors
to	be	working	right.	This	is	where	piloting	skill	really	pays	off.

Time	spent	flying	the	smaller	drones	will	make	you	more	confident	with	this	one.
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Technology	moves	ever	forward.	The	$150,000	GPS	receivers	of	the	1980s	have	become	the	$15	pucks
that	we	navigate	our	drones	by.	And	while	they	can’t	do	everything	those	military-grade	receivers	did,
they	work	much	better	on	the	whole.

Similarly,	sensors	(and	the	processing	power	necessary	to	use	them)	that	were	once	the	exclusive	domain
of	top-secret	military	projects	can	now	be	integrated	into	our	drones.

The	hardware	vendors	trade	open	source	designs	to	keep	costs	down,	and	the	open	source	software
communities	work	constantly	to	support	the	latest	gadgets.

In	this	chapter,	we’ll	look	at	several	new	technologies	that	are	finding	their	way	into	drone	projects	today
—optical	flow	sensors	(Figure	21-1)	and	the	related	technologies	of	sonar	and	lidar.	These	last	two
measure	distance;	usually	for	us	that	means	altitude,	which	we	must	know	in	order	to	use	an	optical	flow
sensor.

Figure	21-1	A	PX4Flow	optical	flow	sensor
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When	we	hear	the	word	sonar,	it	conjures	up	images	of	scared	men	listening	intently	to	pings	in	their
submarines.	Or	perhaps	the	less	martial	of	you	think	of	bats	using	ultrasonic	pings	to	track	and	catch
insects.	Starting	with	the	Polaroid	SX-70	camera	back	in	the	1970s,	which	used	sonar	to	focus,	sonar	has
become	a	very	cheap	and	common	form	of	range	finding	in	a	wide	variety	of	applications	today.

Hobbyists	use	sonar	for	collision	avoidance	on	robots	or	as	motion	detectors	for	interactive	displays	or	a
million	other	things.	The	HC-SR04	ultrasonic	pinger	module	is	so	common,	easy	to	use,	and	cheap	that
practically	any	project	can	include	one.	They	cost	just	a	few	bucks	and	only	take	four	wires	and	a	few	lines
of	code	to	use.	Figure	21-2	shows	one	of	these	modules.

Figure	21-2	This	cheap	ultrasonic	pinger	can	be	used	to	determine	altitude	People	have	successfully
used	HC-SR04	modules	to	control	the	altitude	of	drones.	Their	simplicity	suits	use	with	older,	8-bit	APM
systems.	But	they	also	have	their	limits.	These	are	not	the	most	accurate	range	finders	available.	They	are
subject	to	interference	from	background	noise.	And	most	importantly	for	us,	they	can	only	work	up	to	a
couple	of	meters	at	most.
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For	better	range	and	accuracy,	the	Dronecode	team	recommend	moving	up	to	a	some—

what	more	expensive	sonar	module	like	the	Maxbotix	HRLV-EZ4,	which	is	included	with	the	optical	flow
sensor	we’ll	discuss	shortly.	Maxbotix	sells	a	whole	line	of	better	ultrasonic	range	finders,	and	this	one
has	the	narrowest	beam	for	the	longest	range.	According	to	the	manufacturer,	this	sensor	measures	down
to	the	millimeter	at	ranges	of	up	to	five	meters.

Lidar

The	name	lidar	comes	from	a	combination	of	light	and	radar.	The	technology	uses	light,	generally	lasers,
to	measure	the	distance	to	an	object	by	measuring	the	time	it	takes	for	a	light	pulse	to	travel	to	that
object	and	be	reflected	back.	Light	moves	much	faster	than	sound,	of	course,	so	a	lidar	system	must	be
able	to	measure	very,	very	small	amounts	of	time	accurately;	thus,	these	systems	still	cost	much	more
than	sonar.

On	the	plus	side,	lidar	can	be	more	accurate	than	sonar	and	is	much	less	prone	to	interference	from	the
environment	or	other	systems	on	the	drone.	Several	manufacturers	now	make	lidar	systems	specifically
for	drones,	and	the	APM	flight	stack	supports	the	Lidar-Lite	series	of	modules.	At	this	point,	the	open
source	projects	like	APM	only	use	lidar	for	altitude	measurement.	In	the	future,	it	may	also	have	a	role	to
play	in	collision	avoidance.

Optical	Flow	Sensors

Whether	we	know	it	or	not,	most	of	us	use	a	form	of	optical	flow	sensor	every	day	in	the	form	of	an	optical
mouse.	Those	of	you	who	remember	mice	with	rolling	balls	tracking	movement	know	how	much	better
today’s	optical	technology	can	be.	These	work	by	comparing	consecutive	images	from	a	low-resolution
camera	to	see	which	direction	the	image	has	moved.	The	same	idea—in	fact,	the	same	hardware—can	be
used	to	keep	a	drone	over	a	fixed	spot	on	the	ground.

When	the	original	Parrot	AR	drone	came	out	to	much	fanfare,	one	of	the	technologies	that	made	it	stand
out	from	the	crowd	was	optical	flow	sensing.	This	gave	it	a	position	stability	much	tighter	than	is	possible
with	GPS,	indoors	or	out.

Today,	in	particular	in	the	world	of	APM	and	PX4,	we	see	two	common	optical	flow	systems	being	used.
The	cheaper	option	uses	a	DNS3080	sensor,	literally	built	to	be	used	in	mice.

You	can	connect	this	unit	via	its	SPI	bus	to	older	APM	2.x	8-bit	control	systems.	Combined	with	a	super-
cheap	HC-SR04	sonar	module,	you	can	try	out	optical	flow	technology	for	under	$50—but	it	takes	a	lot	of
hacking,	and	you	can’t	expect	top-dollar	results	from	bottom-dollar	gear.

The	better	option	in	the	Dronecode	world,	called	PX4Flow,	uses	a	purpose-built	controller	board	with	a
better	camera.	As	mentioned,	drone	makers	generally	pair	this	unit	with	the	better	Maxbotix	ultrasonic
sensors,	which	can	connect	directly	to	the	controller.	This	results	in	a	single,	complete	unit	that	connects
easily	via	I2C,	as	seen	in	Figure	21-3.



Chapter	21
173

Optical	Flow	Sensors

Figure	21-3	The	PX4Flow	often	comes	with	an	ultrasonic	pinger	for	altitude	These	still	require	some
setup,	though	in	this	case	the	setup	is	kinda	fun.	You	can	connect	directly	to	the	optical	flow	controller
board	via	USB	and	calibrate	using	special	software,	which	includes	the	ability	to	directly	view	the	camera
image	it	is	seeing	(Figure	21-4).

Figure	21-4	The	PX4Flow	config	screen	lets	you	see	the	camera	image
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Visual	Odometry

Visual	odometry:	isn’t	that	a	fancy	term?	It	just	means	figuring	out	where	you	are	by	looking	around.	We
do	this	every	day,	but	it’s	only	starting	to	find	its	way	into	our	robots	and	drones.	Academics	have	been
working	on	this	technology	for	years	now,	especially	as	it	applies	to	the	world	of	augmented	reality.	The
computer	must	be	able	to	map	the	world	around	us	in	order	to	project	things	onto	it.

Putting	the	processing	power	on	board	a	drone	to	do	this	kind	of	interpretation	and	mapping	of	video
images	has	been	prohibitive	until	recently.	Academic	projects	have	used	remote	processing	to	test	their
theories.	DJI	actually	built	an	experimental	device	called	Guidance,	which	used	a	series	of	camera	and
ultrasonic	range	finders	to	attempt	collision	avoidance.

Right	now,	this	is	not	something	you	can	implement	cheaply	and	easily:	you	can’t	just	buy	a	part	from
China,	plug	in	a	standard	bus,	and	enable	it	with	a	checkbox	in	your	ground	control	software.	But	who
knows,	by	the	time	you’re	reading	this,	visual	odometry	might	be	in	every	self-respecting	drone	out	there.

When	installed	and	set	up	correctly,	some	combination	of	range	finding	and	optical	flow	sensors	makes	a
very	practical	addition	to	today’s	advanced	drone.	This	will	allow	you	to	fly	with	position	stabilization
indoors	where	there	is	no	GPS,	or	to	do	precision	automatic	takeoffs	and	landings.	Tomorrow’s	systems
may	allow	your	drone	to	find	its	place	on	a	map	by	sight	or	fly	near	other	drones	without	running	into
them.	Watch	this	space	for	exciting	developments	in	the	immediate	future!
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If	you	read	drone	forums	for	long,	you	will	inevitably	run	across	a	discussion	of	vibration.	I	have	had	several	hard	crashes	I	believe	were	caused	by
vibration,	so	I	have	a	very	personal	interest	in	the	subject.

Vibration	matters	to	anyone	who	flies	a	multirotor	aircraft.	We	all	use	inertial	stabilization	systems,	gyros	and	accelerometers,	and	these	are	very
sensitive	to	vibration.	Aerial	photography	depends	on	having	a	stable	platform	from	which	to	shoot.	And	in	the	end,	bad	vibrations	can	simply	shake	a
drone	apart.

Figure	22-1	shows	the	log	from	a	test	when	my	drone	was	suffering	from	some	devastating	vibrations.	It	shows	forces	in	the	range	of	three	to	five
times	the	force	of	gravity	(that	is,	3–

5G).	A	reasonable	reading	here	would	be	less	than	one	tenth	of	that.	A	good	aerial	photography	platform	will	often	read	less	than	0.1G.

Figure	22-1	This	is	what	excessive	vibration	looks	like	in	a	log

177

Causes	of	Vibration

Causes	of	Vibration

It’s	ironic	that	vibration	should	be	such	a	problem	on	a	vehicle	with	so	few	moving	parts,	but	those	moving	parts	spin	very	fast—up	to	7,000	RPM	for
the	1045	props	and	2216

motors	of	the	big	drone	we	just	built.	If	a	prop	or	motor	or	even	a	prop	nut	is	even	a	little	out	of	balance,	it	will	create	vibrations.	Since	we	run	our
motors	over	their	full	possible	range	of	RPM	during	normal	flight,	if	there	is	a	bad	frequency	in	there	that	lines	up	with	the	resonance	of	the	frame,
we	will	eventually	hit	it.	Figure	22-2	shows	a	frame	from	a	video	of	this	happening	with	this	drone,	with	a	different	motor.

Figure	22-2	When	vibrations	resonate	with	the	frame,	they	can	get	large	You	will	be	glad	to	know	that	with	decently	balanced	props,	the	EMax	2216
motors	we	will	fly	this	drone	with	have	never	exhibited	this	kind	of	vibration.	It	should	make	a	fine	aerial	photography	platform.

Effects	of	Vibration

Vibration	causes	many	troubles.	In	the	drone	forums,	people	talk	the	most	about	jello	in	their	video.	I’ll	get	back	to	what	this	means	in	a	minute,	but	I
believe	the	reason	this	gets	mentioned	so	often	is	simply	that	shooting	video	from	a	drone	happens	to	be	a	really	good	way	to	see	how	bad	the
vibrations	are	at	different	times	in	the	flight.	You	can	look	at	logs,	of	course,	but	jello	in	the	video	is	what	people	notice	when	everything	else	is	fine.

I	suppose	at	a	certain	point	vibrations	might	simply	rattle	parts	off,	but	I	haven’t	had	this	happen.	Certainly,	screws	will	come	loose	at	a	faster	rate	as
the	vibrations	get	worse.	This	178
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could	cause	parts	to	fall	off	eventually,	but	as	long	as	you	check	on	the	important	screws	before	flying,	this	won’t	happen	to	you.

The	insidious	problem	that	you	can’t	see	until	it’s	too	late	happens	when	the	vibrations	start	affecting	accelerometers	and	gyros.	It	might	just	cause	a
little	drift.	Since	inertial	navigation	gets	used	to	supplement	the	barometer	in	altitude	hold	mode,	vibration	can	make	your	drone	wander	up	and	down
in	this	mode.	Finally,	advanced	multisensor	systems	like	the	one	we’re	using	here	constantly	check	their	sensors	against	each	other	and	will	stop
using	one	that	doesn’t	seem	to	be	working.	This	will	almost	certainly	happen	at	a	critical	moment,	just	when	you	could	use	all	the	help	you	can	get
from	your	sensors!

Back	to	jello	in	the	video	now.	When	your	drone	vibrates	back	and	forth,	and	the	camera	isn’t	well	enough	protected	from	those	vibrations,	you	will
see	these	small	movements	reflected	in	the	video.	But	action	cameras	don’t	take	a	whole	frame	at	once.	They	scan	down	the	frame	at	some	rate.	If
your	drone	vibrates	back	and	forth	three	times	for	each	frame	the	camera	takes,	then	vertical	lines	will	appear	to	have	three	waves	in	them	as	you
look	down	the	frame.

Damping	and	Isolation

Technically,	what	everyone	calls	“vibration	damping”	in	drones—the	kinds	of	shock	mounts	we	put	our	controllers	on	or	that	most	gimbals	hang	from
—should	really	be	called

“vibration	isolation.”	Damping	occurs	when	the	energy	of	the	vibration	gets	converted	to	some	other	form,	usually	heat	caused	by	friction,	before	it
gets	to	the	item	being	protected.	Automobile	shock	absorbers	do	this	when	they	use	a	fluid	to	convert	the	car’s	motion	into	heat.	Isolation	occurs
when	the	energy	passes	through	the	item	without	affecting	it	much.	Springs,	whether	steel	or	silicone	like	the	damping	balls	often	used	in	drones,
temporarily	absorb	the	energy	so	the	protected	item	doesn’t	have	to.

The	best	systems	use	a	combination	of	damping	and	isolation.	Cars	have	shocks	and	springs,	or	perhaps	struts,	which	are	nothing	but	a	well-balanced
combination	of	the	two.

We	don’t	see	actual	damping	systems	in	drones	much,	so	let’s	see	how	we	can	use	isolation	to	reduce	the	trouble	that	vibration	causes.

First,	let’s	be	more	specific	about	our	goal.	We	want	to	stop	the	high-frequency,	regular	motion	that	comes	from	the	rotating	props	and	motors.	But
we	must	let	through	the	actual	motion	of	the	drone	without	significant	change	or	delay.	Mathematically,	these	are	the	low-frequency	movements.
Drone	makers	use	silicone	balls,	stretched	o-rings,	and	pads	made	of	special	vibration	isolation	material.	In	each	case,	the	material	acts	as	a	kind	of
spring.	To	make	it	work	well,	we	must	adjust	the	stiffness	of	that	spring	to	the	situation.

The	frequencies	of	the	movements	we	want	to	stop	and	pass	affect	the	ideal	spring	stiffness,	but	we	can’t	change	this.	We	can	however,	change	the
other	important	factor—the	weight	of	the	thing	being	sprung.	The	heavier	the	object	being	isolated	is,	the	easier	it	is	to	isolate	it	from	the	small,	high-
frequency	movements	that	we	don’t	want.	We	can	make	use	of	this	fact	by	including	more	weight	with	the	control	system.	I	have	considered	using	a
Chapter	22
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larger	shock	mount	on	this	drone	and	putting	the	RC	and	telemetry	radios	on	with	the	flight	controller,	though	the	vibration	levels	are	fine	already.
Some	commercial	drones,	like	the	Parrot	Bebop,	place	the	battery	on	the	isolated	side	with	the	control	system	and	camera,	adding	a	great	deal	to	the
sprung	weight.

Prop	Balancing

If	you	are	having	vibration	problems,	anything	from	mild	jello	to	crashes,	you	need	to	balance	your	props.	Even	if	you	see	no	sign	of	vibration
whatsoever,	balancing	your	props	will	make	your	motors	run	a	bit	smoother	and	let	the	bearings	last	longer.	It’s	easy.	It	doesn’t	take	expensive	tools.
It	does	take	a	specialized	tool,	a	prop	balancer,	but	a	basic	one	like	that	shown	in	Figure	22-3	costs	less	than	$10.	Better	ones	will	allow	balancing
self-tightening	props	that	don’t	have	a	hole	all	the	way	through.

Figure	22-3	A	prop	balancer,	scissors,	and	electrical	tape	are	all	you	need	to	balance	a	prop	With	the	proper	hub	adapter	in	place,	gently	screw	the
prop	into	the	balancer.	Cut	a	piece	of	electrical	tape,	one	centimeter	square	for	a	badly	balanced	prop	or	less	if	the	prop	already	seems	close.	Stick
the	tape	on	the	leading	edge	and	check	the	balance.	Move	it	back	and	forth	until	the	blades	seem	as	even	as	possible.	Now	it’s	time	to	balance	the
prop	180
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hub.	Yes,	it’s	kind	of	a	fine	point	and	not	everyone	does	it,	but	you’ve	got	it	on	the	balancer,	so	why	not?

Once	the	blades	are	perfectly	balanced,	push	one	side	down.	If	the	prop	has	a	tendency	to	return	to	level	no	matter	which	blade	you	push,	the	lower
side	of	the	hub	is	heavier.	If,	on	the	other	hand,	when	you	push	either	blade	down,	that	side	stays	down,	then	the	top	side	of	the	hub	is	heavier.	You
can	lighten	the	heavier	side	by	sanding	a	bit	with	a	medium-grit	sandpaper.	It	is	probably	best	to	take	the	prop	off	the	balancer	so	you	don’t	sand	it
and	unbalance	your	tool.	I	find	that	one	side	of	the	hub	always	has	noticeably	more	flashing	and	ends	up	heavier,	so	I	will	often	sand	that	side	down	a
bit	before	even	starting.



If	you	get	good	motors	and	balance	your	props	well,	you	can	enjoy	smooth	flying	and	smooth	video.	And	even	if	your	drone	flies	fine	with	props
straight	out	of	the	delivery	box,	do	your	bearings	and	your	gyros	a	favor	and	balance	them	up	anyway.	Your	drone	will	feel	more	like	the	precision
machine	that	it	is.
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Fault	Tolerance

If	you	start	thinking	about	all	the	ways	a	failure	can	bring	your	drone	down,	it	can	get	a	little	depressing.
Any	one	prop	coming	loose,	any	one	of	the	dozen	solder	joints	running	the	motors	coming	loose,	any	one
of	the	24	FETs	in	the	ESCs	failing...,	and	that’s	just	the	power	system.	And	everything	goes	back	to	a
single	battery	connection.	We	call	each	one	of	these	items	a	single	point	of	failure,	and	we	can	do	better.

Engineers	will	sometimes	talk	about	having	“no	single	point	of	failure,”	but	we	almost	never	really	reach
this	level	of	reliability,	even	in	just	the	control	system.	The	trouble	comes	in	the	transition.	If	a	component
fails,	its	backup	must	not	only	be	present	but	be	up	and	running	and	in	exactly	the	same	state	so	it	can
take	over	seamlessly.

If	we	can’t	keep	running,	perhaps	we	can	at	least	fail	safely.	In	fact,	failsafes	are	now	common	in	drone
control	systems,	and	drone	makers	have	learned	to	duplicate	certain	key	components	and	either	switch
over	or	manage	without	when	one	fails.

Failsafes

No	doubt,	pilots	of	RC	aircraft	have	been	dealing	with	loss	of	their	main	radio	connection	ever	since	the
first	radio-guided	balloon	took	flight	in	the	nineteenth	century.	The	old-timers	have	endless	stories	of	the
“one	that	flew	away.”	Today,	we	can	(usually)	do	better.

If	your	drone	has	a	good	GPS	lock	when	you	take	off,	should	you	happen	to	lose	radio	contact	the	flight
control	software	can	be	set	to	automatically	return	and	either	hover	or	land	at	the	takeoff	site,	first
climbing	to	a	safe	height	to	avoid	obstacles.	Figure	23-1	shows	the	failsafe	setup	screen	in
QGroundControl,	where	all	the	safety-related	settings	are	nicely	gathered	in	one	place.
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Figure	23-1	QGroundControl	puts	all	safety	settings	in	one	place

The	other	common	failsafe	of	this	sort	that	current	control	systems	usually	implement	triggers	when	your
battery	gets	low.	Even	the	smallest	drones	will	blink	their	lights	as	a	failsafe	warning	when	they	are
running	low	on	juice.	More	complex	drone	control	systems	will	often	have	a	two-step	response:	first	a
warning,	like	lights	blinking	or	warning	buzzers,	followed	by	an	automatic	landing	if	the	battery	voltage
drops	below	a	certain	limit.	I	highly	recommend	that	you	review	all	the	failsafe	settings	for	any	drone	you
fly.	It’s	very	confusing	to	see	your	drone	start	to	climb	when	you	tell	it	to	land	if	you	don’t	know	that	it	has
been	set	to	a	safety	height	of	30	meters.

Seeing	a	drone	that	you	lost	control	of	coming	home	to	land	can	be	quite	a	relief,	but	not	every	failure
leaves	a	drone	able	to	perform	this	maneuver.	In	the	case	of	a	motor	failure	or	power	loss,	you	can’t	really
keep	flying,	so	some	heavier	commercial	drones	carry	recovery	parachutes	that	can	be	triggered	when	it
all	goes	wrong.	Such	recovery	chutes	are	required	of	commercial	operators	in	parts	of	Europe	where
drones	may	be	operated	in	close	proximity	to	people.
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Redundancy

Pilots	of	traditional	multiengine	aircraft	train	at	length	on	how	to	continue	flying	in	the	face	of	an	engine
failure.	While	it	is	possible	for	a	quadcopter	with	an	engine	out	to	keep	flying,	it	takes	specialized
programming.	Once	we	move	up	to	six	or	eight	motors,	it	becomes	more	reasonable	to	expect	the	control
system	to	be	able	to	cope	with	the	loss	of	one.	If	the	drone	has	enough	excess	power	and	the	failure
doesn’t	result	in	some	kind	of	terrible	imbalance	and	vibration,	then	a	well-tuned	system	might	cope	well
enough	to	allow	a	controlled	landing,	at	least.	This	is	probably	on	the	minds	of	professional	aerial
photographers	as	they	mount	their	expensive	cameras,	but	then	those	cameras	are	pretty	heavy.	I	wonder
if	they	have	the	excess	power	to	really	pull	it	off.

The	control	system	of	even	a	moderate-sized	quadcopter	may	use	a	couple	of	other	types	of	redundancy	to
improve	reliability	and	performance.	Since	everything	depends	on	the	power	supply,	it’s	no	surprise	that
power	problems	cause	many	failures.	Highly	redundant	power	systems	might	use	two	batteries	with	each
running	to	different	sets	of	motors,	but	even	with	one	battery,	controllers	like	the	Pixhawk	and	APM	can
receive	power	from	both	a	power	module	and	a	battery	eliminator	circuit	in	one	of	the	ESCs	and	switch
completely	to	the	good	source	when	one	source	fails.

As	we	add	more	and	more	complex	sensors,	like	GPS	receivers,	we	must	start	thinking	about	what
happens	when	they	fail.	The	Pixhawk	flight	controller	actually	has	two	accelerometers	and	two	gyros.	It
only	has	one	compass,	but	it	is	expected	that	you	will	add	an	external	one	as	well.	There	are	two	GPS
ports	too.	The	navigation	filters	in	the	ArduPilot	flight	stack	were	converted	to	use	extended	Kalman
filters	(EKF),	which	make	the	handling	of	sensors	coming	and	going	work	better,	and	much	logic	was
added	to	constantly	compare	the	different	sensors.

As	drones	become	more	complex	and	integrate	ever	more	technology,	failsafes	and	redundancies	will	be
essential	tools	in	their	design.	As	the	designers	of	the	first	vacuum	tube–

based	computers	knew	all	too	well,	one	fairly	reliable	part	makes	a	fairly	reliable	system.

Use	10,000	of	them,	and	you	have	to	start	thinking	about	detecting	and	handling	failures.
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Throughout	this	book	we	have	been	connecting	one	processor	to	another	using	some	kind	of	interface
with	another	acronym	for	a	name.	These	standards	allow	us	to	buy	a	GPS

unit	from	one	company	and	a	flight	controller	from	another	and	believe	that	they	will	be	able	to	talk.	But
the	number	of	them,	and	the	constant	stream	of	new	ones,	can	be	a	bit	daunting.	This	chapter	lists	many
of	the	interfaces	commonly	used	on	drones,	with	some	discussion	of	what	each	can	be	used	for.

Computer	Interfaces

Much	of	the	wiring	on	a	complex	drone	connects	different	computers	together:	for	example,	the	flight
controller	to	an	ESC	or	to	the	telemetry	radio.	All	of	these	connections	use	some	kind	of	serial	interface.
This	just	means	that	the	bits	are	sent	one	after	another	on	a	single	wire	instead	of	in	parallel	on	several
wires.

In	some	cases,	no	higher	standard	is	named.	It’s	plain	old	serial	(no	acronym).	The	telemetry	receiver
connects	to	the	flight	controller	using	four	wires:	power	(often	called	Vcc),	ground	(GND),	transmit	(TX),
and	receive	(RX).	For	two	computers	to	talk	this	way	each	one’s	TX	must	be	connected	to	the	other’s	RX;
then	one	usually	supplies	power	to	the	other,	as	shown	in	Figure	24-1.

Figure	24-1	In	this	basic	serial	connection,	each	side’s	transmit	connects	to	the	other	side’s	receive	187
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As	with	any	electrical	connection,	you	must	be	careful	of	the	voltage.	The	power	supply	is	probably	five



volts	(5V),	but	it	could	be	3.3V	or	even	12V.	The	so-called	logic	level	on	the	TX

and	RX	lines	could	be	3.3V	or	5V,	or	perhaps	even	3.3V,	but	5V	compatible.	This	last	phrase	means	that	a
device	will	put	out	a	3.3V	logic	level	but	if	you	feed	it	a	higher	5V	output	it	won’t	fry	anything.	Otherwise,
the	voltages	should	match	everywhere.

As	we	found	out	when	choosing	a	FET,	a	system	that	uses	so-called	3.3V	logic	does	not	actually	output
3.3V	for	high	and	0V	for	low.	If	you	put	a	volt	meter	on	a	high	signal	in	a	3.3V	system,	it	will	probably	read
something	just	under	2V.	Similarly,	a	low	signal	won’t	be	quite	0V.	As	long	as	you	connect	systems	of	the
same	family	together,	either	3.3V	or	5V,	then	you	don’t	need	to	think	about	the	exact	voltages	used.	It
should	only	come	up	in	detail	when	you	do	strange	things	like	use	a	5V	data	pin	to	power	a	3.3V	receiver
so	you	can	pulse	it	to	put	it	in	bind	mode.

Physically,	simple	serial	interfaces	can	use	almost	any	connector.	Basic	Arduino	projects	often	use	no
connectors	at	all,	relying	on	simple	pins	and	headers	or	wires	in	breadboards.

Drones	will	often	use	smaller	connectors	like	the	DF13	or	the	Micro	JSTs	shown	in

Figure	24-2.	These	connectors	come	in	many	sizes,	with	two	to	a	dozen	or	more	pins	and	with	pin
spacings	of	either	1	mm,	1.25	mm,	1.5	mm,	or	2.5	mm.	The	extra	pins	might	be	unconnected,	or	they
might	be	used	for	a	second	port	on	the	same	connector,	as	on	the	Pixhawk	Lite	flight	controller.

Figure	24-2	Micro	JST	connectors	with	1	mm	spacing	and	from	three	to	six	pins	188
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That’s	the	physical	connection.	Logically,	the	sending	computer	holds	the	data	line	high	until	it	is	ready	to
start	sending	a	message.	Each	message	begins	with	a	low	start	bit	to	let	the	other	computer	know	a	byte
is	coming.	The	sender	then	puts	out	eight	bits,	one	after	another,	followed	by	a	high	bit	to	show	that	the
message	has	ended.	The	order	runs	from	most	significant	to	least	significant.	This	format,	called	8N1	to
signify	eight	data	bits,	no	parity	or	check	bit,	and	one	stop	bit,	seems	to	dominate	basic	serial
communication,	though	other	formats	are	certainly	possible.	Figure	24-3	shows	the	value	0xB2	being	sent
this	way.

Figure	24-3	The	hex	value	B2	as	sent	down	a	serial	line

We	call	the	speed	at	which	these	bits	get	sent	the	baud	rate.	The	unit	baud	(Bd)	honors	Émile	Baudout,
who	invented	the	5-bit	code	used	in	early	paper	teletype	machines.	The	unit	measures	the	rate	at	which
symbols,	in	this	case	ones	and	zeros,	are	sent.	In	the	case	of	a	simple	serial	line	this	is	the	same	as	the	bit
rate.	Common	baud	rates	in	drones	are	57,600	or	115,200	bits	per	second.	Some	connections,	like	I2C,
might	be	much	faster.

Now	we’ve	sent	a	single	number.	Other	standards	define	what	the	numbers	mean.	A	more	complex
message	might	start	with	an	address,	so	that	multiple	devices	can	share	a	connection	but	send	messages
to	only	one	of	them,	then	maybe	a	message	type	indicator	defining	the	rest	of	the	content.	For	each
interface	we	use—inter-integrated	circuit	(I2C),	serial	peripheral	interface	(SPI),	controller	area	network
(CAN),	and	many	more—commit-tees	meet	and	long,	technical	documents	get	written.	This	is	all	very
important	to	certain	engineers,	actually.

Thankfully,	you	don’t	need	to	read	those	documents	to	connect	an	I2C	compass	to	your	flight	controller,
but	here	are	a	few	things	that	might	help	when	using	I2C.	Notice	that	the	basic	serial	wiring	diagram
(Figure	24-1)	includes	only	two	devices.	We	call	I2C	a	bus	because	it	allows	multiple	devices	to	connect	to
the	same	port.	We	can,	for	example,	add	an	optical	flow	sensor	on	the	same	port	where	the	compass
connects.	Also,	knowing	that	two	of	I2C’s	four	wires	are	for	data	and	two	for	power	explains	why	the
compass	connection	from	an	integrated	compass/GPS	only	has	two	wires.	The	compass	gets	its	power
from	the	GPS’s	connection.



One	more	thing	about	I2C,	since	it	is	such	a	common	interface	on	drones:	interference	from	a	power
system	or	other	busses	can	cause	communication	errors	with	I2C.	It’s	not	the	most	fault-tolerant	way	two
processors	can	talk.	There	is	a	reason	that	there	are	logs	for	I2C
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errors.	If	you	have	trouble	with	an	I2C	bus,	try	just	twisting	the	wires	a	few	times.	Other	measures,	like
using	shielded	cables,	work	too,	but	a	few	twists	can	do	wonders	to	equalize	the	interference	in	each	data
line	so	it	can	be	canceled	out.

Given	the	trouble	with	I2C,	drone	makers	have	been	looking	for	better	alternatives.	And	what	better	place
to	look	than	cars,	a	notoriously	harsh	environment	in	which	to	run	computers?	The	automotive	industry
came	up	with	a	very	robust	bus	called	the	controller	area	network,	which	works	well	for	connecting
multiple	devices	to	a	control	system	in	tough	conditions.	Already,	some	ESCs	use	a	CAN	bus	and	the
Storm32	gimbal	has	been	rede-signed	to	use	it	as	well.

Finally,	as	far	as	computer-to-computer	connections	go,	I’ve	watched	as	other	industries	turned
grudgingly	to	Ethernet	instead	of	other	protocols	designed	specifically	for	control	systems.	Like	so	many
things,	the	mass	market	has	made	very	fast,	reliable	networking	gear	available.	Ethernet’s	randomized
retry	method	of	determining	who	gets	to	use	the	bus	does	not	suit	control	systems	engineers’	desire	for
predictability.	But	Ethernet	runs	so	much	faster	for	so	much	less	money	than	most	of	the	alternatives	that
I	won’t	be	surprised	to	find	it	in	my	drones	soon.

RC	Radio	Standards

Radio	control	systems	have	come	a	long	way	since	the	time	when	doing	even	single-channel	electronics
was	hard,	so	systems	like	the	Galloping	Ghost	used	mechanical	parts	instead.	On	the	radio	frequency	side,
where	once	you	had	to	have	a	flag	on	your	transmitter’s	antenna	to	show	which	channel	you	were	using,
now	many	people	can	share	the	2.4

GHz	band	without	interference	because	of	frequency	hopping	and	spread	spectrum	technologies.	And
once	again,	mass	market	gear	(WiFi	this	time)	using	these	same	frequencies	helps	make	the	parts
common	and	therefore	cheap.

Still,	the	world	of	RC	radio	has	its	multiplying	standards,	like	DSM/DSM2/DSMX,	FrSky,	or	even	AFHDS
2A.	The	systems	named	by	these	acronyms	each	use	the	2.4	GHz	radio	band	a	little	differently.	The
systems	vary	in	their	cost,	ability	to	reject	interference,	range,	and	number	of	channels,	and	the	variation
among	the	different	models	using	the	same	standard	might	be	just	as	great.	You	should	research	the
particular	model	you	are	considering,	not	just	the	standard.

DSM/DSM2/DSMX

While	as	a	rule	your	transmitter	and	receiver	must	use	the	same	standard,	we	have	actually	seen	one	of
the	exceptions	in	our	earlier	projects.	The	DSM/DSM2/DSMX	series	of	standards,	owned	by	Spektrum,
each	build	upon	the	last.	We	used	a	DSMX	transmitter	and	a	DSM2	receiver.	The	original	DSM	used	a
single	frequency,	DSM2	could	switch	between	two	frequencies	to	avoid	interference,	and	DSMX	uses
multiple	frequencies	in	a	more	complex	way.	But	any	DSM2	or	DSMX	transmitter	should	work	with	any
DSM2	or	DSMX	receiver,	so	our	use	was	fine.

190
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Some	variety	of	DSM	seems	to	be	the	most	popular	radio	standard	for	the	smallest,	completely	integrated
flight	controllers,	like	the	MicroMWC	we	used	in	the	X4Wii	or	the	similarly	sized	but	more	powerful
Pico32	controller.	If	you	want	to	go	modular,	like	we	did	in	the	Visible	Drone,	the	receivers	are	still	cheap,
and	we	used	the	same	transmitter	for	both	of	those	projects.	The	ability	to	use	just	the	satellite	receiver
makes	very	small	projects	possible	as	well.

FrSky

FrSky	builds	a	line	of	advanced	transmitters	and	receivers.	The	transmitters	support	advanced	mixing	and
mode	controls	similar	to	many	of	the	RC	settings	available	on	flight	controllers.	FrSky	radios	take
advantage	of	the	fact	that	a	2.4	GHz	radio	link	is	actually	two-way	in	order	to	send	telemetry	data	back
from	the	aircraft	to	the	transmitter.	The	company	also	sells	a	line	of	sensors,	including	airspeed,	GPS,	and
current	sensors,	that	plug	directly	into	the	receiver	for	display	on	the	transmitter’s	screens.	While	most	of
these	features	might	be	more	useful	in	fixed-wing	aircraft,	many	serious	drone	pilots	use	FrSky	for	its



quality	and	performance.

Servo/ESC	Control

While	you	might	see	a	few	different	connectors	used,	almost	all	servos	used	in	RC	models	adhere	to	the
same	electrical	and	logical	standard.	They	use	5V	logic	levels	and	send	data	using	pulse	width	modulation
(PWM).	There	will	generally	be	three	wires,	for	power,	ground,	and	signal.	The	signal	consists	of	a	series
of	pulses,	each	from	1,000–2,000	microseconds	long.	This	is	why	you	often	see	the	RC	control	positions
represented	as	a	number	in	the	range	1,000–2,000.	The	length	of	the	pulse	tells	the	servo	what	position	it
should	attempt	to	get	to	or	stay	at.	With	each	pulse,	the	position	can	change.	Most	electronic	speed
controllers	have	adopted	this	same	PWM	standard	for	their	control.

Pulse	position	modulation	(PPM)	uses	a	string	of	timed	pulses	like	PWM,	but	every	pulse	will	be	the	same
width.	The	timing,	or	position,	of	each	pulse	determines	the	value	that	it	represents.	Combined	pulse
position	modulation	(CPPM)	builds	on	this	idea,	sending	groups	of	eight	values	in	sequence	with	a	longer
sync	gap	in	between	groups	so	that	you	can	tell	where	the	group	starts.	Many	modern	RC	receivers	will
have	separate	PWM	ports	for	each	channel,	but	also	a	single	CPPM	port	that	allows	the	receiver	to	be
connected	to	a	flight	controller	with	a	single	cable.

Graphics	often	convey	concepts	like	PWM	and	PPM	better	than	words,	so	here’s	an	example.	The	black
line	on	the	top	in	Figure	24-4	shows	the	original	to	be	encoded.	The	green	line	shows	how	that	signal
might	be	encoded	using	PWM.	The	blue	line	on	the	bottom	shows	how	that	same	signal	might	be	encoded
using	PPM.
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Figure	24-4	PWM	and	PPM	encode	the	same	information	in	different	ways	Telemetry

Telemetry	data	tells	us	things	like	the	drone’s	current	attitude	or	position.	It	can	also	contain	status	or
configuration	information	like	modes	or	PID	settings.	Telemetry	goes	both	ways	in	most	cases,	meaning
we	can	change	things	on	the	drone	as	well.	This	might	let	us	update	configuration	like	those	PID	settings,
or	take	control	of	the	drone,	change	modes,	and	tell	it	where	to	go.	This	makes	telemetry	a	useful	backup
in	case	you	have	trouble	with	your	main	RC	radio.

Telemetry	data	gets	communicated	within	the	drone	control	system	via	serial	links	and	between	the	drone
and	the	ground	over	various	types	of	radio	links.	The	complex	and	varied	ways	that	data	gets	represented
on	the	radio	fascinate	me,	but	you	don’t	usually	need	to	know	about	these	as	long	as	your	transmitter	and
receiver	match.	What	you	do	need	to	be	aware	of	are	the	definitions	of	the	different	telemetry	standards.

The	two	most	common	telemetry	standards	each	have	their	own	worlds	of	flight	control	and	ground
control	software	that	support	them.	The	MultiWii/Baseflight/Cleanflight	branch	of	the	flight	control
software	tree	all	use	the	MultiWii	Serial	Protocol	(MSP).	The	Visible	Drone,	earlier	in	this	book,	also
implemented	some	MSP	message	types.	The	ArduCopter/PX4	flight	control	systems	use	what	they	call
MAVLink	to	talk	to	their	ground	stations.

To	show	what	these	messages	look	like,	let’s	consider	an	example.	All	MSP	messages	start	with	the
characters	“$M”.	Then,	for	messages	coming	from	the	drone	the	next	character	will	be	“>”,	and	it	will	be
“<”	for	messages	going	back	up.	Next	we	have	a	count	of	the	data	192
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payload,	not	including	all	the	preamble	and	command	bytes,	and	then	the	command.

Finally,	there	are	the	actual	binary	values.	The	attitude	message,	called	MSP_ATTITUDE,	is	command
number	108.	Thus,	the	complete	message	looks	like	this:

$M

Preamble



>

Direction	indicator

6

Payload	byte	count

108

Command

16-bit	integer

(Roll	in	degrees)*10

16-bit	integer

(Pitch	in	degrees)*10

16-bit	integer

(Yaw	in	degrees)*10

GPS

In	addition	to	whichever	telemetry	protocol	is	in	use,	we	often	see	one	other	serial	communication
standard	in	our	drones—the	National	Marine	Electronics	Association’s	NMEA	0183	standard	for	GPS
data.	Like	MAVLink	and	MSP,	NMEA	0183	defines	a	series	of	message	types,	in	this	case	for	things	like	fix
quality	and	position.	The	standard	also	includes	things	about	the	physical	connection,	baud	rate,	etc.,	but
the	GPS	units	we	see	in	drones	don’t	use	that	part	of	the	standard.	They	usually	communicate	using	3.3V
logic	levels	at	57,600

baud,	like	nearly	everything	else.	Note	that	things	like	changing	the	baud	rate	are	not	a	part	of	the
standard	and	thus	may	vary	from	one	brand	of	GPS	to	the	next.

With	GPS	units	as	cheap	and	easy	to	use	as	they	are	today,	you	can	include	one	in	any	project	where
knowing	your	position,	or	even	just	the	correct	time,	would	help.	A	quick	example	will	serve	to
demonstrate	this	simple	protocol.	The	message	shown	here	gives	a	current	position.	Note	that	unlike	with
MSP,	numeric	values	are	given	in	text,	not	binary,	and	the	data	fields	are	separated	by	commas:

$

Preamble

GP

Message	from	GPS

GGA

Time	and	position	message

172814.0

UTC	time

3018.9370

Latitude	as	ddmm.mmmm

N

North	or	South	latitude

09743.0739

Longitude	as	dddmm.mmmm

W

East	or	West	longitude

1



Fix	quality,	1=3D	fix
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16

Number	of	satellites	in	use

0.9

HDOP

151.0

Height	above	sea	level

M

Height	is	in	meters

2.0

Height	above	the	ground

M

Height	is	in	meters

<empty>

Used	for	differential	GPS

<empty>

Used	for	differential	GPS

*

End	of	message	indicator

1234

Checksum

When	we	put	this	together	in	a	complete	message	it	looks	like	this:

$GPGGA,172814.0,3018.9370,N,09743.0739,W,1,16,0.9,151.0,M,2.0,M,,,*1234

While	that	might	not	immediately	say	Austin,	TX,	to	you,	it’s	pretty	easy	for	a	computer	to	interpret.

An	understanding	of	the	various	standards	and	protocols	in	use	on	drones	will	serve	you	well,	whether	you
want	to	write	a	fancy	app	to	control	your	drone	remotely	or	just	want	to	understand	why	we	have	to	swap
the	transmit	and	receive	wires	sometimes.	Perhaps	you	are	building	some	new	type	of	aircraft	that	the
world	has	never	seen!	If	you	make	it	speak	MSP	or	MAVLink,	you	can	take	advantage	of	existing	ground
station	software	and	concen-trate	on	your	new	design.	Maybe	understanding	how	these	protocols	work
will	inspire	you	to	invent	your	own	protocol.	If	it’s	good	enough,	maybe	they	will	name	it	after	you,	like
Samuel	Morse	and	his	Morse	code	or	Émile	Baudout	with	both	Baudout	code	and	baud	rate.

194
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As	futuristic	as	a	current	drone	performing	a	completely	autonomous	flight	might	seem,	most	people
agree	that	we	are	only	at	the	beginning.	There	may	yet	be	new	breakthroughs	that	change	the	game,
breakthroughs	like	in	the	motors,	batteries,	and	control	systems	I	described	in	Chapter	1	as	making
drones	possible.	Battery	technology	seems	like	one	place	where	radical	changes	might	happen.	But	we
will	stay	on	safer	ground,	or	perhaps	in	safer	skies,	here	by	only	asking	where	current	trends	might	take



us.

Specialization

Already	an	aerial	photography	drone	looks	different	from	a	racing	drone.	If	and	when	we	have	delivery
drones,	those	will	surely	be	a	different	breed	again.	Just	as	today	we	have	several	well	established
categories	of	cars	(economy	car,	pickup,	sports	car,	off-road	vehicle,	etc.),	I	would	expect	there	to	be
several	established	categories	of	drones.

Just	as	today	few	people	could	tell	you	how	many	horsepower	the	engine	in	their	car	can	produce,	many
categories	of	drone	will	simply	do	a	job	with	performance	measured	by	one	or	two	obvious	numbers,	like
flight	time.	Then,	as	with	the	car	hot-rodders,	there	will	be	certain	groups	who	know	every	last	thing
about	their	drones,	who	are	constantly	trying	to	find	the	best	combination	of	components	and
programming.

I	would,	however,	expect	one	aspect	of	drone	flying	to	move	toward	standardization	rather	than
specialization:	the	controls	by	which	we	fly	them.	Just	as	cars	have	the	pedals	in	the	same	places	and
traditional	aircraft	have	standard	instrument	layouts,	I	hope	that	the	different	manufacturers	and	control
system	communities	will	adopt	some	common	human	interface	standards.	I	think	the	names	and	precise
definitions	of	several	standard	flight	modes	could	be	common.	Safety	would	be	increased	if	safety	features
like	the	safety	switch	in	our	big	drone	got	used	the	same	way	in	every	flight	stack.
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Regulation

Governments	have	taken	an	interest	in	drones	as	well,	and	new	regulations	on	drones	get	passed	all	the
time.	It’s	a	pretty	good	guess	that	this	trend	will	continue.

Ease	of	Use

The	trend	toward	ease	of	use	in	drones	has	taken	place	mostly	in	the	mid-to	large-sized	drones	so	far,
because	these	have	the	payload	capacity	to	carry	the	new	technology.	As	that	technology	becomes	more
common	and	more	highly	integrated,	it	should	make	its	way	into	smaller	and	smaller	drones.

An	easier-to-fly	drone	translates	to	a	safer	drone.	If	the	controls	are	too	complex,	then	mistakes	are	more
likely.	There	are	commercial	jobs	that	drones	can	do,	but	if	someone	has	to	go	practice	hundreds	of	hours
to	learn	to	fly	them,	it’s	not	gonna	happen.

The	educational	possibilities	for	drones	will	be	opened	up	as	they	become	easier	to	fly,	too.

Just	think	what	kids	could	do	with	a	drone	that	could	be	sent	on	autonomous	missions	with	an	interface	as
fun	as	Lego	Mindstorms!	The	lesson,	like	the	job,	is	more	likely	to	succeed	when	the	reward	is	more
immediate.

On	the	other	hand,	I	hope	there	will	always	be	a	place	for	piloting	skill	as	well.	Drone	racing	is	fast
becoming	a	popular	spectator	sport.	The	pundits	already	debate	whether	race	car	drivers	are	athletes	in
the	same	sense	as	runners.	I	wonder	if	a	guy	sitting	in	a	lawn	chair	with	goggles	on	twiddling	his	thumbs
on	some	sticks	will	count?	In	his	head	he’s	going	a	hundred	miles	an	hour!

Safety

As	we	saw	in	Chapter	23,	drones	have	been	getting	steadily	safer,	with	features	like	sensor	redundancy
and	failsafe	systems.	I	certainly	hope	this	trend	continues	with	recovery	parachutes	and	fully	redundant
power	systems	and	controllers,	and	that	we	handle	failures	ever	more	gracefully.

As	the	number	of	drones	increases	year	by	year,	we	will	be	forced	to	keep	making	our	drones	safer	if	we
want	to	be	allowed	to	keep	flying	them.	If	drones	are	to	be	allowed	to	fly	over	people,	just	as	traditional
aircraft	fly	over	our	cities	every	day,	then	the	risk	of	a	drone	crashing	must	be	much	lower	than	most
drones	in	the	air	today	can	claim.

I	believe	we	will	learn	to	build	a	class	of	drone	that	can	be	safely	flown	in	and	around	people.	People	fly
their	drones	close	to	people	all	the	time	now,	regardless,	so	this	will	be	good	for	everyone,	pilots	and
bystanders	alike.
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Human	Flight

Every	so	often,	a	new	story	shows	up	where	someone	or	some	company	has	strapped

enough	drone	technology	together	to	be	able	to	carry	a	human.	Sadly,	I	have	to	say	that	most	of	them	look
like	a	bad	idea.	I	have	already	commented	on	the	number	of	single	points	of	failure	in	today’s	drones.	This
can	be	reduced	by	redundancy,	but	actually	designing	control	systems	where	human	life	is	at	risk	starts
much	further	back	than	that.

When	designing	for	human	safety,	you	start	with	the	management	processes.	If	you	don’t	know	what	you
are	doing,	how	will	you	know	that	you	are	doing	it	right?	Redundancy	and	fault	tolerance	in	the	narrow
sense	that	we	discussed	earlier	certainly	play	a	part.	Specialized	analysis	techniques	like	failure	mode	and
effects	analysis	(FMEA)	or	testing	techniques	like	hardware-in-loop	(HIL)	testing	allow	the	systems	to	be
validated	before	they	are	actually	built.	These	things	will	come	to	drones.	Already	HIL	testing	and
simulation	can	be	done	using	certain	ground	control	station	software.

Driverless	cars	that	carry	humans	share	the	road	with	us	now.	Our	small,	remotely	or	autonomously
piloted	drones	will	need	to	share	the	sky	with	larger,	traditional	aircraft	as	our	numbers	grow.	We	may	not
be	there	yet,	but	I	can	imagine	the	day	when	some	conver-gence	of	drone	and	conventional	aircraft
technology	lets	me	take	off	in	my	own	multirotor.

I	can’t	wait!
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Symbols

translational	lift,	73

vortex	ring	state,	74

10DOF	(degrees	of	freedom)	sensors,	52

yaw,	71

250	class	FPV	racers,	21

AFHDS	2A	standard,	190

380	mAh,	25C,	1S	LiPo	battery,	26

Ah	rating	of	batteries,	164

3D	Robotics,	12

AHRS	(attitude	and	heading	reference	system),

3DR	433	MHz	radio	sets,	143

52,	76

3S,	2700	mAh	batteries,	164

(see	also	IMU/AHRS)

6DOF	(degrees	of	freedom)	sensors,	52,	80

alternating	current	(AC)	motors,	131

9	DOF	(degrees	of	freedom)	sensors,	81

altitude

controlling	using	HC-SR04	ultrasonic	pinger

A

module,	172

measurement	using	lidar,	173

altitude	hold	mode,	168

accelerometers,	6,	75,	77

effects	of	vibration	in,	179

calibrating	for	S500	drone	flight	test,	167

analogWrite()	function,	66

in	MultiWii	Manual	mode,	45

Anderson,	Chris,	12

Rate	mode	and,	85

Angle	mode,	45,	71,	84

vibrations	affecting,	179



anisotropic	magnetoresistance	(AMR),	158

acro	or	acrobatic	mode,	85

antennas,	Quantum	i8	RC	receiver,	142

(see	also	Rate	mode)

APM	Planner	(Mac),	145

activities	with	drones,	19-22

compassmot	test,	160

aerial	photography,	19

APM/ArduPilot,	11

education,	21

APM:Copter	flight	control	system,	12

flying,	22

running	software	version	3.3	or	later,	13

FPV	racing,	20

ArduCopter,	118

aerial	photography,	19

drones	based	on,	2

aerodynamics,	multirotor,	69-74

ArduCopter/PX4	flight	control	systems,	192

lift	and	thrust,	69

Arduino	boards

pitch	and	roll,	71

199

in	MultiWii	control	systems,	10

(see	also	coreless	motors)

using	Arduino	Uno	to	bind	Lemon	RX

brushless	motors,	3,	118,	131-136

receiver,	60

and	their	ESCs,	134

Arduino	IDE

BECs,	135

modifying	code	for	X4Wii	build,	35

EMAX	MT2216	II	KV810	motors,	133

setting	connecting	to	MicroMWC	controller,

overview,	131

35

setting	up	for	use	with	Teensy	3.2	processor,



57

C

Arduino	project	for	X4Wii,	downloading,	35

C	rating	for	batteries,	164

ATTITUDE	command	(MSP),	64

cables

auto	mode,	168

checking	for	defects,	128

axisCmd,	84

connecting	MicroMWC	to	Bluetooth	module,

axisCmdPID,	86

39

calcIMU()	function,	78

B

cameras	on	drones,	19

CAN	(Controller	Area	Network),	189

Bakke,	Rolf,	14

capacitors,	100

barber	pole	sensors,	158

carbon	fiber	props,	162

Baseflight,	16

CC3D/OpenPilot,	15

batteries,	4

channels,	parsing	raw	serial	data	into,	62

and	hover	time	for	different	props,	29

checklist,	final,	before	first	flight,	170

connecting	3S,	2700	mAh	battery	for	S500

cinematography,	aerial,	19

drone,	164

circleDiff()	function,	84

for	Visible	Drone	project,	53

circuit	board	and	motor	controllers,	54,	97-106

getting	low,	warnings	about,	184

component	placement,	98

hover	time	for	different	batteries,	27

construction,	104

in	redundant	power	systems,	185



design	tools	and	files,	98

soldering	battery	connector	onto	MicroMWC

motor	controller,	100

controller,	37

power	input	and	distribution,	99

upgrading	for	Hubsan	X4	107C,	26

schematic	and	layout,	102

USB	power	and,	113

Cleanflight,	17

battery	eliminator	circuits	(BECs),	135,	185

coils	in	brushless	motors,	131

baud	rate,	189

number	of,	133

Blade	MLP4DSM	transmitter,	33

width	and	height	of,	133

Blink	example	program,	running,	58

combined	pulse	position	modulation	(CPPM	or

Bluetooth

PPM),	141,	191

connection	baud	rate,	slow	loop	and,	60

compass	calibration,	159

HB-02	serial	Bluetooth	module,	32

compass	dance,	159

building	cable	to	connect	to	MicroMWC,

compassmot,	160

39

computer	interfaces,	187

HC-06	Bluetooth	module,	63

connectors	in	serial	interfaces,	188

radio	for	Visible	Drone	project,	52

constructing	and	tuning	a	drone,	107-115

BNF	(bind	and	fly)	version,	Syma	X5,	55

completing	the	frame,	110

brushed	motors,	3,	131

connecting	motors,	108
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flight	testing	and	future	work,	114

D

ground	test,	112

installing	radios,	109

damping	(vibration),	179

installing	the	controller	and	connecting	LEDs,	DC-DC	converters,	53

107

declination	(magnetic),	156,	159

control	systems,	5,	9-18

derivative	(in	PID	algorithm),	88

adding	to	sprung	weight,	179

tuning,	92

building	custom	controller	for	Visible	Drone,

design	file	(VizDrone),	98

49

desktop	program,	MultiWiiConf,	43

circuit	board	with	motor	controllers,	54

deviation,	157,	159

Teensy	3.2	CPU,	50

differential	thrust,	71

CC3D/OpenPilot,	15

differential	torque,	71

choosing	a	flight	control	system,	17

diodes,	flyback	or	protection,	101

DJI/Naza,	14

direct	current	(DC)	motors,	131

Dronecode,	11

DJI	Flamewheel	450	and	550	quadcopters,	118

in	brushless	motors,	4

DJI/Naza,	14

installing	a	controller,	107

DNS3080	optical	sensor,	173

installing	flight	controller	and	radios,	137-146	drone	activities	(see	activities	with	drones)	PixHawk	Lite
and	shock	mount,	138

Dronecode,	11

RC	radios,	140

APM/ArduPilot,	11

safety	switch,	144



PX4/Pixhawk	flight	controllers,	13

telemetry	radio,	143

drones	versus	quadcopters,	2

testing,	144

DSM/DSM2/DSMX	standards,	190

KK2,	14

DSM2	protocol,	33

MultiWii,	9

power-on	sequence	for	DSM	radios	on	X4Wii,

Naze32/Baseflight/Cleanflight,	16

41

possible	future	standardization	in,	195

seven	channels	in	each	frame,	62

use	of	redundancy	to	improve	reliability	and

performance,	185

writing	basic	I/O	code	for,	57-67

E

main	loop,	59

RC	receiver,	60

Earth,	magnetic	field,	155

setting	up	the	IDE,	57

ease	of	use	in	drones,	196

ControlCopter	3D	(see	CC3D/OpenPilot)

education,	applications	for	drones,	21

Controller	Area	Network	(CAN),	189

Einstein,	Albert,	149

coreless	motors,	3

electric	aircraft,	4

brushed	motors	and,	3

electronic	speed	controllers	(ESCs),	54,	123,	131

Coriolis	vibratory	gyroscopes,	76

completing	wiring	to	power	distribution

CPUs

board,	130

in	drone	control	systems,	5

for	brushless	motors,	134

more	powerful	CPU	for	Visible	Drone,	50



BECs,	135

crash	kits,	32

mounting,	123

crimping	tools,	108

plugging	signal	cable	into	throttle	channel	on

cyclic	redundancy	checks	(crc),	64

RC	receiver,	128

PWM	standard	for	control,	191

soldering	motors	to,	in	S500	drone,	127
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swapping	wiring	to	get	correct	prop	rotation,	FTDI	adapter,	connecting	MicroMWC	to	your

129

computer,	36

testing,	127

FTDI	programmer,	32

wiring	to	power	distribution	board,	124

future	of	drones,	195-197

EMax	2216	motors	with	1045	props	and	3S

ease	of	use,	196

batteries,	164

human	flight,	197

EMAX	MT2216	II	KV810	motors,	133

regulation,	196

Ethernet	connections,	control	systems	and,	190

safety,	196

evaluateMSPCmd()	function,	65

specialization,	195

extended	Kalman	filters	(EKF),	185

G

F

gimbal	lock,	80

FAA,	registration	requirements	for	drones,	117,

gimbals,	132

170

brushless	gimbal	motors,	133

failure	mode	and	effects	analysis	(FMEA),	197



Global	Positioning	System	(see	GPS)

failure	modes	and	fault	tolerance,	183-185

GLONASS	(GLobal	NAvigation	Satellite	System),

failsafes,	183

148

redundancy,	185

GoPro	cameras,	19

fast	and	slow	loops,	59

government	regulation	of	drones,	196

field	effect	transistors	(FETs),	66,	100

GPS,	147-153

choosing,	101

HDOP	(horizontal	dilution	of	precision),	150

in	brushless	motor	ESCs,	134

history	of,	148

Flamewheel	450	and	550	quadcopters,	118

in	APM/ArduPilot,	11

flight	control	systems	(see	control	systems)

installation,	151

floating	point	numbers,	50

NMEA	0183	standard	for	data,	193

flying,	22

theory,	148

flight	test	for	Visible	Drone,	114

use	of	GLONASS	and	GPS	satellites	by

S500	drone,	161-170

receivers,	148

connecting	battery	and	voltage	monitor,

gravity

164

determining	direction	of,	78

final	checklist	and	first	flight,	169

sensors	in	MARG	systems,	52

flight	modes,	168

GY-88	sensor	module,	52

initial	tuning,	168

gyro/accelerometer	chips,	15,	78



installing	props,	162

gyroscopes,	75,	76

radio	and	accelerometer	calibration,	166

advances	in,	6

FMEA	(failure	mode	and	effects	analysis),	197

in	MultiWii	Manual	mode,	45

FPV	racing,	20

Rate	mode	and,	85

frames

vibrations	affecting,	179

building	a	drone	with	a	large	frame,	117

choosing	for	Visible	Drone	project,	55

completing	in	drone	construction,	110

H

Fritzing,	98

ham	radio	license,	requirement	for	use	of

FrSky	radios,	191

433MHz	band	in	US,	143

hardware-in-loop	testing	(HIL),	197
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HB-02	serial	Bluetooth	module,	32

GPS,	193

building	cable	to	connect	module	to

RC	radio	standards,	190

MicroMWC	controller,	39

servo/ESC	control,	191

HC-06	Bluetooth	module,	52

telemetry,	192

writing	I/O	code	for,	63

interrupt	handler	(serial	events),	62

HC-SR04	ultrasonic	pinger	module,	172

Invensense	MPU-6050	six-axis	gyro/

HDOP	(horizontal	dilution	of	precision),	150

accelerometer	chip,	15

headless	mode,	81

isolation	(vibration),	179



heat	shrink	tubing,	123

HMC5883L	three-axis	magnetometer,	159

hot	air	soldering	stations,	104

K

hovering,	24

Kalman	filters,	5

hover	time	for	different	batteries,	27

extended,	185

hover	time	for	different	propellers,	28

using	to	make	GPS	work	in	practice,	149

translational	lift	and,	73

Kelvin,	Lord	William	Thomson,	157

Hubsan	X4,	improving,	23-30

KK2	flight	controllers,	14

battery	upgrade,	26

KKMulticopter	boards,	14

goals	and	test	methods,	24

Kv	rating	of	motors,	133

Hubsan	X4	107C,	24

propeller	upgrade,	27

human	flight,	197

L

I

laser	interferometry	gyroscopes,	76

LEDs

connecting	to	new	controller,	107

I/O	(input/output)	code,	57-67

testing	on	completed	Visible	Drone,	112

for	HC-06	Bluetooth	module,	63

Lemon	RX	DSM2	receiver,	51

for	motors,	66

lidar,	173

main	loop,	59

Lidar-Lite	series	of	modules,	173

RC	receiver,	60

lift,	69

setting	up	Arduino	IDE,	57



translational,	73

I2C	(inter-integrated	circuit)	interfaces,	189

LiPo	(lithium	polymer)	batteries,	4

communication	errors	with,	189

1S	LiPos	for	Visible	Drone	project,	53

reading	values	from	I2C	bus,	79

380	mAh,	25C,	1S	LiPo	with	Hubsan	X4	107C,

IMU	(inertial	measurement	unit),	52

26

IMU/AHRS,	75-81

warning	about	underrated	LiPos,	27

accelerometers,	77

logic	levels	(voltage),	188

gyroscopes,	76

loiter	mode,	168

IMU,	78

magnetometers,	80

inner	and	outer	loops,	59

M

integral	(in	PID	algorithm),	88

integral	windup,	90

magnetic	field	(Earth),	155

tuning,	91

magnetic	versus	geographic	north,	156

interfaces,	187-194

magnetic,	angular	rate,	and	gravity	(MARG)

computer,	187

systems,	52,	81
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magnetometer	sensors,	72

making	S500	drone	motors	spin	in	desired

magnetometers,	75,	80,	155-160

direction,	129

declination	and	deviation,	156

mounting	on	S500	drone,	126

magnetoresistance,	158



numbering	for	PixHawk	Lite	flight	controller,

use	in	drones,	159

141

magnets	in	brushless	motors,	131

soldering	motor	wires	onto	MicroMWC

number	of,	133

controller,	38

Mahony/Madgwick	algorithm,	80

upgrading	for	Hubsan	X4	107C,	30

main	loops,	flight	control	systems,	59

writing	code	to	control,	66

Manual	mode	(MultiWii),	45,	84,	85

MSP	(see	MultiWii	Serial	Protocol)

mapping,	using	drones,	20

MT2216	II	KV810	motors,	133

MAVLink,	145,	192

multirotor	aerodynamics	(see	aerodynamics,

maxAngle	parameter,	84

multirotor)

Maxbotix	HRLV-EZ4	sonar	module,	173

multirotors,	2

metal	oxide	semiconductor	field	effect

MultiWii	controllers,	10

transistors	(MOSFETs),	100

MultiWii	Configurator,	43

micro	electrical	mechanical	systems	(MEMS),	76

MultiWii	control	systems,	9

in	integrated	circuit	accelerometers,	77

Naze32/Baseflight/Cleanflight	forks,	16

MicroMWC	flight	controller,	31

MultiWii	Serial	Protocol	(MSP),	10,	64,	192

connecting	to	your	computer	using	FTDI

ATTITUDE	command,	64

adapter,	36

parsing	incoming	MSP	messages,	64

settings	for	connection	to	Arduino	IDE,	35

sending	a	message,	64



soldering	battery	connector	onto,	37

MultiWii/Baseflight/Cleanflight	flight	control

with	accessories,	33

software,	192

Mission	Planner,	145

MultiwiiConf,	10,	43

tuning	screen,	169

tuning	modes,	45

mix,	83,	85

using	to	ground	test	Visible	Drone,	113

MLP4DSM	transmitter,	33

Muñoz,	Jordi,	12

modes,	83-85

Angle,	84

flight	modes	for	S500	drone,	168

N

names	for,	in	different	control	systems,	83

National	Marine	Electronics	Association's	NMEA

Quantum	i8	RC	transmitter,	141

0183	standard,	193

Rate,	85

Naza	flight	control	system,	14

RC	transmitter,	83

Naze32	Configurator,	43

setting	for	X4Wii,	45

Naze32/Baseflight/Cleanflight,	16

motor	controllers,	54,	100

NMEA	0183	standard,	193

motors,	2

NuttX	operating	system,	13

brushless,	118

nylon	1045	props,	162

brushless	motors	and	their	ESCs,	131-136

choosing	for	Visible	Drone	project,	55

connecting	in	drone	construction,	108

O

creating	vibration,	178



for	S500	drone,	determining	spin	direction,

OpenPilot	project,	15

127

optical	flow	sensors,	171,	173
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P

putting	on	X4Wii	drone,	40

swapping	ESC	wiring	to	get	correct	rotation,

Paparazzi	flight	controller	project,	17

129

parseRXData()	function,	62

upgrading	for	Hubsan	X4	107C,	27

Phantom	line	of	quadcopters	(DJI),	14

proportional	(in	PID	algorithm),	87

photography,	aerial,	using	drones,	14,	15,	19

tuning,	91

PID	controllers,	5

proportional–integral–derivative	(PID)	(see	PIDs)

adjusting,	169

pulse	position	modulation	(PPM),	141,	191

PIDs	(proportional–integral–derivatives),	32,

pulse	width	modulation	(PWM),	66,	102

87-94

for	small,	brushed	motors,	66

axisCmdPID,	86

Quantum	i8	RC	receiver,	141

implementations	of	the	algorithm,	90

standard	for	servo/ESC	control,	191

PID	algorithm,	87

PX4	flight	control	systems,	192

derivative	(D),	88

PX4/Pixhawk	flight	controllers,	13

integral	(I),	88

diagram	of	APM/PX4	control	systems,	13

proportional	(P),	87

PX4Flow	optical	flow	sensor,	173



tuning,	90

for	X4Wii	drone,	43

Q

in	practice,	94

in	theory,	90-93

QGroundControl,	145

piezoelectric	sensors,	77

accelerometer	calibration	screen,	167

PixHawk	Lite	flight	controller,	137

compass	calibration,	159

and	shock	mount,	138

failsafe	setup	screen,	183

GPS	installation,	151

radio	calibration	screen,	166

polarity,	checking,	127

quadcopters,	1

position	hold	mode,	168

drones	versus,	2

power

Quantum	i8	RC	transmitter	and	receiver,	140

constructing	power	system	on	circuit	boards,

quaternions,	80

104

hazards	of	using	USB	and	batteries	together,

112

R

input	and	distribution	for	circuit	board	and

motor	controller,	99

radios

installing	power	system	for	S500	drone,

adding	RC	receiver	to	S500	drone,	128

123-130,	138

calibrating	for	S500	drone	flight	test,	166

completing	power	distribution	board

for	Visible	Drone	project,	51

wiring,	130

I/O	code	for	RC	receiver,	60



mounting	the	motors,	126

ground	testing	in	Visible	Drone,	113

wiring	power	distribution	board,	124

installing	for	PixHawk	flight	controller,	137

redundancy	in	power	supply,	185

RC	radios,	140

propellers

telemetry	radio,	143

balancing,	180

installing	on	circuit	board,	109

creating	vibration,	178

RC	radio	standards,	190

hover	time	for	different	propellers,	28

DSM/DSM2/DSMX,	190

installing	for	S500	drone,	162

FrSky,	191

RC	radios	for	Visible	Drone	project,	51
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RC	transmitter	modes,	83

in	MARG	systems,	52

testing	installation	of,	145

multisensor	systems,	effects	of	vibration	on,

Rate	mode,	85

179

RC	(radio	control)	rates,	84

new	technologies,	171-175

changing	RC	values	for	X4Wii,	35

lidar,	173

tuning	for	X4Wii,	42

optical	flow	sensors,	173

readIMU()	function,	78

sonar,	172

redundancies	to	handle	failures,	185

visual	odometry,	175

regulation	of	drones,	196

serial	interfaces,	187



resistors,	100,	101

connectors,	188

return	to	land	mode,	168

Serial	library	(Arduino),	62

ring	laser	gyroscopes,	76

serial	peripheral	interface	(SPI),	189

roll,	defined,	71

servos,	standard	PWM,	66,	191

roll,	pitch,	and	yaw,	75

shock	mount,	installing	for	PixHawk	Lite

calculating	pitch	and	roll	in	Angle	mode,	84

controller,	139

getting	values	with	MSP_ATTITUDE

slow	loop,	60

command,	64

smartphone	programs,	43,	145

in	MultiWii	Manual	mode,	45

soldering	surface	mount	components,	98

PID	settings	for,	X4Wii,	43

hot	air	versus	soldering	irons,	104

pitch	and	roll,	71

solenoids,	101

roll	and	pitch	settings	in	MultiWii,	42

sonar,	172

smoothing	and	computing	the	yaw	rate,	85

space	weather,	checking,	170

Tait-Bryan	angles	of,	80

specialization	in	drones,	195

yaw,	71

Spektrum,	RC	radios,	51

SPI	(Serial	Peripheral	Interface),	189

S

stabilize	mode,	84,	168

(see	also	Angle	mode)

S500	drone

states	(in	MSP),	64

flying,	161-170



Syma	X5,	55

frame,	117-121

completed	frame,	120

T

following	instructions,	119

S500	drone	frame	kit,	118

Tait-Bryan	angles	of	roll,	pitch,	and	yaw,	80

installing	the	power	system,	123-130

Tau	Labs,	17

determining	direction	of	motor	spin,	127

Teensy	3.2	processor,	50

mounting	the	ESCs,	123

setting	up	Arduino	IDE	for	use	with,	57

mounting	the	motors,	126

Teensyduino	package,	57

wiring	power	distribution	board,	124

Teensyloader	program,	57

safety	switch,	installing,	144

telemetry	data,	192

safety,	trends	in,	196

telemetry	radios

Sagnac	effect,	76

for	Visible	Drone	project,	52

satellite	receivers,	51

installing	3DR	433	MHz	radio	set,	143

sensors

testing

AMR,	158

flight	test	of	Visible	Drone,	114

failure	of,	185

ground	testing	Visible	Drone,	112
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Index

hardware-in-loop	testing	(HIL),	197

weight	budget,	56

installation	of	control	system	and	radios,	144

visual	odometry,	175



test	rig	for	PID	implementations,	94

voltage,	123

test	stand	for	Hubsan	X4	107C,	24

(see	also	batteries;	power)

three-phase	motors,	132

in	serial	connections,	188

throttle,	setting,	86

voltage	monitors,	165

thrust,	69

vortex	ring	state,	74

pitch	and	roll	and,	71

vortex	rotor	state	(VRS),	74

torque,	differential,	71

translational	lift,	73

tuning	drones,	87

W

(see	also	PIDs)

weather	conditions	for	first	flights,	170

initial	tuning	for	S500	drone	flight,	168

weight	budget	(Visible	Drone	project),	56

tuning	parameters	for	S500	drone,	162

Wii	controllers,	9

Wire	library	(Arduino),	78

U

wiring

for	S500	drone	motors,	not	trimming,	126

ultrasonic	pinger	module	(HC-SR04),	172

safety	switch,	144

USB,	using	to	load	new	code,	113

telemetry	radio,	143

writeMSP_ATTITUDE()	function,	64

V

X

vibrating	structure	gyroscopes	(see	Coriolis

vibratory	gyroscopes)

X4Wii,	building,	31-47

vibration,	177-181



assembly,	40

balancing	propellers	to	mitigate,	180

flashing	new	code,	35

causes	of,	178

parts,	32

damping	and	isolation,	179

setup	and	tuning,	42

effects	of,	178

modes,	45

resonating	with	the	frame,	178

PIDs,	43

VisDroneBlink	sketch,	112

RC	(radio	control)	rates,	42

Visible	Drone,	building,	49-56

wiring,	37

circuit	board	with	motor	controllers,	54

frame,	motors,	and	propellers,	55

IMU/AHRS,	52

Y

power,	53

yaw,	71

radios,	51

(see	also	roll,	pitch,	and	yaw)

schematic	and	layout	for	controller,	102

PID	settings	for,	X4Wii,	43

test	rig	for	PID	implementations,	94

uprading	the	CPU,	50
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