ANSWERS TO REVIEW QUESTIONS

Section 1

1. Two phases.
2. Pulsating
3. Synchronous speed.
4. Phase sequence:
5. Same
6. 1.5
7. Torque
8. Electromagnetic induction.
9. Supply frequency and number of poles.
10. Slip is required to maintain an induced rotor field, so that torque is developed.
11.

12. 750 rpm
13. Two poles
14. Since $N_{\text {sync }}=\frac{120 f \downarrow}{P}$ speed decreases
15. The rotor field is established by electromagnetic induction between the RMF of the stator and the rotor conductors.
16. B any two lines may be crossed

17.

A

B
18.

A.

B
19.

20.

Section 2

1. Interchange any two supply lead connections,
2. Star
3. Reduce eddy current loss.
4. Copper or aluminium.
5. Skewed with respect to the stator slots.
6. None
7. Have no effect on the motor operation.
8. Greater than 1 megohm.
9. 10 to 100 ohms.
10. $\quad 0.5 \mathrm{~mm}$
11. Wound rotor.
12. Cast into slots in pre-stacked laminated stampings.
13. Totally enclosed.
14. No change.
15. End shields and stator.
16. isolate supply and danger tag

- check for no supply at motor terminals
- sketch terminal block connection and tag wiring
- disconnect wiring
- witness mark end shields to frame and dismantle

Section 3

1. 735 tpm
2. Synchronous speed and rotor speed.
3. When rotor resistance equals rotor reactance.
4. Supply voltage squared.
5. Higher starting torque and higher full-load slip.
6. Rock crusher.
7. Increase with load increases.
8. Increases with slip increases.
9. For low values of slip.
10. Starting torque and current.
11. Increases
12. Zero
13. When rotor resistance equals rotor reactance.
14. The motor stalls.
15. It increases the starting torque.

16 (A) break down torque
(B) starting torque
(C) full load torque
(D) synchronous speed
17. C
18. 960 rpm
19. 4%
20. 67.5 Nm

Section 4

1. From AS3000-Clause 0.5.51:
"Fuse - a device for protecting a circuit against damage from an excessive current flowing in it by opening the circuit on the melting of the fuse- element by suich an excessive current.
2. Clause 4.15.6.3

That clause refers to protection by themal overload devices and refers to devices complying with AS1023.
3. Clause 2.4.3.4

That clause refers to the protection of motors against short-time overload by fuses. It stipulates the fuse ratings required for different types of motors.
4. Clause 4.15.3

That clause deals with the function, rating, location and marking of isolating switches controlling motors and their ancillary equipment.
5. Main requirements: adequate enclosures; adequate insulating materials; ventilation as necessary; inclusion of anti-condensation heaters.
6. Any three of these following:

- reduction to disruption of neighibouring consumers' supply
- control of motor starting torque
- control of motor acceleration rate
- reduction in mechanical stress placed upon motor and drive
- reduction in motor heating
- less transients placed on supply lines
- less stress placed upon supply authority's equipment.

7. Any three of these following:
ai DOL starter

- star-delta starter
- primary resistance starter
a auto-transformer starter
- electronic (soft-start) starter
- secondary resistance starter.

8. Failsafe operation.
9. Locked rotor test.
10. 500 A
11. 197A
12. Reduce starting current and starting torque.
13. Non-automatic restart function and fail-safe operation.
14. 4
15. Latching contact.
16. Open circuited contactor coil.

Section 5

1. (a) $1 / 3 \times \mathrm{I}_{\mathrm{DOL}}$
(b) depending on resistance value (normally $60-70 \% \times \mathrm{I}_{\mathrm{DOL}}$)
(c) $(65 \%)^{2} \times \mathrm{I}_{\mathrm{DOL}}$
2. (a) $1 / 3 \times T_{D O L}$
(b) Torque \propto Voltage ${ }^{2}$
(c) $(65 \%)^{2} \times \mathrm{I}_{\mathrm{DOL}}$
3. Advantages relatively low cost good torque/current performance small-compact.
available in a range of kW sizes easily installed

Disadvantages

restricted to low inertia loads
6 terminal motor required speed falls in change over with transient current at transition
problems can easily arise from incorrect connection
4. Advantages
simple control circuit cost effective
allows for runup without supply break
allows for stepped resistors
three wire connection to the motor.
Disadvantages
wastefui of power due to heat from resistors
current/torque relationship is poor resistors are physically large
5. Advantages
line current to starting torque optimal adjustable tapping may start high inertia loads un-interrupted supply during start. with Korndorfer method less wasteful of power than primary resistance

Disadvantages

expensive auto-transformers
auto-transformers must be matched physically large and heavy
6. (a) fans, smail pumps.
(b) Iarge water pumps, low starting torque applications
(c) high power motor starting, high inertia applications:
7. Less sparking occurs at the contacts.
8. NTC characteristic
9.6
10. $\frac{1}{\sqrt{3}}$
11. In series with the stator windings
12. Starter resistance is gradually decreased.
13. 33%.
14. 33%,
15. It is wasteful of power.
16. May be used on high inertia loads.
17. 5 and 4 respectively.
18. Stay in star configuration.
19. Interlock contact.
20. Coil KM1 energises first.
21. Coil KM2 energises.
22. Short circuit the resistors.
23. A meechanical interlock.
24. TI
25. Run with reduced torque:

Section 6

1. three-phase half controller
a three-phase full controller
2. Advantages Disadvantages

Adjustable starting voltage. Higher cost
Adjustable acceleration time. Complex circuitry: Adjustable deceleration time.
3. Slip ring induction motors (wound rotor).
4. Line current is approximately $2 \mathrm{xI}_{\mathrm{FL}}$

Motor torque can be maintained at maximum value
5. Advantages Maximum torque is maintained. Speed control is available Low starting current
6. Electronic starters. $1 / 2$ controller -7.5 kW to 284 kW motors.
Full controllers - motors over 285 kW .
7. Adjustable starting voltage and adjustable starting time.
8. Fully controlled AC controller.
9. Controlling the trigger angle of the thyristor.
10. Pumping applications, traction drives.
11. Produce radio frequency interference.
12. Low ine current and high torque at start.
13. High inertia loads.
14. 3
15. KM1
16. Coil KAI will drop out when the start button is released.

Section 7

1. (i) plug braking
(ii) dynamic braking
(iii) regenerative braking
(iv) eddy current braking
(v) mechanical braking.
2. Resistors are used to reduce braking current.
3. DC voltage is applied to the stator.
4. Advantages
(a) high braking force
low cost
(b) controlled braking full braking is achieved

Disadvantages
Increased cost of installation Suitable for only one type of of motor

Secondary resistance starters
High inertia loads
(c) a controls overspeed a cannot stop the motor
a energy returned to the source
a cannot slow the motor below synch speed
(d) low cost of installation prevents creeping.
high maintenance required brake relining required.
5. The brake is applied when the power is off, ie. power is required to release the brake.
6. Creeping is prevented by using mechanical braking.
7. To reverse rotation, change over any two phases to the motor starter.
8. Operate controls to disconnect the motor supply.
9. More thán DOL starting current.
10. Regenerative braking.
11. An automatic mechanical braking function to protect against loss of supply.
12. Swap two of the supply lines to the motor.
13. Two types of voltage supply are required.
14. Ll and L 3 .
15. A mechanical interlock.
16. No effect on control circuit.

Section 8

1. a change the motor supply frequency

- change the number of stator poles

2. Artificial poles formed between the mainpoles.

By changing the main poles to all north or south poles.
3. - controlled rectifier/inverter

- rectifier/tiverter
- rectifier/chopper/inverter.

4. By changing the slip speed by introducing rotor resistance.
5. Winding machines, package machines, table rollers, pumps etc.
6. Advantages

Disadvantages
compact
high cost
good speed control
easy to interface
7. eddy current drive

- fluid couplings.

8. Two speeds for a single wound motor.
9. Both three-phase and single phase motors.
10. Increased with the frequency increase for speeds up to rated speed.
11. Separate force draught cooling.
12. Slow down.
13. Chopper.
14. Motor overheating.

Section 9

1. short duration

- long duration
- locked rotor

2. Short circuit and excessive loading.
3. © continuous

- diminishing

4. in line - bimetallic strip operation

- thermistor

5. In seties with the motor windings.
6. advantages

- fast operating
- high breaking capacity
- easy to replace
- large range.

7. See SAA wiring rules AS 3000 0.5.51.
8. - dashpot

- variable time
- instantaneous trip.

9. averload protection for DC motors and large $A C$ motors

- overload protection
- short circuit protection.

10. Low voitage will cause the motor to overheat and control elements may be sluggish.
11. No volt coils will disconnect the motor if the voltage falls below a preset value.
12. Overvoltage will cause heating of the motor and control coils together with increased power consumption.
13. increased heating of protective devices
m increased heating of the motor

- lower life span of moving parts.

14. See SAA wiring rules AS 3000 Section 6.
15. Detect abnormal motor temperature and disconnect the motor.
16. Only in-line overloads can have their current setting altered.
17. Faster to a larger overload current than to a small overioad current.
18. A PTC thermistor:
19. Some overloads are intentional.
20. In series with the motor windings.
21. Inverse time characteristic.
22. The full load current of the motor.
23. Not provide effective protection.
24. Rapid tripping of the motor overload protection.
25. The motor load partially seized.
26. Normally closed and connected in series with the control circuit.
27. Not provide effective protection.
28. Reflect the thermal characteristics of the motor.
29. Control accessories have a shorter life span:
30. Slightly exceeding the starting current of the motor.
31. Is capital cost intensive to install.
32. 57.7 A .

Sample theory test 1

1. The magnetic field of a three phase induction motor rotates at:
(tick the correct box)
\square slip speed

- rotor speed
\square synchronous speed
\square synchronous speed - slip speed.

2. The rotating magnetic field of a three phase induction motor rotates at a speed governed by: (tick the correct box)

- supply frequency and the number of stator poles
\square supply frequency and rotor speed
\square the number of stator poles and the motor type
\square rotor speed and the slip speed.

3. The magnitude of the flux produced by a three phase field system is:
(tick the correct box)

- 0.5 x that produced by a single phase winding
- $1.0 \times$ that produced by a single phase winding
$\square \quad 1.5 \mathrm{x}$ that produced by a single phase winding
$\square \quad 1.73 \times$ that produced by a single phase winding.

4. The direction of rotation of a three phase induction motor is dependent on supply: (tick the correct box)
\square voltage
\square phase sequence
\square frequency
\square current.
5. The rotor field of an induction motor is due to: (tick the correct box)
\square electromagnetic induction

- rotor resistance

■. DC excitation
\square rotor reactance.
6. The slip speed of an induction motor is defined as: (tick the correct box)

ㅁ synchronous speed over rotor speed
D rotor speed over synchronous speed
\square rotor speed minus synchronous speed
\square synchronous speed minus rotor speed.
7. Interchanging any two slip ring connections of a wound rotor would: (tick the correct box)
\square prevent the motor from operating
\square cause the motor to overload
\square have no effect on the motor operation
\square reverse the rotation of the motor.
8. After carrying out an insulation test between each of the stator windings and earth, the motor would pass if all test result were: (tick the correct box)
\square greater than 1 megohmless than 2 ohmsbetween 2 ohms and $10 \mathrm{k} \Omega$between $10 \mathrm{k} \Omega$ and 1 megohm.
9. The typical phase resistance of a stator winding for an induction motor would be: (tick the correct box)
$\square \quad 10$ to 100 ohms
$\square \quad 100$ to 1000 ohms

- greater than 1 megohm
\square almost zero ohms.

10. The air gap between the rotor and the stator core is typically (tick the correct box)

ㅁ $\quad 5.0 \mathrm{~mm}$

- $\quad 0.05 \mathrm{~mm}$
- 0.5 mm

ㅁ. 50 mm .
11. To reverse the direction of rotation of a squirrel cage motor you would: (tick the correct box)
\square disconnect and reverse the slip ring connections
\square interchange any two supply lead connections
\square change the delta connected stator winding to a star connectionreplace the squirrel cage rotor with a wound rotor.
12. The rotor winding of a wound rotor induction motor is usually connected in: (tick the correct box)
\square parallel
\square delta
\square star
\square series.
13. The stator core is laminated to: (tick the correct box)
$\square \quad$ reduce eddy current loss
\square improve starting torque
\square provide silent runningreduce hysteresis loss.
14. Rotor bars are usually made from: (tick the correct box)
[. carbon or copper
\square steel or copper
\square steel or aluminium
\square copper or aluminium.
15. To improve starting torque and to reduce operation noise rotor bars are: (tick the correct box)
\square cast aluminium
ㅁ star connected
\square the same number as the stator slots
\square skewed with respect to the stator slots.
16. Calculate the slip speed of a two pole 50 Hz three phase induction motor operating with a rotor speed of 2925 rpm .
17. Calculate the speed of rotation of the rotating magnetic filed of a four pole induction motor when connected to a 50 Hz supply.
18. If an induction motor operates with a percentage slip of 3%, and if the synchronous speed of the RMF is 1000 rpm , calculate the actual rotor speed.
19. If a 50 Hz induction motor operates with a rotor frequency of 2 Hz , calculate the percentage slip of the motor.
20. Calculate the supply frequency which would cause the rotating magnetic field of an eight pole induction motor to rotate at a synchronous speed of 1500 rpm .
21. The induction motor component which houses the three phase AC winding is the: (tick the correct box)

ㅁ. rotor
\square squirrel cage
\square end shield
\square stator.
22. The induction motor component which supports the rotational part of the motor is the: (tick the correct box)
\square squirrel cage
\square end shield
\square stator
\square rotor:
23. The induction motor component which produces the rotating magnetic field is the: (tick the correct box)
\square stator
\square squirrel cage
\square end shield
\square frame.
24. The stator core is laminated to: (tick the correct box)

- reduce eddy current losses
- reduce hysteresis losses
\square increase ventilation
[] reduce weight.

25. A rotor of a three phase induction motor is fitted with slip rings to allow the connection of: (tick the correct box)
\square three phase supply
\square stator windings
\square DC excitation
\square external resistances.
26. Squirrel cage three phase induction motors generally have: (tick thecorrect box)
$\square \quad$ low starting torque and low starting current
$\square \quad$ high starting torque and high starting current
$\square \quad$ low starting torque and high starting current
$\square \quad$ high starting torque and low starting current.
27. Dual cage rotor motors when compared to standard cage motors have: (tick the correct box)
\square higher starting torque and lower full load slip \square higher starting torque and higher full load slip
\square lower starting torque and lower full load slip
\square lower starting torque and higher fül load slip.
28. Wound rotor induction motors when compared to squirrel cage induction motors have: (tick the correct box)
\square lower starting torque, with a higher full load speed higher starting torque, with a higher full load speedlower starting torque, with a lower full load speed
h higher starting torque, with a lower full load speed.
29. The main advantage of a wound rotor motor over a squirrel cage motor is: (tick the correct box)

\square lower production cost

\square more efficient speed control
\square maximum torque can occur at starting
\square wider range of speed control.
30. The main advantage of a squirrel cage machine over the wound rotor machine is: (tick the correct box)

\square higher starting torque

\square lower production cost
\square higher full load slip
\square lower starting currents:
31. A deita connected three phase induction motor has the following resistanice measurements taken at the motor terminal block with the motor links still. connected:
U_{1} to $\mathrm{V}_{1}=5$ ohms
V_{i} to $\mathrm{W}_{1}=5 \mathrm{ohms}$
W_{1} to $\mathrm{U}_{1}=10$ ohms
The motor condition is: (tick the correct box)
$\square \quad$ open circuit in U phase
\square short circuit between U phase and V phase
\square open circuit W phase
\square motor tests OK.
32. An insulation resistance test is carried out on the terminals of a three phase induction motor with the connection links removed. The following results were recorded:
$\begin{array}{ll}\mathrm{U}_{1} \text { to frame }=2.0 \mathrm{M} \text { ohm } & \mathrm{U}_{1} \text { to } \mathrm{V}_{1}=1.95 \mathrm{M} \mathrm{ohm} \\ \mathrm{V}_{\mathrm{i}} \text { to frame }=1.9 \mathrm{M} \text { ohm } & \mathrm{V}_{1} \text { to } \mathrm{W}_{1}=0.75 \mathrm{M} \text { ohm } \\ \mathrm{W}_{1} \text { to frame }=2.1 \mathrm{M} \text { ohm } & \mathrm{W}_{1} \text { to } \mathrm{U}_{1}=2.0 \mathrm{M} \text { ohm }\end{array}$
The motor condition is: (tick the correct box)
\square acceptable due to high insulation resistance
\square unacceptable due to low insulation resistance windings to frame \square unacceptable due to low insulation resistance between phase windings \square acceptable due to the low insulation resistance.
33. On inspection two phase windings of a star connected stator are found to be burnt out. The most likely condition to cause this fault would be: (tick the correct box)
\square motor overload
\square motor overspeeding
\square single phasing
\square overvoltage supply.
34. A delta connected three phase induction motor when started fails to rotate, but accelerates when manually rotated, The most probable condition responsible for this iss: (tick the correct box)undervoltage supplya burnt out starting winding
\square a phase winding reversal
\square single phasing of the supply.
35. A three-phase squirrel cage induction motor star connected stator was found to have all phase windings burnt out. The most likely condition to cause this fault would be: (tick the correct box)
\square motor overspeeding
$\square \quad$ single phasing
\square overvoltage supply
\square motor overload.

Sample theory test 2

1. Limitation of starting currents taken by motors is detailed in: (tick the correct box).

ㅁ. supply authority local service rules
manufacturers' specificationsAS 3000 wiring rules book
\square local council health and building regulations.
2. The rating of an isolating switch must be: (tick the correct box)
\square equal to the full load current for AC motors
ㅁ 4 times the full load current for $A C$ motors
[6 times the full load current for AC motors

- 8 times the full load current for AC motors.

3. If a motor incorporated an anti-condensation heater, the heater: (tick the correct box)must be isolated when the motor is isolatedmay be ignored for isolation purposesmust be disconnected when the motor is isolatedmust be isolated after the motor being discornected.
4. An installation consists of $2 \times 11 \mathrm{~kW}$ three phase squirrel cage induction motors which only run when an operator is in attendance and $3 \times 18.5 \mathrm{~kW}$ three phase motors which operate unattended. Which of the following statements is correct? (tick the correct box).
\square the 11 kW motors do not require overtemperature protection the isolating switches adj
locked in the off position
\square the isolating switches for the 18.5 kW motors must operate in both power and control circuits
\square the control switch for each motor must be rated at 10 times loaded rotor
cuirrent.
5. In relation to the installation described in Question 4, would starting current limitation be applied to the 11 kW squirrel cage induction motor if the motor takes a current of 126 amperes when started DOL? (tick the correct box)

\square yes, at all times

\square no
\square yes, only when operator attended
\square depends on the supply authorities service rules.
6. The type of starter that requires 6 conductors between the starter and the motor is the: (tick the correct box)

star-delta starterprimary resistance starterreversing starterauto-transformer starter.
7. When starting a motor using a star-delta starter, the starting voltage applied to each starter winding would be: (tick the correct box)
$\square \frac{1}{3}$ of the line voltage
$\square \sqrt{3}$ of the line voltage
$\square \frac{1}{\sqrt{3}}$ of the line voltage
$\square \frac{1}{2}$ of the line voltage.
8. In many auto-transformer starters, the transition from the 'start' to the 'run' connection is accomplished without the need to disconnect the stipply from the motor. This method of operation is known as: (tick the correct box)kemmis connectionopen delta transition
korndorfer connectionopen circuit transition.
9. In a multi-step secondary resistance motor starter, as each step is completed, the resistors in the rotor circuit are: (tick the correct box)
\square reconnected in series with the motor
\square short circuited
\square reconnected in parallel with the rotoropen circuited.
10. The star and delta contactors in an automatic star-delta starter should be both mechanically and electrically interlocked to prevent: (tick the correct box)

```
motor hunting
\square \mp@code { o v e r t e m p e r a t u r e ~ c o n d i t i o n s }
\square ~ s i m u l t a n e o u s ~ c l o s i n g ~ o f ~ t h e ~ c o n t a c t o r s ~
\square \text { overspeeding of the motor.}
```

11. With regard to primary resistance starters, the types of material used in fluid resistors must exhibit a: (tick the correct box)
\square NTC characteristic
\square PTC characteristic
\square ZTC characteristic
\square CTC characteristic.
12. One disadvantage of using a star-delta starter is: (tick the correct box)
\square the motor may be started with load
\square more sparking occurs at the contacts
\square it allows the motor to run up to speed without a break in the supplya transient occurs when switching from star to delta.
13. An application for a secondary resistance is: (tick the correct box)

D to start squirrel cage motors
$\square \quad$ to start slip ring motors

- to start cage motors
\square to start dual rotor motors.

14. The starter providing the twin benefits of reduced starting current and increased starting torque is the: (tick the correct box).

- auto-transformer starter
\square star/delta starter
\square primary resistance starter
\square secondary resistance staiter:

15. A disadvantage of limiting the current when starting a squirrel cage three-phase induction motor is: (tick the correct box)
\square less mechanical force exerted on the motor windings
\square steadier acceleration of the connected load
\square less disturbance to the supply lines
\square a reduction in starting torque.

Questions 16 to 20 are related to the following characteristic curves for a three phase, 50 Hz slip ring induction motor

16. Which curve best suits maximum starting torque requirements?
\qquad
17. If the standstill rotor reactance is 1.4 ohms, what would be the resistance of the rotor circuit to give maximum starting torque?
\qquad
18. What is the value of breakdown torque for this motor?
\qquad
19. What is the starting torque when no resistance is added to the rotor circuit?
\qquad
20. What is the approximate percent slip for curve B at full load?
\qquad

Questions 21-25 refer to the AC motor starting circuit shown below.

21. Name the type of starting circuit shown.
\qquad
22. What will be the effect on the motor if time delay contact Tl does not operate?

23. What is the purpose of contactors K1 and K2?

24. What will be the effect on the motor if the K $1-5$ contact in series with the K3 coil fails to operate?
\qquad
25. What does the triangle symbol between coils K 1 and K 3 indicate.?
\qquad
26. Regenerative braking of a AC squirrel cage induction motor is used to: (tick the correct box)
\square stop the motor when the speed is above synchronous
\square slow the motor when the speed is below synchronous
\square stop the motor when the speed is below synchronous
\square slow the motor when the speed is above synchronous.
27. A three phase slip ring induction motor may have its speed decreased by: (tick the correct box)
\square adding resistance to the rotor circuitreducing the size of the cooling fan removing resistance from the rotor circuit changing the stator connections from star to delta.

Questions 28-30 refer to the AC motor circuit shown below.

28. The triangle symbol between contact K 1 and K 2 in the power circuit is a mechanical interlock, the purpose of this interlock is to: (tick the correct box)
\square prevent phase to phase short circuits
\square allow K 2 to energise first
\square allow K 1 to energise first
[] prevent phase to earth short circuits.
29. Using a sequence of events technique, if coil K 2 is energised, what happens in the control circuit if pushbutton S 1 is operated? (tick the correct box)
\square coil KI energises after K2 de-energises
\square noeffect.
\square coil K1 energises
\square coil K2 de-energises.
30. To reverse the direction of rotation of the three phase motor, the following takes place: (tick the correct box)LI and L 3 are swapped
\square
L 1 and L2 are swapped
\square L1, L2 and L2 are swapped
$\square \quad$ L2 and L3 are swapped.

Sample theory test?

Questions 31-35 refer to the AC motor braking circuit shown below:

31. What type of braking is used in the above circuit?
\qquad
\qquad
32. State the purpose of the normally closed contacts K 1 and K 2 .
\qquad
\qquad
33. What is the purpose of the device within the dotted box marked ' X '?
\qquad
\qquad
34. After the motor has been running for some time the stop pushbutton is operated. What is the condition of timer relay T , contactor K 1 and contactor K 2 immediately after the stop pushbotton is pressed?

T: \qquad
K1: \qquad
K2: \qquad
35. What is the function of the thermal relay (TOL)?

Sample practical test 1 - Part 1

Duration

30 minutes

Task

Test a three phase squirrel cage motor to determine if it is suitable for connection to the supply.

Procedure

1. Sketch the terminal block, terminals, links or wiring connections of the terminal block supplied.
2. Complete the following table by:
(a) listing the motor tests you would need to conduct before connecting the motor to the supply
(b) listing the appropriate test instrument used to perform each test
(c) using the test instruments perform the tests identified and record the results

Motor test	Test insirument	Resilts

Assessment

Students will pass this test if they can:
\square identify at least three tests.
\square identify the test instruments requiredrecord the results obtained.

Sample practical test 1 - Part 2

Duration

30 minutes

Task

Connect, run and reverse a three phase induction motor.

Procedure

1. On the diagram below draw the terminal block links required for the delta connection of the three phase induction motor.

Motor terminal block
2. Connect the motor terminal block links for the delta connection of the motor.
3. Connect the motor to the supply and energise, and write the direction of rotation in the box:

Direction of motor rotation:
4. On the diagram below draw the connection changes required to reverse the motor.

	U1	V_{2}
Li	0	0
	v_{1}	W_{2}
L_{2}	0	0
	Wi	U_{2}
L3	0	0

Motor terminal block

5: Carry out the connection changes required to reverse the motor, energise and write the direction of rotation in the box.

Direction of motor rotation:
6. Ask the teacher to assess your work.

Sample practical test 2

Task

Connect the control and power circuit of the reduced voltage AC motor starter, then find introduced faults.

Equipment

- three phase 50 Hz supply
- three phase squirrel cage induction motor
- contactors (2)
- timer
- thermal overload
- stop/start pushbutton stations
- fuses (4)
- starting resistors (3)
- ammeter clamp-on type
- tachometer
- voltmeter
- connection leads.

Procedure

1. Connect up the AC motor starter control circuit as shown below using the equipment provided.

DO NOT TURN THE POWER ON.

2. When you have finished the connections have the circuit checked by the teacher.

Teacher safety check
3. Connect up the AC motor starter power circuit as shown using the equipment provided.

DO NOT TURN THE POWER ON.

4. When you have finished the connections have the circuit checked by the teacher.

Teacher safety check
5. Run the motor starter to ensure correct operational sequence and then measure and record the starting current of the motor and the no load speed of the motor:

I starting $=$ \qquad A

Speed N/L = \qquad rpm.
6. When you have completed your readings, have them checked by the teacher.
7. Ask the teacher to introduce the first fault into your circuit.
8. Identify and list the type of fault found and the component/part of the circuit affected:

- Type of fault: \qquad
- Component affected: \qquad

9. When you have found the first fault, ask the teacher to check your results before proceeding to the second fault.
10. Ask the teacher to introduce the second fault in to your circuit.
11. Identify and list the type of fault found and the component part of the circuit affected.

* Type of fault:
- Compound affected:

12. When you have found the second fault, ask the teacher to check your results.

Answers to Sample Theory Tests

Theory Test 1

1. Synchronous speed.
2. Supply frequency and number of stator poles.
3. 1.5 x that produced by a single phase winding.
4. Phase sequence.
5. Electromagnetic induction,
6. Synchronous speed minus rotor speed.
7. Have no effect on the motor operation.
8. Greater than 1 megohm.
9. 10 to 100 ohms.
10. 0.5 mm .
11. Interchange any two supply lead connections.
12. Star.
13. Reduce eddy current loss.
14. Copper or aluminium.
15. Skewed with respect to the stator slots.
16. 75 rpm .
17. 1500 rpm .
18. 970 rpm.
19. 4%.
20. 100 Hz .
21. Stator:
22. Rotor.
23. Stator.
24. Reduce eddy current losses.
25. Extemal resistances.
26. Low starting torque and high starting current.
27. Higher starting torque and higher full load slip.
28. Higher starting torque, with a lower full load speed.
29. Maximum torque can occur at starting.
30. Lower production cost.
31. Open circuit in U phase.
32. Unacceptable due to low insulation resistance between phase windings.
33. Single phasing.
34. Single phasing of the supply.
35. Motor overload.

Theory test 2

1. Supply authority local service rules.
2. Equal to the full load current for a.c. motors.
3. Must be isolated when the motor is isolated.
4. The isolating switches for the 18.5 kW motor must operate in both power and control circuits.
5. Depends on the supply authorities' service rules.
6. Star-delta starter.
7. $\frac{1}{\sqrt{3}}$ of the line voltage.
8. Korndorfer connection.
9. Short circuited.
10. Simultaneous closing of the contactors.
11. NTC characteristic.
12. A transient occurs when switching from star to delta.
13. To start slip ring motors.
14. Secondary resistance starter.
15. A reduction in starting torque.
16. Curve C.
17. 1,4 ohms.
18. 300 Nm .
19. 110 Nm (approx).
20. 15% (approx).
21. Auto-transformer.
22. Run at reduced speed.
23. Supply of reduced voltage to the motor.
24. It will run at reduced voltage.
25. Mechanical interlocking.
26. Slow the motor when the speed is above synchironous.
27. Adding resistance to the rotor circuit.
28. Prevent phase to phase short circuits.
29. No effect.
30. Ll and L3 are swapped.
31. Dynamic braking.
32. Interlock contacts.
33. It controls the braking effect.
34. T-de-energises

K1 ~ de-energises
K2 - energises.
35. TOL disconnects the motor in the event of a prolonged overload.

