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Editor’s preface

The 16 chapters included in the first edition of this edited collection were
written in 1998 - a year before the introduction of the National Numeracy
Strategy (see Brown, Chapter 1). The book was, to a certain extent, a sequel
to the first edition of Teaching and Learning Early Number (Open University
Press 1997), which looked at research findings concerning children'’s early
number acquisition and the implications of these findings for classroom
practice.

The original aim of the first edition of this book, Issues in Teaching Numer-
acy in Primary Schools, was to address the many issues, government publica-
tions and research findings that had influenced the development of the
National Numeracy Strategy (NNS). Because of the rapid developments that
have taken place in mathematics education since the first edition was written,
only four of the original chapters have been retained and updated, with a
further 14 new, more relevant chapters added.

The planning of this second edition has involved several interesting
decisions: one concerning the title of the book and the other regarding the
structure of the various sections. Initially the title was to be changed to Issues
in Teaching Mathematics in Primary School, given the argument that primary
school children are taught more than what is accepted as being included in
the word ‘numeracy’, and also because some of the chapters focus slightly
more widely than just on numeracy. However, it was felt that changing the
title might suggest that specific chapters on shape and space, measures and
handling data had been included — which is not the case.

Given the fact that the important and influential Williams Review was
published at the time the various chapters were being written for this edition,
it was inevitable that one of the sections of the book would focus on issues
emerging from this review. As all 18 chapters in the book have some connec-
tion with the issues raised in the report, in that they are concerned with the
teaching and learning of mathematics in — and out of — primary school, decid-
ing what to place where in the book was not straightforward. For example, one
of the ten recommendations of the Williams Review is that there should be a
renewed focus on mental mathematics, and yet it was decided to include the
chapter on mental calculation along with four others concerned with calcula-
tion. Similarly, although the Every Child Counts initiative has a chapter to
itself in the Williams Review, it was decided to include the chapter on the
new numeracy intervention, Numbers Count — the outcome of the Every
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Child Counts team’s research and Williams’s recommendations — in a short
section dealing with special needs issues.

The result is that this second edition is loosely structured into five
sections: an historical overview followed by issues relating to the Williams
Review, assessment, calculation and special needs. Many chapters contain
cross-references to other parts of the book where particular ideas are dealt with
differently or in more detail. Each chapter, however, is self-contained, and is
written to be read as a free-standing unit.

The information in the table gives details of the ages of children starting
school in England and in the Netherlands. The information is included to help
readers check the ages of children referred to by the contributors to this book.

School year

England The Netherlands Age on entry

Early Years Foundation Stage Birth to end of Reception
Reception Groep 1 4

Year 1 (YI) Groep 2 5

Year 2 (Y2) Groep 3 6

Year 3 (Y3) Groep 4 7

Year 4 (Y4) Groep 5 8

Year 5 (Y5) Groep 6 9

Year 6 (Y6) Groep 7 10




SECTION 1
Setting the context

The late 1980s and the whole of the 1990s proved to be a period of substantial
change in the teaching of mathematics, culminating in the launch of the
National Numeracy Strategy and the adoption by primary schools of the ‘daily
mathematics lesson’ in 1999. As a key participant in very many of the devel-
opments that took place in the teaching of numeracy during this time, and
afterwards, Margaret Brown gives a detailed historical overview of these and
earlier developments in relation to the prevailing social and political contexts
and the key people involved. In the initial chapter of the book she provides
the necessary background to enable the reader to make sense of the current
situation.

She provides a detailed analysis of the background to, and implemen-
tation of, the National Numeracy Project (NNP) and its development into
the National Numeracy Strategy (NNS), discussing the role of international
comparisons in stimulating developments; the in-service training that was
provided by the NNS; and the effects that this training had on teachers,
schools and children. She discusses some of the findings of the Leverhulme
Project — of which she was a principal researcher - specifically in relation to
those children that were expected to gain from the NNS and those who, in fact,
did gain.

She suggests reasons why a new framework was produced in 2006 by the
Primary National Strategy, and asks why, despite the fact that it was a more
complex web-based resource, less training for its introduction was provided for
teachers. Her chapter finishes with a brief discussion of the Rose and Alexander
reports.






1 Swings and roundabouts

Margaret Brown

Introduction

Ever since the practical use of numbers and number operations has been part
of the curriculum for a significant proportion of the population in England,
there has been a tension between accurate use of calculating procedures and
the possession of the number sense which underlies the ability to apply
such procedures sensibly. These two positions can be broadly characterized as
procedural and conceptual, respectively.

Alongside this has been a different type of tension between individualistic
progressive philosophies emphasizing the importance of autonomy of both
pupils and teachers in order to lead to personal development and empower-
ment, and public education philosophies emphasizing a greater degree of state
intervention in the curriculum and in teaching methods in order both to pro-
tect the equal entitlement of pupils and to meet the skilled person power
requirements of the state (Ernest 1991).

Over the years the pendulum has swung back and forth in both of these
dimensions as the primary mathematics roundabout has turned, depending
on both the social and economic contexts. In prosperous times progressive
and conceptual approaches have had the edge, whereas high unemployment
and internationally uncompetitive industries have tended to fix the state’s
attention on public education and the uniform teaching of procedural number
skills. The political context has been important since it determined whose
were the most powerful voices.

As with the inescapable tensions between the fundamental notions of
cultural norms and individual rationality, and of freedom and equality, which
respectively underlie the two dimensions, it is probably both proper and
necessary that the emphases should shift from time to time to adapt to
prevailing philosophies or circumstances.

In the sections which follow, these swings will be described, together with
the people who have supported them. There is, however, one constant theme,
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which is that of poor standards in number skills. By quoting hand-wringing
sentiments spanning over 100 years, McIntosh (1981) demonstrated that there
has never been a time when those who speak for the nation have been satisfied
with the level of what is now generally known as ‘numeracy’ achieved by
primary children. This has always provided a reason for yet another swing of
the pendulum.

Pre-1950: the rise and fall of the first national curriculum

In the first half of the nineteenth century, the state had taken a relatively
laissez-faire attitude to education, looking on while different private and char-
itable systems developed. However, by the end of the century concern over
both increasing international industrial competition and the threats of insur-
rection among the uncivilized poor drove the state into action. The Newcastle
Comunission, set up to enquire into primary education in 1858, found that the
majority of the pupils who did attend elementary schools were taught no
arithmetic at all, and even when taught, the provision was judged to be gener-
ally ineffective.

This report formed the basis for state intervention to ensure in the 1870
Act each child’s entitlement to primary education, following a national cur-
riculum introduced in the Revised Code of 1862, concentrating on the three
Rs of reading, (w)riting and 'rithmetic.

In the original version the curriculum for the first three standards
(intended respectively for pupils aged 7-8, 8-10 and 10+) stated:

Standardl  Form on blackboard or slate, from dictation, figures
up to 20; name at sight figures up to 20; add and
subtract figures up to 10, orally, from examples on
blackboard.

Standard II A sum in simple addition or subtraction, and the multi-
plication table.

Standard III A sum in any simple rule as far as short division.

This looks not unfamiliar, in relation to Levels 1 to 4 of the national curric-
ulum introduced over 100 years later, and most primary teachers still refer to
these objectives as the major targets for their own pupils.

As with the more recent 1988 national curriculum, it is interesting
to note that there were two major changes made to the Revised Code within
the first ten years, with the aim of raising standards. As with levels in the 1989
curriculum, the standards were not necessarily tied to age, recognizing that
children progressed at different rates. The difference then was that each class
was focused on and identified with one standard, so that classes were of mixed
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age; slower children remained in the same class (for example, Standard II) until
they had achieved that standard.

However, there were some authoritative sources even in the 1850s which
considered that some form of number sense was at least as important as mech-
anical arithmetic. Thomas Tate, a mathematician and educationist, advised:

Teachers of elementary schools...would confer a great benefit on
society, by teaching the simple and fundamental principles of estima-
tion, rather than waste the time of their pupils in giving sums . . . those
investigations which have the greatest practical bearing invariably
form the most healthful and instructive exercise to the intellectual
powers.

(Quoted in Howson 1982: 120)

He added that ‘a good teacher will vary his methods of instruction’, and
attacked the blind unreasoning attachment to any particular system of teach-
ing, believing that a teacher’s judgement must be exercised in selecting those
methods which are most suited to the existing conditions of his school.

Matthew Arnold, the most senior of Her Majesty’s Inspectors (HMI), also
took a progressive line denouncing this system. He wrote in his 1869-70 report
that however brilliant the committee who drew up the curriculum, ‘the
teacher will in the end beat us by [getting] children through the examination
without their really knowing of these matters’. He noted that although the
children ‘sedulously practised all the year round’, the failure rate in arithmetic
was considerable since the system gives ‘a mechanical turn to the school
teaching’ and must be ‘trying to the intellectual life of the school’ (quoted in
Howson 1982: 121).

For financial and educational reasons the Revised Code was abandoned in
1898, but in spite of the removal of curriculum constraints, it would appear
that there was gradual evolution rather than radical change in the teaching
of arithmetic in primary schools during the first half of the twentieth cen-
tury (Pinner 1981). Generally, classes became smaller and teachers better
trained, which led to more humane classrooms and less punishing arithmetic.
Influences of continental thinkers such as Montessori and Froebel on teacher
training colleges encouraged more practical activities to be introduced for
younger children.

In primary education more generally, the 1931 Hadow Report fore-
shadowed the later Plowden Report in taking a firmly progressive line backing
themes rather than subjects, recommending that: ‘the curriculum of the pri-
mary school is to be thought of in terms of activity and experience rather than
knowledge to be acquired and facts to be stored’ (Board of Education 1931: 93).
A broader curriculum in mathematics was recommended with more emphasis
on geometric form and practical measurement. The fact that too much time is
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given to arithmetic was attributed to the influence of the examinations at 11+
which were then enabling increasing numbers of pupils from elementary
schools to enter fee-paying grammar schools. Nevertheless a firmly traditional
line was taken in relation to arithmetical skills: ‘it is however essential that
adequate drill be provided in arithmetic’. Moreover it was not reasonable ‘to
expect a child to justify the process he employs, say in subtraction or division;
this is too hard an exercise of his reasoning powers’. The compromise was
achieved by asserting that higher procedural arithmetic standards could be
attained in less time, thus allowing the newer broader and more conceptual
content.

1950-85: towards a progressive paradise (Piaget,
Plowden, Nuffield and Cockcroft)

In 1955 the Mathematical Association finally produced the long-awaited
report, The Teaching of Mathematics in Primary Schools, on which work had
started 17 years earlier. The Second World War caused an interruption, but the
greatest delay was because the new post-war committee changed the brief, since
it ‘did not share the belief of its predecessor that a curriculum should be drawn
up prescribing the mathematics to be taught at each stage of the primary years’.

After disagreements had required yet more membership changes, the
eventual report set a radical tone for the second half of the century. It adopted
an unequivocal child-centred position which merged the Piagetian view of
learning, as the result of an individual child’s interaction with the physical
environment, with the activity-oriented British primary tradition endorsed by
the Hadow Report and to be further developed in the Plowden Report. A key
member of the committee throughout was Elizabeth Williams, who, while at
King’s College London in the 1930s and later as lecturer and principal at other
teacher training colleges, was instrumental in introducing Piagetian ideas
(Howson 1982). Older teachers will know her best through the classic text
Primary Mathematics Today, published in collaboration with Hilary Shuard
(Williams and Shuard 1970).

The key belief of the 1955 report was that:

Children developing at their own individual rates learn through their
active response to the experiences which come to them; through con-
structive play, experiment and discussion children become aware of
relationships and develop mental structures which are mathematical
in form and are the only sound basis for mathematical techniques.
(Mathematical Association 1955: v)

The broader curriculum recommended by Hadow was thus opened even wider,
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with no one admitting that this might allow less time for number skills.
Teachers were required, through their own reading and listening to children,
to come to understand better how children learn, in much the same way as
children were expected to come to understand mathematical concepts.

It is, of course, a long way from writing a report to seeing it implemented
throughout England, but there were many allies in this task. Support from
teacher trainers was significant, but there were also meetings with teachers all
over the country. An energetic and inspiring travelling HMI, Edith Biggs, ran
courses on the activity and investigation approach over more than 20 years
(estimated by the Plowden Report (CACE 1967) to have directly involved more
than 15 per cent of teachers).

An even more Piagetian line was followed by the Nuffield Mathematics
Teaching Project (1964-71), led by Geoffrey Matthews, who became the first
Professor of Mathematics Education at Chelsea College, part of London
University, which later merged into King’s College. Using a conceptual progres-
sion based broadly on Piagetian research, a sequence of Teachers Guides were
produced on a variety of mathematical topics, including, for the first time,
logic, graphs leading to algebra, and probability. These explained the under-
lying mathematics with ideas for different approaches and activities, attract-
ively illustrated with pupils’ work. The approach reflected the more structural
ideas of modern mathematics like sets, number bases and properties of num-
ber operations (for example, commutativity), to help form a conceptual basis
for calculation.

There was much debate about whether the project should have produced a
set of pupil textbooks, but the philosophy was to treat the teachers in the same
way as it was hoped that they would treat pupils; as one of the Nuffield team
said later, ‘I do and I understand was the unofficial motto of the Project; well, it
applied to teachers as well as children’. Teachers were encouraged to work
together in local groups in each authority. An important and enduring innov-
ation of the Nuffield Project was the creation of mathematics teachers’ centres
where teachers could meet with advisers; many of these later became the first
general purpose professional centres.

The end of the selection examinations at 11+ in most areas, following the
change from selective to comprehensive schooling, provided additional free-
dom to enable teachers to work in new ways. There is no doubt that large
numbers of teachers were inspired by the new approaches of Nuffield and
Edith Biggs, but with considerable staff turnover it is not clear that there was a
great deal of change in what most teachers did in their classrooms. This prob-
ably only really took place on a large scale after new pupil materials became
available after 1970, the first scheme being written by Harold Fletcher, one of
the Nuffield team. These published schemes, including eventually an official
Nuffield scheme, permeated most schools. Translated to text, some of the
practical and investigatory spirit was inevitably lost.
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The major effects on classroom teaching of the various texts were a broad-
ening of the curriculum and many activities attempting to build understand-
ing through different diagrams and representations. This meant a much slower
approach to calculation algorithms, with often a variety of different methods
of recording calculations presented to children. Thus there was less time for
practice, the belief being that better understanding avoided the need for
constant mechanical drill.

Many teachers chose to stick closely to the books, and often to let children
work through them on their own. There were several reasons for this. First, the
lack of confidence of teachers in their own mathematics, and especially in
modem mathematics, discouraged them from departing from well-written and
apparently authoritative sets of texts with many attractive activities that pupils
seemed to enjoy. There was also, especially following the 1967 Plowden Report,
increasing emphasis on pupil autonomy; children were expected to be able to
work on their own or in small groups and to organize themselves, with the
teacher being seen as a resource to call upon rather than a classroom expositor.

However, a backlash against excessive freedom given to primary teachers
and children gathered momentum during the 1970s. The well-publicized cur-
ricular anarchy at William Tyndale Junior School in London drew attention
to the fact that with the demise of the 11+ there was no longer any control
over what primary teachers taught. The Assessment of Performance Unit was
launched in 1974 to monitor national standards at ages 11 and 15, and the
idea of a common core curriculum began to be discussed. Certainly the texts
like Nuffield which were published at the end of the 1970s tended to be less
radical than those Fletcher and his colleagues published earlier.

Although there were occasional tirades against this ‘new’ mathematics
in the primary schools, it was the perceived lack of numeracy of young
employees, in a speech by Prime Minister James Callaghan at Ruskin College
in 1976, which was used to justify a significant change in government policy
towards exerting tighter control over the curriculum.

However, the Labour government was keen not to upset its allies in
schools and local education authorities (LEAs), and started by asking LEAs
to work with teachers to produce local curriculum guidelines. Mathematics
advisers were appointed by LEAs which did not already have them, creat-
ing a national network for disseminating innovation. Advisers were able to
draw on the expertise of a pool of teachers who had been appointed as math-
ematics coordinators in primary schools and had acquired a Diploma of
the Mathematical Association, run mainly by teacher training colleges and
universities. Guidelines were informed by the publication by DES/HMI of
Mathematics 5-11: A Handbook of Suggestions (DES 1979); although progressive
in tone, this detailed list of aims and objectives marked a much firmer line
in steering the contents of the primary curriculum for the purposes of more
uniform public education.
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One of the final acts of the Labour government was to set up a Committee
of Inquiry into the Teaching of Mathematics in Schools, chaired by Sir Wilfred
Cockcroft, previously associated with the Nuffield Project. While the bulk of
the report was aimed at secondary schools, the presence on the committee of
Hilary Shuard, a forceful teacher trainer and Elizabeth Williams's collaborator,
ensured that primary interests were not forgotten.

In fact it found much less concern from employers about standards of
arithmetic than had been expected, but the surveys undertaken revealed an
adult population which was fearful of mathematics, suffering from both lack
of confidence and an inability to apply what they had been taught at school.
In regard to primary mathematics, this tended to reassure the committee,
whose membership was in any case mainly drawn from the progressive-
minded leaders within the professional bodies, that the previous more formal
styles of teaching were to blame. The more practical and investigative style
which had long been recommended for, but not necessarily implemented by,
primary schools would encourage confidence and self-expression, and the
ability to understand, and hence apply, knowledge; it was this which should
be supported and extended into secondary schools.

Thus the findings led the Cockcroft Report, Mathematics Counts, published
in 1982, to endorse the wide curriculum: ‘We believe that this broadening
of the curriculum has had a beneficial effect both in improving children’s
attitudes to mathematics and also in laying the foundations of better under-
standing’ (DES 1982: 83). There was, however, a new utilitarian emphasis,
removing some of the last vestiges of the more esoteric structural content
brought in by the original Nuffield Project.

The report contained a whole section emphasizing the importance of
mental mathematics, including:

young children should not be allowed to move too quickly to written
work in mathematics. It follows that, in the early stages, mental and
oral work should form a major part of the mathematics which is done.
As a child grows older, he needs to begin to develop the methods of
mental calculation which he will use throughout his life.

(DES 1982: 92)

Two aspects of contemporary research informed the recommendations: first
that both children and adults tended to apply idiosyncratic methods of calcu-
lation rather than standard school methods; second, that there was a seven-
year gap between ages when the higher- and lower-attaining children grasped
a mathematical concept, even though they might be in the same class. This
result led to an emphasis on curricular differentiation, later also stressed by
inspectors, which encouraged schools to continue many of the progressive
organizational practices which they were already using, either allowing pupils
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to work individually at their own pace through a scheme, or grouping children
by attainment to do different work.

Even though an individual learning system may be in use the teacher
will often assemble a small group to begin a new topic or to draw
together common strands in work which is going on. On such occa-
sions mental mathematics is easily and naturally introduced, both
in the form of mental calculation and of questions which develop
new ideas . . .

(DES 1982: 93)

Some whole-class teaching is recommended, but with an eye on the range of
attainment:

there are some skills, puzzles and problems which are appropriate for
every child no matter what stage of learning he may have reached and
short class sessions can be arranged for work of this kind . .. some
problems should be posed with general discussion in mind. Both chil-
dren and their teachers learn from different strategies and methods
which other members of the class use . . . it is valuable experience for
children to explain the approach which has been used . . .

(DES 1982: 92)

In order to enable the Cockcroft recommendations to be put into effect
in classrooms, advisory teachers (known as ‘Cockcroft missionaries’) were
appointed by LEAs. Those appointed succeeded in enthusing other teachers
about mathematical investigation in the same way as Edith Biggs had started
to do 20 years earlier.

Hilary Shuard, emerging as the main champion of the progressive move-
ment in primary mathematics, succeeded in 1985 in attracting funding
for a major project, Primary Initiatives in Mathematics Education (PrIME).
Although this had many foci, with groups of teachers working in different
LEAs, the major innovation was in the Calculator Aware Number Curriculum
Project (CAN). The basic principle of CAN was to put into effect the firm
endorsement of sensible calculator use in primary schools made by the
Cockcroft Report, and to fulfil the recommendation that research be under-
taken to find how the use of calculators might change the primary mathemat-
ics curriculum. Children were given unrestricted access to calculators from the
beginning, and there was a specific emphasis on mental calculation and
investigational work with number. Teachers were asked not to teach pencil and
paper algorithms at all.

The CAN project excited much national and international attention. Such
results as are available suggest that pupils from the project developed better
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mental facility and more positive attitudes, and performed better even in non-
calculator written tests. However, it is not clear whether the effect was due to
the increased emphasis on mental calculation, the in-service support, the
investigative ethos or the calculator use. But the full effect was never to be
found as it came to an abrupt end in 1989, due to other changes which are
reported in the next section.

It is clear that the changes which took place in primary mathematics
between 1950 and 1985 were significant, marking a shift in attention from
the teacher to the learner. They were led by a set of inspired individuals
with broadly similar views, all with strong mathematical backgrounds and
earlier experience of teaching in secondary schools, who occupied high-status
roles in the educational establishment. It was clear that by the end of the
period most teachers had come to espouse the principles underlying the
changes, even if they had not always fully implemented the principles in their
practice.

1985-95: the second national curriculum and the
national tests

The primary mathematics results in the international surveys carried out in
1990 by the International Assessment of Educational Progress (IAEP) and in
1994 as part of the Third International Mathematics and Science Study
(TIMSS) demonstrated that many of the Cockcroft objectives were achieved.
British pupils were comparatively confident, unusually including those pupils
whose attainments were modest, and they generally enjoyed mathematics.
There was some evidence that many children seemed to enjoy the greater
control they had over their own pace of work. More importantly, British pupils
did very well in tests in applying mathematics to solve practical problems, in
both mathematics and science. The successful implementation of a wide cur-
riculum was demonstrated by the fact that, in 1994, English primary children
were top of the international table in geometry and, in 1990, were second in
statistics.

However, comparatively low English results in the number category in
both surveys suggested that these successes had been achieved at a cost.
Concern about such international comparisons in secondary schools in the
mid-1980s coincided with a continuing movement under the post-1979
Conservative government following that initiated under James Callaghan
towards clearer curriculum specification and greater central control. In the
White Paper Better Schools (DES 1985a) came the first announcement of the
intention to formulate both national objectives, to be known as attainment
targets, for age 11 in mathematics, and an associated system of assessment.
Formative assessment for diagnostic and planning purposes was espoused as
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a key aspect of assessment (see Hodgen and Askew, Chapter 10), but it was also
pointed out that assessment results should also allow schools to evaluate their
own practices against national standards.

The focus on targets and assessment at primary level reflected the national
criteria for the new General Certificate of Secondary Education (GCSE) exam-
inations which had been recently announced, to start in 1988. At primary
level, also, many LEAs were already developing local assessment systems to
match their new local curriculum guidelines, although these took a variety of
forms ranging from written tests to practical tasks and included informal pro-
filing. In many cases they were influenced by assessments developed by the
Assessment of Performance Unit.

Related to the focus on clear targets to be found in Better Schools, a series
of DES/HMI publications was being issued which contained objectives and
assessment advice for each subject. Mathematics from 5 to 16 (DES 1985b) was,
at primary level, an amalgamation of the 1979 DES/HMI publication Math-
ematics 5-11 with selected recommendations from the Cockcroft Report. Thus
the 24 objectives were listed under the headings of facts, skills, conceptual
structures, general strategies and personal qualities, and were themselves
unspecific (for example, remembering notation, sensible use of a calculator,
trial and error methods, a positive attitude to mathematics). However, a
detailed list of what most 11-year-olds should know, under the content object-
ives only, was contained in the appendix. The list contained few surprises and
reflected the contents of the more recent textbook series, emphasizing con-
cepts rather than procedures, for example, including equivalence of fractions
rather than the four rules for fractions. Pencil and paper multiplication and
division was by single digits only, using calculators for more complex cases.
While underlining the progressive credentials of HMI, it was nevertheless seen
as a further step towards state prescription.

Deciding that mathematics would be an easier subject than English to
tackle, the Secretary of State, Sir Keith Joseph, initiated a one-year feasibility
study to start in September 1986, which would define a three- to four-year
programme for research, development and implementation of national attain-
ment targets at age 11 and corresponding assessment. The contract went to
Brenda Denvir and myself, colleagues of Geoffrey Matthews at Chelsea College,
then in the course of merging into King’s College London. Hilary Shuard was
on the Steering Committee.

But the feasibility study was soon overtaken by events. A new Secretary of
State, Kenneth Baker, swept in during the autumn of 1986, determined to
make his mark. Persuaded by recent reports that low mathematical standards
compared with our competitors were responsible for national industrial fail-
ure, he announced in January 1987 his decision to implement swiftly a full
national curriculum determining what pupils should be taught in primary and
secondary schools. This went considerably beyond the aim of his predecessor
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who supported attainment targets but had no desire otherwise to control the
detail of the curriculum.

Ignoring the feasibility study, Baker announced at Easter that there would
be national testing at ages 7, 9 (later abandoned), 11 and 14, as well as GCSE at
16. The consultative document The National Curriculum 5-16 (DES 1987) was
rushed out in July in order to form the core of a new and radical Education
Reform Bill that autumn. At the same time National Curriculum Working
Groups in mathematics and science were set up, as well as a Task Group on
Assessment and Testing (TGAT).

The brief was for the subject groups to draw up attainment targets for ages
7,11, 14 and 16, with each target differentiated for three levels of attainment,
to frame a programme of study for each key stage (KS) of education covering
the two to four years prior to the tests, and to advise on teacher assessment and
national testing. In the case of the mathematics group, among those with
knowledge at primary level were Hilary Shuard (co-opted after initial objec-
tions from the Department for Education and Science (DfES)), a primary math-
ematics adviser, two primary heads and myself. Significantly Anita Straker,
then developing new primary guidelines for the Inner London Education
Authority as an inspector, and writing innovative computer programs to teach
mathematics, was also drafted in as an adviser.

As with the Steering Committee for the mathematics feasibility project,
and not surprisingly in view of the shared membership, the group demanded a
revision of the brief so that attainment targets were written, not separately for
four key stages, but in the form of hierarchical strands, made up of statements
of attainment describing the important steps of progression in each target. The
statements of attainment could then be assigned to broad levels, each of which
could be described as being attained by average pupils of a specific age. This
would both ensure continuity through the 5-16 age range and cater for the
documented wide range of attainment among pupils of any specific age. The
result would be progressive and child centred to the extent that it would take
the progression in the learning of the child as the core of the system rather than
fixing a syllabus for each key stage and measuring each child’s attainment of it.

The TGAT group also favoured this solution, and persuaded Kenneth
Baker to adopt it. Experience of the graded assessment movement at secondary
level suggested that in order to characterize the progress in a wide span of
students from age 5 to 16, giving each child a reasonable chance of progressing
one level each year, then 20 levels would be needed. The TGAT group felt that
ten levels were enough, which gave an average progression rate of one level
every two years for students of average attainment. They defined level 2 as that
which could be achieved by the broad average group of students at age 7, level
3atage9, level 4 at age 11, level 5 at age 13, and level 6 at age 15. Other levels
would be defined around this. The working groups for each subject were then
asked to define these ten levels by attainment criteria in their subject. The
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TGAT group also set a national system of labelling of year groups, from Year 1
to Year 11, and key stages, from KS1 to KS4, for the first time.

The TGAT group was also radical in proposing an assessment system
which depended on ongoing teacher assessment. For moderation of teacher
assessment only, there would be theme-based standard assessment tasks (SATS)
at the end of Key Stages 1 and 2 which would sample the attainment targets
across all the core subjects of English, mathematics and science. For example, a
SAT on the topic of ‘pets’ might include questions on knowledge of essential
functions of animals, a story about a school or home pet, and some work on
measurement and growth of pets. It was also proposed that this might be
accompanied by separate tests in English and mathematics at KS2, but again
that since these would be only for moderation of teacher assessment, they
would be short and would only need to lightly sample the curriculum.

The national curriculum proposed by the Mathematics Working Group
was — not unexpectedly - strongly influenced by the Cockcroft ethos, with a
broad curriculum including investigation and problem solving. Hilary Shuard
also fought to maintain the principles of the Calculator Aware Number curric-
ulum (CAN) with its strong emphasis on mental arithmetic, estimation and
calculators. The eventual outcome mainly reflected this, but a compromise
was negotiated with the DES to include some written arithmetic (for example,
multiplication of a three-digit by a two-digit number), but avoiding specifica-
tion of any particular standard method. To an extent the strands were research
based, at primary level using studies like that of Denvir and Brown (1986),
although in some areas of the primary curriculum there was little research to
guide the progression and, especially in number, some political compromises
were made. Generally the placing of statements had to be at slightly lower ages
than research suggested in order to show positive expectations of improve-
ment. So the conceptual spirit of primary mathematics remained largely
intact, even if the progressive aspect was significantly dented by the first step
in state control of both curriculum and assessment.

The proposals, both from TGAT and from the Mathematics Working
Group, received a guarded welcome by teachers as being better than they had
feared, and although cosmetic changes (for example, the organization of attain-
ment targets, the degree of specificity, and references to ICT) were made to the
format of the Order specifying the National Curriculum for Mathematics in
1991, 1995, 2000 and 2010, the content has remained substantially constant
between 1989 and the present day.

The immediate effect in 1989 was for teachers to check that their text-
books matched the attainment targets fairly closely, which was generally the
case for those bought within the previous decade. These generally emphasized
concepts rather than procedures, although many teachers supplemented them
with practice on tables and written computation exercises. Schemes brought
out supplements and new editions to fill a few gaps like probability, which was
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now included in the curriculum, foreshadowed in the 1960s by one of the
Nuffield Teachers’ Guides.

The fact that the curriculum framework for attainment targets was struc-
tured by levels, rather than year groups, encouraged a continuing emphasis on
differentiation. This meant that the many schools which had, with the aim of
pupil autonomy, individualized their mathematics teaching, saw no need to
change. However, other teachers and schools, now wanting greater control
over pace and coverage, started revising the curriculum into modules, using
the national curriculum attainment targets as a basis. All the pupils would
then work on, say, multiplication or measurement at the same time, although
children in different attainment groups would be likely to be working on dif-
ferent activities within that topic, usually selected from different books in their
scheme. These teachers thus moved from being what Johnson and Millett
(1996) call scheme driven planners to scheme assisted planners, with the national
curriculum framework liberating them from the framework imposed by the
published scheme itself.

Although the ‘Using and Applying Mathematics’ attainment target was
supposed to incorporate problem-solving and investigation skills, reasoning
and communication into the teaching of content, in practice teachers felt they
were fulfilling the requirements by either using practical work with structural
apparatus like Unifix cubes, and/or real-world examples, often artificial ones of
shopping and cutting up fractions of cakes (Johnson and Millett 1996). At KS2,
the occasional investigations, introduced following the work of the Cockcroft
advisory teachers, were generally continued. Few had the resources, the con-
fidence or the insight to introduce a fully investigatory style to the teaching of
content, although some teachers used activities or games which incorporated
such principles, without always being able to justify them.

There were, however, changes during this period which did affect the
nature of primary mathematics teaching. The first was as a consequence of
national assessment. In the late 1980s and early 1990s, teachers, led initially
by LEAs, had put much effort into devising assessment and recording systems
as a result of the TGAT emphasis on ongoing teacher assessment. While these
assessment sheets relating to statements of attainment became denigrated as
bureaucratic ‘ticklists’, many teachers still found that focusing on assessing
pupils’ attainment of particular ideas and skills was helpful in monitoring
progress and in curriculum planning. The combination of teacher assessment
and the first national rounds of practical SATs at Key Stage 1 in 1991 and 1992
revealed that pupils’ attainment sometimes differed from teacher expectations
(Gipps et al. 1995).

However, the role of national assessment was evolving; rather than
topic-based tasks sampling the curriculum, to moderate teacher assessment as
envisaged by TGAT, the new minister, Kenneth Clarke, and the DES had taken
a further step towards central control by now requiring tests in each core
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subject at each key stage with as far as possible a full coverage of the curric-
ulum. This was closer to the original concept of Margaret Thatcher, which was
of a national curriculum as a list of basic skills in literacy and numeracy and
corresponding tests. By the time national assessment was finally introduced at
Key Stage 2 in 1995, a national teacher boycott of all national assessment
in 1993-94 had ensured that there was no longer any requirement for con-
tinuous assessment, and the tasks had become externally marked class tests.
The next step in centralization was, against teacher opinion, to implement
published league tables of performance. Although teachers were still expected
to make a judgement on the basis of their views of the child’s attainment, this
was no longer regarded as of importance and many teachers waited for the
external test results before making their assessment.

This led in many schools to the tests slowly beginning to drive the curric-
ulum, at least in Years 2 and 6. However, the style of written questions in the
early years of the national tests had little effect on the curriculum, since they
were similar to the style of work in most of the commonly used schemes.
Before 1998 there were hardly any straightforward numerical calculations.
Almost all items took the form of a word problem set in a real-world context or
a puzzle, and thus required some degree of conceptual knowledge, including
interpretation of the problem and selection of a strategy.

While assessment against specific criteria was confirming the range of
attainment of different children in each class, it also made it clear to teachers
that individualization of teaching was not necessarily delivering basic skills in
number. Perhaps this was not surprising given that children did not have to
react orally or quickly to mental calculations while working through books,
and had very little opportunity to talk about the methods they had used,
which were often primitive and slow.

Problems about pupil autonomy and progressive methods more generally
were featured in research studies in Leicester, Inner London and Leeds; a report
commissioned by the Secretary of State (known as the Three Wise Men report)
(Alexander et al. 1992), brought these together, proposing more whole-class
teaching in primary schools. However, momentum was lost due to a worsening
of relations between the government and the teachers during the teacher boy-
cott of national tests. Appeasement followed, led by Sir Ron Dearing, who
negotiated a pause in innovation, which turned out to be rather briefer than
expected.

1996-2010: the National Numeracy Strategy and the
Primary National Strategy

Concern about low standards of number skills, and about teaching methods,
surfaced again in 1996. First, unfavourable international comparisons were
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highlighted both by leaked new TIMSS results for primary schools in 1995 and
by areport reviewing earlier results which was co-authored by David Reynolds,
later the chairman of the Numeracy Task Force. In June 1996 there was an
announcement that mental arithmetic tests and non-calculator papers would
be included in all the end of key stage national tests, persuading many more
teachers to include whole-class sessions of mental arithmetic in their lessons,
often guided by the mental mathematics pupil books written by Anita Straker.

This was followed by Ofsted reviews of weak literacy, and rather less weak
numeracy, standards in inner city LEAs, initiated by the Chief Inspector, Chris
Woodhead, a co-author of the “Three Wise Men report’. Press reports also high-
lighted an apparently successful introduction of Swiss-style number teaching
into Barking and Dagenham schools, led by Professor Sig Prais, an economist
and right-wing member of the National Curriculum Mathematic Working
Group. Influenced by both of these, Gillian Shephard, the Tory Secretary
of State, announced the launch of parallel National Numeracy and Literacy
Projects involving schools in poorly performing LEAs. The aim was to raise
standards in basic skills by a prescribed programme for each year, reducing
differentiation and including a high proportion of whole-class teaching.
Support would be offered by numeracy consultants, a revival of the Cockcroft
advisory teachers, long since lost due to continual LEA cutbacks. Anita Straker
was appointed as director of the National Numeracy Project, and worked with
enormous energy to get the project started in autumn 1996.

Numeracy was being slowly redefined; where previously it had referred,
first, broadly to scientific literacy and later to the ability to apply number ideas
and skills in employment and everyday life, it now was taken to mean mainly
abstract number skills, both written and mental, together with solving routine
artificial word problems. The Numeracy Project relegated those parts of math-
ematics which dealt with anything other than pure number work, that is,
measurement, space and shape, and data handling, introduced into most
schools in the 1960s, to the margins, by producing, as well as new teaching
methods for number, a framework specifying in detail a number curriculum
which was to occupy most of the teaching time available.

Even before the Labour Party came into power in May 1997, it had already
appointed a Literacy Task Force in 1996 and a Numeracy Task Force in April
1997, thus taking over the Conservatives’ growing focus on raising standards
in basic skills in literacy and numeracy. David Reynolds, the chair of the
Numeracy Task Force, had been a member of the Literacy Task Force and was
not a mathematics educator but a researcher in international school improve-
ment; his research and, as noted earlier, his comparison with other countries,
had led him to suggest that there was significant room for improvement
in English mathematical standards. Anita Straker was also a member; I was
the only member who had previously been on the National Curriculum
Working Group.
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Almost the first move of the new Labour government in office was to
announce the start of the National Literacy Strategy in September 1998;
the National Numeracy Strategy would start the following year. Alongside
this it set ambitious targets for the number of pupils who would reach
the ‘age expectations’ in the national tests, in particular within five years
75 per cent should reach Level 4 of the national curriculum at the end
of Key Stage 2 (age 11). So what had started as a set of levels devised in
order to report each child’s attainment, with Level 4 defined as what could
reasonably be attained by the broad average group of children at age 11,
had now become the definition of a requirement that almost all children
should reach.

Differentiated progress and differentiated teaching would no longer be
tolerated as they were at odds with social justice and human rights; schools
were now under pressure to meet externally set norms in national tests, what-
ever the nature of their intakes. If schools could not meet these norms, then
they were not likely to be judged by Office for Standards in Education (Ofsted)
inspectors as delivering a satisfactory education, and would be threatened first
with shame, having their names publicly listed as a ‘failing school’, and finally,
if insufficient improvement was made, with closure.

So the pendulum had swung back finally for the first time in over
100 years from a progressive system which valued autonomy in teachers and
pupils, encouraging sensitivity to difference, towards a public education
emphasis which decreed equal treatment for all students and all teachers.
Perhaps the differentiation had for too long favoured the middle-class child
and the middle-class school, and the weaker performance of other children —
of whom less was expected — was not sufficiently serving either their own
occupational ambitions or the raised standards of national economic perform-
ance, the latter being uppermost in the agenda of the new government.

As with the Literacy Task Force, the Numeracy Task Force was pressured
into recommending the universal adoption of the National Numeracy Project
to form the National Numeracy Strategy and to prepare appropriate plans and
estimates for its universal implementation in September 1999. Although early
evaluation reports did suggest the Numeracy Project was having a favourable
effect on basic skill standards, the extension was required to go ahead before
full evaluation results were available.

The National Numeracy Strategy issued The National Numeracy Strategy
Framework for Teaching Mathematics from Reception to Year 6 (DfEE 1999), piloted
by the earlier project, which prescribed an extremely detailed curriculum, year
by year, for primary mathematics. This was a large document and each teacher
was provided with a personal copy. Each group of between three and ten lessons,
on a schedule which went through each year, had a specified set of objectives
with sets of examples to illustrate the type of work intended. Thus in any given
week every class in the country in a particular year group would be engaged on
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the same objectives on the same topic. This was a level of curricular
prescription which had never before happened in English primary schools.

In 2000 the national curriculum was altered to correspond to this frame-
work, although as before this only contained broader outlines of what should
be taught during each key stage. While only this national curriculum was
technically statutory, there were very strong pressures to implement the week-
by-week detail in the framework, since schools were inspected regularly by
Ofsted inspectors who were briefed that schools should be following the pre-
cise recommendations of the National Numeracy Strategy. Unless a school had
exceptionally good test results, failure to comply would be regarded as the
cause of lower standards.

Not only was there prescription of the curriculum, but also of the shape of
each lesson, including the type of activity which should take place, and for how
long. The lessons should commence with a mental/oral starter to revise mental
arithmetic skills (5 to 10 minutes), then involve a presentation of new work by
the teacher to the whole class using interactive questioning, followed by pupils
working in groups to practise exercises, during which time the teacher would
teach one group at a time, and finally a whole class plenary (10 to 15 minutes)
to overview the topic and lead forward. The whole lesson would take 45 min-
utes or more with younger age groups increasing up to 60 minutes with Years 5
and 6. After initial guidance in the national project that no differentiation at
all would be allowed, finally a degree of differentiation during the group work
time was reluctantly approved, provided all groups worked on the same object-
ives and not more than three levels of differentiation occurred in any class.

The research base for this focus on whole class teaching and specification
of pedagogic structure was fragile (Brown et al. 1998). The Numeracy Task
Force commissioned a detailed review of the English 1994 TIMSS data to see
whether more whole-class teaching was significantly associated with higher
standards in numeracy. The results were not referred to in the final report or
ever published since it was found that in Year 5 the opposite was the case; in
Year 4 the results were inconclusive.

This was supported by a nationally financed research project aimed at
determining characteristics of effective teachers of numeracy, which had noted
that there was no particular pattern in the way effective teachers organized
their classes or lessons (Askew et al. 1997). While some favoured individual-
ized working through textbooks, others favoured only group working, and
others taught whole classes. What seemed to differentiate effective teachers
(here measuring effectiveness by the gains made across the year in average
class performance) was not their pedagogic strategies but their well-developed
personal philosophies of mathematics teaching and teaching methods. These
emphasized connections, between different mathematical ideas, between
mathematics and the real world, and between their knowledge of children and
mathematics (see Askew, Chapter 2).
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However, there were aspects of the National Numeracy Strategy which did
reflect research findings. The opportunity was taken by English researchers like
Ian Thompson, Julia Anghileri and Mike Askew to include research-validated
didactic methods, some first used in the Netherlands. These included different
forms of early counting, new mental calculation methods with an emphasis
on working with complete numbers rather than splitting into separate digits,
the greater use of hundred squares and the empty number line for addition
and subtraction. Counting sticks were also encouraged for practice in multipli-
cation, although with rather less research support or success, as these favoured
a narrow concept of multiplication which was based on repeated addition only
(see Delaney, Chapter 5).

So led by Anita Straker, who became the first National Numeracy Strategy
director, the curriculum emphasis was very much on mental methods and
on moving only slowly to written methods, and then to those like the grid
method for multiplication and ‘chunking’ for division, which were likely
to make conceptual sense to the child (see Thompson, Chapters 15 and 16).
Teachers were recommended in their class teaching phases of lessons to ask
children to explain their own methods and strategies for calculating, so that
children would discuss different methods and learn from others. Nevertheless
there was some inconsistency here, for in many cases the lesson objective
selected from the framework was to introduce a certain specific procedure,
often for mental calculation. This meant that teachers often started teaching
by asking children what methods they chose to use and then had to ignore this
information to require them all to practise the designated procedure. It might
be expected that at least children would thus extend their repertoire of pos-
sible procedures on which to draw. However, many teachers came to feel that
having too many possible strategies was confusing and chose to restrict the
choice. Thus a generally conceptual orientation adopted by the strategy some-
times was interpreted as more procedural than intended (see Thompson,
Chapter 12).

The implementation of the National Numeracy Strategy, like that of
the National Literacy Strategy a year earlier, was undertaken with military
precision; little expense was spared. Under the national director were regional
directors who trained consultants appointed to each LEA. These consultants
trained the teacher coordinator responsible for mathematics in each school,
on three-day sessions, with head teachers and school governors attending for
some sessions. The training was centrally designed, including the exact time-
table to be followed, the training videos to be shown and the PowerPoint slides
to be used. Where awkward questions were asked, consultants simply res-
ponded that ‘research had shown’ the strategy methods to be more effective
than alternatives. In order to ensure every teacher in every school received
exactly the same messages, coordinators were also issued with similar packages
to be used on each of three national training days. The Canadian team
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evaluating the implementation of both strategies noted that this was prob-
ably the largest national project implementation ever attempted, and were
impressed by the thoroughness of the exercise (Earl et al. 2002).

With all this prescription it might have been expected that there would be
significant teacher opposition, but in fact the strategy was widely welcomed by
teachers. It benefited from lessons learnt from the introduction of the National
Literacy Strategy and was perceived as a little less tightly controlled. Anita
Straker was widely trusted by teachers and had assembled an able team. The
project received support from most quarters, with the exception of higher
education which had been left out of the strategy implementation plans.
An additional factor may well have been that few primary teachers were
confident about their mathematics expertise, especially since with primary
training increasingly being cut from three- or four-year BEds to a one-year
PGCE, the average amount of training in understanding and teaching primary
mathematics received was rapidly declining. This meant that authoritative
prescription delivered by friendly faces was widely welcomed.

Teachers were, however, generally exhausted by having to replan all their
lessons, first in literacy and then in numeracy/mathematics over the period of
two years. Tight timescales meant that no revised textbooks or other support-
ive materials were available, and in any case the use of these was generally
frowned upon by the strategy which felt that teachers had more than enough
support from its own productions, and other sources were only likely to be off-
message. An interesting but unplanned consequence was that some schools
introduced setting, especially where teachers were worried about teaching
a uniform curriculum across the wide attainment spectrum, and/or where
national test results were low and heads felt that they had to take radical action
of some sort.

But however successful the implementation, the changes in national test
results were disappointing. Strangely, the percentage of students achieving
Level 4 at age 11 had increased significantly in the summer of 1999, just before
the strategy was officially introduced, but the rise in the following few years
was very small, and the national targets for increased performance were not
met. Although the government explained the 1999 rise by the action of pre-
mature adopters, evidence suggests that this is unlikely to have been a signifi-
cant factor. The fact that the trends in mathematics national test results were
almost identical to those in English and science, although the National Lit-
eracy Strategy was introduced a year earlier and there was no national strategy
for science, suggest that other factors were responsible for the 1999 increase,
including a combination of increased pressure on teachers to coach Year 6
students for the tests, and a slippage in the test standards which evidence
suggests took place between 1995 and 2000.

There was corroboration from other sources that the introduction of
the National Numeracy Strategy, which was costing more than £50 million
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per year, had only a small effect on test results. A five-year longitudinal study
of primary numeracy financed by the Leverhulme Trust suggested a very small
effect on Year 4 results, with declining performance in more than a third of
schools in the sample (Brown et al. 2003). More worryingly for the Labour
government was the finding from this study that the range of attainment had
widened, not narrowed, as a result of more uniform teaching. It was the lowest
achievers who had benefited least from the strategy, whereas the greatest gains
were in the middle of the range. From the same source came some evidence
also that while pupils’ knowledge of the number system and addition was
enhanced, some areas like problem solving and multiplication seemed not to
have improved. This suggested that improvements had been due more to
improved teaching methods (didactics) in some areas than to the changes in
lesson format and whole-class pedagogy.

There was some panic in the new Department for Education and Skills
(DfES) when it became clear that national test results were still failing to rise
significantly. The strategy director was called in to explain the failure and to
take urgent action to address it. The blame was eventually laid rather
unfairly at the hand of teachers, whom it was suggested were not imple-
menting the guidance faithfully, when in fact there is substantial evidence
that they were.

Thus a further turn of the centralization screw was made. Since teachers
could not be trusted to interpret the guidance, they would be issued with
lesson plans for every lesson, specifying exactly how it would be taught - little
was missing other than some sets of examples for practice. This was all to be
done quickly, with these ‘unit plans’ for lessons put on the Internet, starting in
2001-02 at least in some areas and for some year groups, and spreading more
widely in 2002-03 and 2003-04. Although these had been trialled, clearly they
were not always suitable for all classes in all schools, and there is some evi-
dence that teachers sometimes misunderstood the point of activities that they
were asked to deliver. Teachers who had recently bought and got used to new
published schemes relating to the strategy, some at least as sound in quality as
the unit plans, were forced to abandon them for the new orthodoxy.

But even after unit plans had been widely implemented, still only minor
improvements were observed in national test results. Although teachers had
broadly welcomed the unit plans at the start, as they discovered they did not
always work well with their classes there was more scepticism. With new min-
isters and new strategy personnel, new regimes were also introduced for chil-
dren with lower attainment who had appeared to suffer most in the early days
of implementation, with more customized work in Wave 2 (for groups) and
Wave 3 (for individuals with special needs).

So within the previous 50 years there had been enormous changes in
primary mathematics. First, from a broad and conceptually based curriculum
in which investigation and problem solving were encouraged, a curriculum was
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now in place which emphasized abstract number knowledge and procedures
and which downplayed applications and problem solving. While the overt
advice of the strategy remained broadly conceptual, the pressure on teachers
to move quickly through a tightly specified curriculum and to coach children
to achieve high scores in national tests, led in many classes to a more pro-
cedural style of teaching. Children were focused on what has to be done to
achieve high test scores rather than on learning to enjoy, explore and use
mathematics. Nevertheless, England has still generally avoided the most
mindless styles of teaching of formal written algorithms which pertain in
many countries.

Perhaps more radical have been the changes in control of the curriculum
and the possibility of adapting to the motivation and needs of individual chil-
dren. From broadly progressive teaching methods, where well-trained teachers
were trusted to find ways of exciting and communicating with their individual
children, we had moved to a situation where each lesson in most year groups
was centrally prescribed, in order to achieve a public education system which
adopted methods previously used only in totalitarian countries to equalize
experiences and outcomes for each child.

The reality, of course, is that change is never so extreme as it may seem
from an abstract description of the system. Even in apparently progressive
times, most schools, most of the time, have been dependent on published
schemes to set their curriculum as well as their teaching activities. These
schemes have generally covered a wide curriculum, but have always had a
major emphasis on number work. Most schools have continued throughout to
teach and test number bonds and multiplication tables, and calculators have
been used sparingly, if at all, to teach number sense rather than as a substitute
for traditional calculation methods. Thus the combined good sense and inertia
of the teaching profession has substantially damped the pendulum swings
recommended in the past, and no doubt will do so again.

Postscript: releasing the stranglehold post-2006

By 2006, with still no significant rise in national test results, it was decided
that further changes were needed; since there was little potential left for
greater control of the system, a new framework was issued which was dis-
tinctly lower key in its specification than its predecessor. Most teachers were
expected to use it online; while this provided more flexible planning tools, it
proved quite complex to access all the many different components, with much
less of the training and implementation systems which had been used in 1999.
The yearly schedules were now intended to be organized in slightly larger units
of equal length to ensure less fragmentation in teaching, but since many
units contained sections from different areas of mathematics, the effect was
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scarcely noticeable. While it is difficult to get a clear overall picture of what is
happening currently, it is clear that more decisions are being taken at school
level than was the case in 2005.

National tests at age 7 have been abandoned in favour of teacher assess-
ment with support from classroom tests, which leaves more freedom for Key
Stage 1, and among considerable national opposition it is very possible that
tests at age 11 will be replaced by single level tests and/or moderated teacher
assessment in Key Stage 2. Single level tests may well lead to more domination
of the curriculum by test preparation which could permeate the whole of KS2,
but since different children will be practising for different tests the uniform
curriculum may not hold for long.

Further, an official review by Sir Jim Rose (DCSF 2009) and an independent
report by Professor Robin Alexander and colleagues from schools, local author-
ities and universities (Alexander 2009), became available in 2009. Both men
were, perhaps ironically, co-authors of the Three Wise Men report in 1991
which launched the swing towards greater control of teaching. Both these
recommended a new more progressive and less specified curriculum with wider
aims, and the Rose Review led to a new version of the national curriculum to
be implemented in 2011 which has less specified content and more emphasis
on process.

So again the pendulum is swinging back; after concerns at much less
improvement in standards than expected we move on in the only way pos-
sible, towards more progressive and greater conceptual emphasis once again.
Maybe such swings are inevitable since standards will never be as high as we
would wish, and there will always be someone with a new vision ready to keep
the roundabout turning!
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SECTION 2
Post-Williams issues

As mentioned in the Editor’s Preface, the decision as to what to put in a
post-Williams section was a difficult one. For example, the chapter by Julie
Ryan and Julian Williams (Chapter 11) on errors and misconceptions could
quite easily have been situated in this section. However, because of the forma-
tive assessment aspect of the topic, it was decided to put this chapter in the
assessment section along with Jeremy Hodgen and Mike Askew’s chapter on
Assessment for Learning (AfL) and Assessing Pupils’ Progress (APP). Similar
arguments could be made for other chapters, given that the whole book
is concerned with issues relevant to the teaching and learning of primary
number.

Chapter 2 has been deliberately retained in the form in which it was ori-
ginally written. The author, Mike Askew, was principal investigator for the
study Effective Teachers of Numeracy which was carried out by King’s College
in 1995-96 for the Teacher Training Agency. The aims of the study were to
explore the key factors that made teachers into effective teachers of numeracy.
To do this the researchers explored the knowledge, beliefs and practices
of a sample of effective teachers of numeracy, where ‘effectiveness’ was defined
on the basis of learning gains. Several of the project’s findings were surprising
in that they challenged some popularly held beliefs about what it is that
makes a teacher effective. The chapter includes illustrative examples of effect-
ive teachers in action; describes three different orientations to the teaching of
numeracy; and discusses the relationship between these orientations and
effectiveness. In Chapter 3, Patrick Barmby, Tony Harries and Steve Higgins ask
what we mean by ‘understanding’ in mathematics and how we teach in order
to develop it in children. They also examine the understanding required
by teachers of mathematics, thereby making links with the content of the
previous chapter.

Chapter 4, by Frank Monaghan, provides a brief introduction to the role
of discussion in the mathematics classroom and more specifically to the
approach known as Thinking Together, initially developed by Neil Mercer and
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colleagues at the Open University. The chapter describes the outcomes of a
research and professional development project aimed at encouraging explora-
tory talk in primary mathematics lessons. These lessons involve the explicit
teaching of talking skills; the development of an agreed set of ground rules for
talk in the classroom; and the skilled intervention of the teacher to ensure that
talk becomes an effective tool for learning.

After a brief historical overview of the place of practical equipment in the
teaching of primary mathematics, Kev Delaney argues in Chapter 5 that
although official publications in England recommend a range of practical
resources, they fail to include a rationale for their use. By analysing ‘official’
video material he attempts to ascertain what this rationale might be, and pro-
ceeds to offer an alternative approach to the use of what are known in the USA
as ‘manipulatives’.

The usual approach to teaching mathematics in primary schools is to
teach various skills, understandings or techniques and then ‘use and apply’
them in problem-solving situations. In Chapter 6 Mike Ollerton turns this
practice on its head, arguing for the use of problem solving as a vehicle for
supporting children’s learning of mathematics. He links the teaching and
learning of mathematics through problem-solving approaches to the broader
qualities that he believes are desirable for children to develop in order to sup-
port their learning. He illustrates his point by leading us through a variety of
‘rich’ tasks, before challenging some of the prescribed orthodoxies such as the
recommended lesson structure and the notion of differentiation occurring
at three different levels in classrooms.

Chapter 7 deals with information and communications technology (ICT).
In the first part of this chapter Richard English argues the case for making use
of ICT in teaching and learning mathematics, concluding that many things
can be done better with ICT than without it. He then proceeds to consider
three particular issues identified in the Williams Review — using and applying
mathematics, oral and mental work, high-quality discussion — and explores
the role that ICT can play in addressing these issues.

Sue Gifford begins Chapter 8 by making the important point that educa-
tors in England are in the rare position of having a mathematics curriculum
for children from birth to 5. She argues that the Early Years Foundation Stage
succeeds in setting out principles for early years education that could go some
way towards preventing inappropriate mathematics teaching. However, as she
outlines the recommendations contained in those documents dealing with
the teaching of mathematics in the early years, she offers many insightful
suggestions as to how these recommendations might have been improved. Key
Stage 1 and 2 teachers will no doubt benefit from being made aware of the
strengths and limitations of these various documents.

In Chapter 9, the final chapter in this section, Jan Winter discusses the
numeracy strand of the Home-School Knowledge Exchange project (2001-05)
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— a project based on the assumption that both parents and teachers are in
possession of knowledge that is relevant to the enhancement of children’s
learning. She describes and evaluates the activities that the project team
developed for taking knowledge from school to home as well as from home
to school.






2 It ain’t (just) what you do:
effective teachers of numeracy

Mike Askew

Introduction
I met John a few years ago when he was a Year 4 pupil. Sitting alone, he
was working on a scheme page which asked what had to be added to several

three-digit numbers to make each up to 500. He had done the first and what
was written in his book is shown in Figure 2.1.

Figure 2.1 John's calculation.

AsIsat down, John slipped a piece of paper under the desk. I asked him to
read what he had written in his book.

‘278 plus 222 makes 500.

When I asked him how he had found the answer, John replied, ‘I just
worked it out.’

‘Did you do it in your head?’

‘No, I used a bit of paper.’

‘Is that the paper that you used?’ (indicating the piece under the desk)

‘No, it’s in the bin, that’s my working for the next one.’

When John reluctantly showed me the paper it became clear why,
20 minutes into the lesson, he had only done one question. Counting on from
278 to 500 in single tally marks and then recounting them is a slow process
(especially if you want to get it right. I, of course, had interrupted the counting
for the second question, so was not too popular) (see Figure 2.2).

Before reading on you might like to consider for a moment what your
response would be to John's strategy. What would you do to help him?
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Figure 2.2 John's tally marks.

I have been posing this question to many teachers at workshops and
lectures. Usually there is a range of responses, including:

e work on building up his confidence. John got the right answer, so to
try and show him a different method might demotivate him;

e ask him if he can think of a quicker method;

e work with much smaller numbers — he needs to be able to deal with
those efficiently before working with greater numbers;

e work with much larger numbers — by asking how many more, say,
5000 is than 2780, John might realize the inefficiency of his method;

e refine his method - say, getting him to organize his tallies in tens
and ones;

e show a practical method - get out tens and ones blocks and demon-
strate how to model the situation;

e persuade him that the calculation is actually a subtraction and can
be answered using a standard algorithm;

e show a more efficient method, say, shopkeeper arithmetic (rounding
up to the nearest 10 then 100) or counting up using an empty number
line.

I want to suggest the following simple model of the challenge that John’s work
poses. At one end of a continuum you have the child’s methods and under-
standing, and at the other end the teacher’s methods and understanding.
The challenge is to bridge this gap.

Child’s method(s) Teacher’s methods

So where do you focus your attention on this continuum? Do you start ‘near’
to where the child is (or further back than that) or do you leap in at the other
end? The strength of the first option is that you build on what children can do,
but a weakness is that it may take some time to move them on. On the other
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hand, showing a different method may increase efficiency in the short term
but at the cost of longer-term understanding and the ability to apply the skill
in different situations.

Any decision will rest on some theory or beliefs, however informal or
unarticulated, about the relationship between teaching and learning. Explor-
ing teachers’ beliefs about this relationship was one aspect of the Effective
Teachers of Numeracy project carried out at King’s College by myself and col-
leagues Margaret Brown, David Johnson, Valerie Rhodes and Dylan Wiliam
and funded by the Teacher Training Agency.'

The beliefs of the teachers in the project appeared to be significant not
only in terms of what they did in the classroom, but also in terms of children’s
learning outcomes. This chapter explores some of these issues. Anyone
wishing to read more about the project should see Askew et al. (1997).

Effective teachers of numeracy

The principal aim of the Effective Teachers of Numeracy project was:

e toidentify key factors which enable teachers to put effective teaching
of numeracy into practice in the primary phase.

Realizing this aim posed three initial problems for us:

e What is meant by numeracy?
e How do we identify effective teaching of numeracy?
e How do we find effective teachers of numeracy?

Only when we had resolved these could we begin to identify the factors that
enabled teachers to put effective teaching into practice.

Defining numeracy

Starting the project we could find no agreed definition of numeracy. We there-
fore decided to adopt a definition that was broad enough to encompass the
ability to calculate accurately but also go beyond that to include a ‘feel for
number’, and the ability to apply arithmetic:

Numeracy is the ability to process, communicate and interpret
numerical information in a variety of contexts.
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Identifying effective teaching of numeracy

Identifying teachers believed to be effective in teaching numeracy was crucial
to the project. But before we could identify such teachers we had to decide what
we meant by effective teaching of numeracy. Our starting point was to build
on our definition of numeracy, and this enabled us to be more specific about
our expected outcomes of effective teaching. We defined effective teaching of
numeracy as teaching that helps children:

e acquire knowledge of and facility with numbers, number relations and
number operations based on an integrated network of understanding,
techniques, strategies and application skills;

e learn how to apply this knowledge of and facility with numbers,
number relations and number operations in a variety of contexts.

Although this definition gave some sense of the outcomes of the teaching, it
moved us no nearer to identifying what the actual teaching might look like.

Many people in mathematics education — researchers, inspectors, teachers
— would claim to know what ‘good’ practice in primary mathematics should
look like. However, evidence about teaching practices that are effective in
terms of bringing about learning of numeracy is limited. At the time of the
study, research in mathematics education in the UK largely separated findings
on children’s learning from those on teaching.

It seemed sensible therefore to base our identification of effective teaching
on some measure of children’s actual learning gains, rather than presumptions
of ‘good practice’. If we could find classes whose average gains were higher
than others, then we could go about exploring what practices appeared to be
most effective in promoting this learning.

We measured children’s learning by looking at the gains for individual
classes over part of a school year. Specially designed tests of numeracy were
administered to whole classes from Year 1 to Year 6, first towards the beginning
of the autumn term 1995, and again at the end of the spring term 1996 (Year 1
being assessed only on this second occasion). The tests related as far as possible
to the definition of numeracy and outcomes of effective teaching given above.
Aspects of numeracy covered in the tests included:

e Understanding of the number system, including place value, decimals
and fractions. For example, given the numbers 30, 76 and 174, Year 2
children were asked to write down the number one less than each.

e Methods of computation, including both known number facts and
efficient and accurate methods of calculating. For example, ‘share 76
equally among 4’ was on the Year 5 test.
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e Solving numerical problems, including complex contextualized word
problems and abstract mathematical problems concerning the rela-
tionships between operations. For example, given that 86 + 57 = 143
could Year 3 children quickly figure out answers to 86 + 56, 57 + 6, 860
+ 570, 85 + 57, 143 — 86? Or, asked how many different sandwiches
can be made from six different fillings and three types of bread, could
Year 4 children identify an appropriate calculation?

Average gains were calculated for each class providing an indicator of ‘teacher
effectiveness’ for the teachers in our project.

Finding effective teachers of numeracy

In ideal circumstances, we might have chosen some teachers; judged their
effectiveness through class scores on our tests; and then gone back to look at
what the teachers did in their lessons.

However, the project was only funded for just over a year. By the time
we had the data on children’s gains there was not going to be time to go back
and work with the teachers. We had to study classroom processes in the
time between the two test administrations. This meant we somehow had to
maximize our chances of working with teachers who were already effective.

Selecting potentially effective teachers was done through a progressive
‘filtering’ from local authority (LA) to school to class. We approached three
local authorities (Berkshire, Croydon and Wandsworth) as we knew each held
considerable school-level data on standards in numeracy in relation to other
school variables. On the basis of these data, each LA agreed to assist in identify-
ing one or two focus schools: a total group of four schools identified as per-
forming well above expectations in relation to numeracy. We also made sure
that the sample contained schools with different socio-economic intakes in
different environments (inner city, suburban, rural).

We also considered it important to include teachers in independent
schools. The Incorporated Association of Preparatory Schools assisted us in
identifying two further focus schools in the independent sector which were
acknowledged to be effective in teaching numeracy. Our main data on
teachers were gathered from these focus schools. In order to check out these
findings, a further set of five validation schools was also identified. These
schools represented a range of levels of performance in mathematics.

So, from an initial sample of all the primary schools in three LAs (some
587 schools), together with independent schools, we had selected 11 schools —
six focus schools and five validation schools - to study in detail, giving an
overall sample of 90 teachers (Figure 2.3).

From the six focus schools, we worked closely with 18 teachers, three in
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587 schools in 3 LEAs plus independents

v v
6 focus schools 5 validation schools
66 teachers 24 teachers
v v
18 core case 15 validation
study teachers teachers

Figure 2.3 The sample of teachers.

each school. This group of 18 teachers formed our sample of case study teachers,
providing data on classroom practices, together with data on teacher beliefs
about, and knowledge of, mathematics, pupils and teaching. Three teachers
in each school were identified as those most likely to prove effective, selected
through discussion with head teachers and, where appropriate, with advice
from the LA inspectors and advisers. While the emphasis was on identifying
effective teachers, the 18 were chosen so that teachers were reasonably evenly
distributed across year groups 1-6.

Exploring teachers’ beliefs and practices

An understanding of the teachers’ beliefs and practices was built up from data
from four sources:

e questionnaire data from the full sample of 90 teachers (66 in focus
schools, 24 in validation schools);

e observations of 54 mathematics lessons with the 18 case study
teachers (three for each teacher) and 30 lessons with the 15 validation
teachers (two for each teacher);

e three interviews with each of the 18 case study teachers: a general
interview on classroom practices, teaching intentions and experi-
ences; a structured task to explore their mathematical understandings;
an interview focused on children and the similarities and difference
between them;

e two interviews with each of the 15 validation teachers.

Children test data on our tests of numeracy were gathered for all 90 classes
in both core and validation schools. All the classes demonstrated gains on our
test over the year. Putting the classes in order of their gains provided the range
of ‘teacher effectiveness’.
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Some findings

Some of our findings were surprising in that they challenge some popularly
held beliefs about what makes a teacher effective. For example, style of organ-
ization for mathematics teaching was not a predictor of how effective teachers
were. Whole-class ‘question-and-answer’ teaching styles were used by both
highly effective and comparatively less effective teachers. Similarly, indi-
vidualized work and small-group work were used by teachers across the range
of effectiveness.

At the school level, setting across an age group was used in schools with
both high and low proportions of highly effective teachers. The same pub-
lished mathematics schemes were used by highly effective and comparatively
much less effective teachers. Our findings also raised questions about the sort
of mathematical knowledge teachers need in order to be effective. Despite
what might be expected, being highly effective was not positively associated
with higher levels of qualifications in mathematics. The amount of continuing
professional development in mathematics education that teachers had under-
taken was a better predictor of their effectiveness than the level to which they
had formally studied mathematics.

Levels of effectiveness

So, if styles of classroom organization and levels of mathematical qualification
did not determine effectiveness, what did? On the basis of the average gains
made by each class the teachers were put into three groups: highly effective,
effective and moderately effective (Table 2.1). In order to try and answer this
question we looked at how our focus case study teachers were distributed
across these categories.

The initials of the pseudonyms chosen for the teachers are the same for
teachers from the same school, so, for example, Anne, Alan and Alice all

Table 2.1 The case study teachers and levels of effectiveness

Highly effective Effective Moderately effective
Anne Danielle Beth

Alan Dorothy Brian

Alice Eva Cath

Barbara Fay David

Carole Elizabeth

Faith Erica
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taught in School A. Year 1 teachers (Claire and Frances) are not included in
Table 2.1 since they could not be readily identified according to effectiveness
on the basis of the testing of their classes on one occasion only.

By looking at the data for each group of teachers, and in particular those
identified as highly effective, we noticed that some patterns began to emerge.
Before discussing these, a couple of examples might provide some flavour of
what the highly effective teachers did in practice. The first example is adapted
from the field notes of Claire’s lesson. As indicated it was not possible to
determine which of the three categories Claire would be in, but her beliefs and
practices were very similar to those of the group of highly effective teachers
and the children’s responses in class suggested that it was likely that she was a
highly effective teacher.

Example 1: Place value

A Year 1 whole-class lesson: There is a large 0-99 hundred square on the board
with some numbers filled in. Claire shows the children how looking at the left-
hand numbers gives the name of the numbers in that row and how the top
row gives the second number (that is, row headed 20 intersects with column
headed 4 at 24). She identifies an empty space (say 37) on the hundred square.
The children have to work out what the missing number is and someone is
invited to the board to fill it in.

On a table are a blue hoop and a yellow hoop and some interlocking
cubes. Two children put three cubes into the yellow hoop and seven into the
blue hoop. Claire asks each child in turn how many their cubes represent to
which they respond ‘ten, twenty, thirty and seven’. Under the hundred square
are drawn a yellow circle and a blue circle (labelled ‘tens’ and ‘ones’ respect-
ively). A pair of children draw squares in the circle for the appropriate number
of tens and ones and, in a similar fashion to the pair with the cubes, read out
the numbers.

After several numbers have been filled in, the teacher asks what the biggest
number on the square is and which number would come next. The children
identify 100 and a lively discussion follows on where the box for 100 should
be drawn: next to 99 or under 90. They agree to under 90. A child comes and
writes it in. Claire adds another hoop to the table and a third circle on the
board. While the children can represent 100 using these, 102 causes difficulty
and there is much discussion about recording and the order of the digits.

Example 2: Fractions, decimal fractions, percentages and ratios

A Year 6 class: Alan, the teacher, has put a chart on the whiteboard which has
columns for fractions, decimal fractions, percentages and ratios. One value has
been entered in each row and the children are working in pairs to convert from
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one form of representation to another. They are using a variety of methods
but working mainly in their heads and most are checking their results using a
different method.

As they begin to complete the task Alan brings the class together. Indi-
viduals are invited to provide answers and explain methods of calculation. The
class is attentive to these explanations. More efficient methods are offered and
errors dealt with in a supportive manner either by the teacher or other pupils.
Finally they discuss the sort of contexts where the different representations
would be used.

A connectionist orientation towards teaching numeracy

From our analysis what seemed to distinguish some highly effective teachers
from the others was a consistent and coherent set of beliefs about how best to
teach mathematics while taking into account children’s learning. In particu-
lar, the theme of ‘connections’ was one that particularly struck us. Several of
our highly effective teachers seemed to pay attention to:

e connections between different aspects of mathematics, for example,
addition and subtraction or fractions, decimals and percentages;

e connections between different representations of mathematics: mov-
ing between symbols, words, diagrams and objects;

e connections with children’s methods - valuing these and being inter-
ested in children’s thinking but also sharing other methods.

We came to refer to such teachers as having a connectionist orientation to
teaching and learning numeracy. This connectionist orientation includes
the belief that being numerate involves being both efficient and effective.
For example while 2016-1999 can be effectively calculated using a paper
and pencil algorithm, it is more efficient to work it out mentally. Being
numerate, for the connectionist orientated teacher, requires an awareness
of different methods of calculation and the ability to choose an appropriate
method. As Anne put it: ‘I have tried to provide them with a whole range of
different ways of going about adding numbers, or taking them away, so that
they will be able to become comfortable with the strategies that they like best’
(Anne Y2/3/4).

Further to this is the belief that children come to lessons already in posses-
sion of some strategies for calculating but that the teacher has responsibility
for intervening, working with the children on becoming more efficient. Mis-
understandings that children may display are seen as important parts of les-
sons, needing to be explicitly identified and worked with in order to improve
understanding (see Ryan and Williams, Chapter 11).
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As indicated, a connectionist orientation emphasizes the links between
different aspects of the mathematics curriculum.

I think you’ve got to know that they are inverse operations those
two (addition and subtraction), and that those two (multiplication
and division) are linked, because when you are solving problems
mentally you are all the time making links between multiplication,
division, addition and subtraction . . . I think mental agility depends
on you seeing relationships between numbers and being aware of
links.

(Barbara Y6)

The application of number to new situations is important to the connectionist
orientation, with children drawing on their mathematical understandings to
solve realistic problems. The connectionist orientation also places a strong
emphasis on developing reasoning and justification, leading to the children
developing early ideas of proof. Reasoning about number is as important as
its application, and so working with ‘pure’ mathematics is as important as
applying it to real-life situations.

Associated with the connectionist orientation is a belief that most chil-
dren are able to learn mathematics given appropriate teaching that explicitly
introduces the links between different aspects of mathematics.

But I have the same expectations for the children, I always think
about it as not so much what the children are doing as what they have
the potential to do. So even if I have children like Mary in the class-
room who are tremendously able, I am really just as excited with the
children who are having that nice slow start, because, who knows,
tomorrow they may fly — you just don’t know.

(Anne Y2/3/4)

Within a constructivist orientation a fundamental belief is that teaching
mathematics is based on dialogue between teacher and children, so that
teachers better understand the children’s thinking and children gain access
to the teacher’s mathematical knowledge.

If I am honest with myself I probably spend more time talking with
them than doing exercises and things like that...because I want
them to be able not to just give an answer, [ want them to explain the
process and what they are doing, to be looking for these links again,
and to be able to be adventurous as well.

(Alan Y5/6)
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Other orientations towards teaching numeracy

Two other orientations were also identified: one where the teacher’s beliefs were
more focused upon the role of the teacher (a transmission orientation) and
one of beliefs focused upon the children learning mathematics independently
(discovery orientation).

The transmission orientation means placing more emphasis on teaching
than learning. The transmission orientation entails a belief in the importance
of a collection of procedures or routines, particularly with regard to paper and
pencil methods, one for doing each particular type of calculation regardless
of whether or not a different method would be more efficient in a particular
case. This emphasis on a set of routines and methods to be learned leads to
the presentation of mathematics in discrete packages, for example, fractions
taught separately from division.

Teaching is believed to be most effective when it consists of clear verbal
explanations of routines. Interactions between teachers and children tend
to be question and answer exchanges in order to check whether or not chil-
dren can reproduce the routine or method being introduced to them. What
children already know is of less importance, unless it forms part of a new
procedure.

Linked to this is a view of ‘using and applying’ as the application of
mathematics to word problems (basic calculations set in a real-world context).
These word problems can be tackled after learning to do calculations or pro-
cedures in an abstract form. The numeracy emphasis is on the ability to per-
form set routines, so the reasoning, logic and proof aspects of mathematical
thinking are not seen as particularly relevant.

Children are believed to vary in their ability to become numerate. If the
teacher has explained a method clearly and logically, then any failure to learn
must be the result of the children’s inability rather than a consequence of the
teaching. Any misunderstandings that children may display are seen as the
result of the children’s failure to ‘grasp’ what was being taught; misunder-
standings are remedied by further reinforcement of the ‘correct’ method and
more practice to help children remember.

In the discovery orientation learning takes precedence over teaching and
the pace of learning is largely determined by the children. Children’s own
strategies are the most important: understanding is based on working things
out for themselves. Children are seen as needing to be ‘ready’ before they can
learn certain mathematical ideas. This results in a view that children vary in
their ability to become numerate. Children’s misunderstandings are the result
of pupils not being ‘ready’ to learn the ideas.

Teaching children requires extensive use of practical experiences that are
seen as embodying mathematical ideas so that they discover methods for
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themselves. Learning about mathematical concepts precedes the ability to
apply these concepts and application is introduced through practical problems.

The discovery-orientated teacher tends to treat all methods of calculation
as equally acceptable. As long as an answer is obtained, whether or not the
method is particularly effective or efficient is not perceived as important.
Children’s creation of their own methods is a valued process, and is based
upon building up their confidence and ability in practical methods. Calcula-
tion methods are selected primarily on the basis of practically representing the
operation. The mathematics curriculum is seen as being made up of mostly
separate elements.

Orientation and effectiveness

The orientations of connectionist, transmission and discovery are ideal types:
no single teacher is likely to hold a set of beliefs that precisely matches those
set out within each orientation. However, analysis of our data revealed that
some teachers were more predisposed to talk and behave in ways that fitted
with one orientation over the others. In particular, Anne, Alan, Barbara, Carole
and Faith, all displayed characteristics indicating a high level of orientation
towards the connectionist view. On the other hand, Brian and David both
displayed strong discovery orientations, while Beth, Elizabeth and Cath were
characterized as transmission-orientated teachers (Table 2.2).

Other case study teachers displayed less distinct allegiance to one or other
of the three orientations. They held sets of beliefs that drew in part from one or
more of the orientations. For example, one teacher had strong connectionist
beliefs about the nature of being a numerate pupil but in practice displayed
a transmission orientation towards beliefs about how best to teach pupils to
become numerate.

The connection between these three orientations and the classification of
the teachers into having relatively high, medium or low mean class gain scores
suggests that there may be a relationship between pupil learning outcomes
and teacher orientations.

Implications of orientations

I suggest that examining orientations towards teaching mathematics can
help us understand why practices that have surface similarities may result
in different learner outcomes. For example, while all the teachers in the
study employed some whole-class question and answer sessions, the nature
of the interaction with children within such sessions varied according to
orientation. Our highly effective teachers demonstrated a range of classroom
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Table 2.2 The relation between orientation and effectiveness

Highly effective Effective Moderately effective
Strongly connectionist Anne
Alan
Barbara
Carole
Faith
Strongly transmission Beth
Cath
Elizabeth
Strongly discovery Brian
David
No strong orientation Alice Danielle Erica
Dorothy
Eva
Fay

organization styles including whole-class teaching, individual and group
work. On such measures their practices were indistinguishable from those
of the teachers who were only moderately effective. While the interplay
between beliefs and practices is complex, these orientations provide some
insight into the mathematical and pedagogical purposes behind particular
classroom practices and may be more important than the practices themselves
in determining effectiveness.

Exhortations for teachers to adopt new practices may result either in the
practices being adapted to fit with existing beliefs or in limited take-up of the
practices themselves. As other research on developing teaching has demon-
strated, expecting teachers to adopt particular practices without helping them
develop a deep understanding of the principles behind these practices does
not in itself lead to raised standards (Alexander 1992).

Teachers may find it helpful to examine their belief systems and think
about where they stand in relation to these three orientations. In a sense the
connectionist approach is not a complete contrast to the other two but
embodies the best of both of them in its acknowledgement of the role of both
the teacher and the pupils in lessons. Teachers may therefore need to address
different issues according to their beliefs: the transmission-orientated teacher
may want to consider the attention given to pupil understandings, while the
discovery-orientated teacher may need to examine beliefs about the role of
the teacher.

Just in case anyone is left wondering what I did with John, I showed him
how to find the difference using shopkeeper arithmetic. I hoped we were on to
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a winner when he said, ‘Oh, that’s a lot quicker isn’t it!" But of course, whether
I had any long-term impact is another question.

Note

1  The views expressed here are those of the author and should not be interpreted
as representing the views of the Teacher Training Agency.
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3 Teaching for understanding/
understanding for teaching

Patrick Barmby, Tony Harries and
Steve Higgins

Introduction: the context for understanding

The issue of understanding in mathematics has been a particular focus for edu-
cational policy in England and Wales in recent years. A report published
by Ofsted (2008: 5) highlighted the lack of development of mathematical
understanding in the classroom:

The fundamental issue for teachers is how better to develop pupils’
mathematical understanding. Too often, pupils are expected to
remember methods, rules and facts without grasping the underpin-
ning concepts, making connections with earlier learning and other
topics, and making sense of the mathematics so that they can use it
independently.

The Independent Review of the Primary Curriculum: Final Report (the Rose Review)
(DCSF 2009) recommended that one of the proposed strands of learning
should be ‘mathematical understanding’. It highlighted the need to develop
children’s thinking and discussion in mathematics, and opportunities to use
and apply mathematics — areas that perhaps are being neglected in the class-
room through a conception of ‘numeracy’ that is too narrow. The Indepen-
dent Review of Mathematics Teaching in the Early Years and Primary Schools (the
Williams Review) (DCSF 2008: 7) specifically recommended the provision
of mathematics specialist teachers ‘with deep mathematical subject and peda-
gogical knowledge’, with a focus on impacting on standards and attainment
in mathematics. A Nuffield review of mathematical learning (Nufles
et al. 2009: 3) aimed ‘to identify the issues that are fundamental to under-
standing children’s mathematics learning’ and focused throughout on ‘key
understandings in mathematics’.

However, although the importance of understanding is agreed upon, a



46 PATRICK BARMBY, TONY HARRIES AND STEVE HIGGINS

vital issue is what we mean by understanding in mathematics and how we
teach in order to develop it in children. We have already seen that it draws on
ideas and terms such as ‘discussion’ (see Monaghan, Chapter 4), ‘using and
applying’ (see Ollerton, Chapter 6) and ‘deep subject and pedagogical know-
ledge’. But what is this deep knowledge? Why are discussion and using and
applying important? In this chapter, we set out to clarify exactly what we
mean by understanding in mathematics. In doing so, we look at the implica-
tions of our definition on teaching for understanding and the understanding
that teachers need to bring to the classroom. We hope that this discussion of
understanding will help teachers and prospective teachers of mathematics to
be clear about why they are doing what they are doing in the classroom, and
also help them to develop their practice in the future.

Defining understanding

An important characteristic of understanding is that it involves connections
between different ideas or concepts. More specifically, Hiebert and Carpenter
(1992: 67) defined mathematical understanding as involving the building up
of a conceptual ‘network’:

The mathematics is understood if its mental representation is part
of a network of representations. The degree of understanding is deter-
mined by the number and strength of its connections. A mathemat-
ical idea, procedure, or fact is understood thoroughly if it is linked to
existing networks with stronger or more numerous connections.

The mental representations that make up this network are defined by Davis
(1984: 203) as follows: ‘Any mathematical concept, or technique, or strategy —
or anything else mathematical that involves either information or some means
of processing information - if it is to be present in the mind at all, must be
represented in some way.’

Goldin (1998) highlighted the fact that we have a variety of internal
representations, including verbal, imagistic, symbolic, planning (for example,
problem-solving approaches) and affective (that is, attitudes about maths)
representations. Therefore, we have this picture of understanding as being this
variety of internal or mental representations associated with mathematical
concepts, being connected together to form a complex network. This view of
mathematical understanding is closely related to the ‘connectionist’ view of
mathematics teaching (see Askew, Chapter 2). The question then is how are
these mental representations connected together?

Sierpinska (1994) identified the ‘processes of understanding’ as involv-
ing connections being made between mental concepts through reasoning
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Figure 3.1 Representational-reasoning model of understanding.

processes. For example, in our minds, the concepts of ‘addition’ and ‘multipli-
cation’ may be connected because we can show that multiplication can be
the same as ‘repeated addition’ — perhaps because calculations give the same
answer, or perhaps through pictures such as the number line (we will say a
little more about the ‘quality’ of this reasoning later). Therefore, the overall
picture or model of understanding that we have adopted is a ‘representational—
reasoning’ model of understanding, as shown in Figure 3.1. The model shows
the different representations (the circles) connected together by different levels
of reasoning (the lines).

It has to be emphasized here that this is not meant to be a picture of
what is actually happening inside our minds. Rather, we emphasize that this
is a ‘model’ of understanding: a picture that helps us to make sense of this
concept. However, because we have this picture to work with, we can start to
look at what such a model means for what teachers do in the mathematics
classroom. In the next section, we examine the implications of the model for
teaching for understanding.

Implications of the model: teaching for understanding
The first issue that we can note from the model of understanding is that there

is no limit to the connections we can make - there is no ‘boundary’ to our
understanding:
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Understanding is not a dichotomous state, but a continuum. ..
Everyone understands to some degree anything that they know
about. It also follows that understanding is never complete; for we
can always add more knowledge, another episode, say, or refine an
image, or see new links between things we know already.

(White and Gunstone 1992: 6)

Understanding of a mathematical topic is not something that we suddenly
attain at the end of some programme of learning. Rather, it is a continuously
evolving process — a process rather different from the often conveyed percep-
tion of mathematics as being about ‘right’ and ‘wrong’ answers. The latter
issue of ‘wrong’ answers is also challenged by the idea that ‘everyone under-
stands to some degree anything that they know about’. Certainly, we all have
‘misconceptions’, but to simply label them as ‘wrong’ fails to recognize that
there are often good reasons for us to possess these misconceptions (see Ryan
and Williams, Chapter 11). For example, a child that states that we cannot do
2 + 5 because ‘S into 2 doesn’t go’, is basing their reasoning on a conception
of division as repeated subtraction. Within this limited understanding, their
misconception is entirely reasonable. In order to tackle this misconception, we
need to build upon their conception of division (that is, increase the variety of
mental representations) and to develop their subsequent reasoning.

In examining the issue of misconceptions, we have touched upon the issue
of how we develop understanding in the mathematics classroom. And because
our model of understanding has two components — the representations and
the reasoning - this provides us with two areas to explore with regards to how
we teach for understanding. Let us examine first the issue of representations.
In order to develop the range of mental representations available to a person,
we can provide them with a variety of external representations (for example,
concrete manipulatives, pictures, symbolic representations, procedures). Let us
give an example of this from some work that we have been carrying out with a
group of experienced primary mathematics teachers. We were working
with the array representation for multiplication (Figure 3.2). One of the
strengths of the array is that we can easily show the distributive properties of
multiplication. For example, from the diagram, we can see that 8 x 6 is the
same as (5+3)x (5+1), whichin turnis (5x5)+ (5x 1)+ (3% 5)+ (3 x 1). Now,
let us look at another representation for multiplication, that of the grid
method (Figure 3.3).

Figure 3.3 shows the grid method to calculate 18 x 16. By comparing the
two representations of the grid method and the array, we can see why we can
split the numbers in the grid method as we do. But one of the teachers we were
working with went further, with the realization that the grid method did not
have to be based on units, tens, and so on. For example, the grid could be split
into multiples of 5 (see Figure 3.4).
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Figure 3.2 Array representation for multiplication.

The teacher felt that this modified grid method might be better for lower-
attaining pupils as they could change more difficult times tables such as the
8 times tables into the 5 and 3 times tables. By increasing the range of
representations available to the teacher, this led to the development of their
understanding in multiplication.

One aspect of teaching for understanding can be seen to be this devel-
opment of the range of mental representations of mathematical concepts.
However, this in itself is not sufficient. This has been highlighted by Sowell
(1989) who concluded that the long-term use of concrete materials led to

10 8

10

Figure 3.3  Grid method for multiplication.
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10 5 3

Figure 3.4 Modified grid method.

benefits for children. The emphasis was on long-term use, and significant
benefits were not observed for pictorial representations. In fact, we have
emphasized in our model of understanding that we need to develop our
reasoning between representations as well.

The process of trying to make connections between our existing under-
standing of a concept and alternative representations for that concept is
what brings about the processes of assimilation of the new representation
(if our existing understanding is compatible) or accommodation of the new
representation (through restructuring of our understanding) that was high-
lighted by Piaget (1968). Therefore, an additional implication for teaching
for understanding in the classroom is to provide opportunities for children to
develop their ‘reasonings’ — for example, explaining why they do a calculation
in a certain way (Nufies et al. 2009: 10-11). Now this reasoning may not
necessarily be formal mathematical reasoning - for example, a child might
split up a multiplication calculation according to the distributive law simply
because their teacher had told them that they could do this. Nevertheless, this
is the reasoning that is used by the child. We can now bring in here the issue of
discussion that we highlighted at the beginning of the chapter. Hoyles (1985)
suggested three aspects to pupil-pupil discussion:

e articulating ideas brings about reflection on those ideas;

e discussion involves framing ideas in a way that will be accepted by
others;

e listening to others modifies your own thoughts.

All three of these aspects of discussion bring about an examination of one’s
own reasonings. Discussion and explanation of methods by children can be
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used in our teaching for understanding so that children can reflect upon the
quality of their reasoning, and thereby strengthen or change their connections
(see Monaghan, Chapter 4).

The representational-reasoning model of understanding provides us with
a basis for how we can approach teaching for understanding in the mathemat-
ics classroom. Interestingly, both ‘representing’ and ‘reasoning’ appears in the
five themes within ‘using and applying’ identified by guidance notes provided
by the Department for Education and Skills (DfES 2006: 4):

e Solving problems;

e Representing — analyse, record, do, check, confirm;

e Enquiring - plan, decide, organize, interpret, reason, justify;

e Reasoning - create, deduce, apply, explore, predict, hypothesize, test;

e Communicating — explain methods and solutions, choices, decisions,
reasoning.

However, based on the explanation of the themes provided by the DfES, where
aspects of representation and reasoning seem to appear in different themes, we
could simplify the picture of using and applying mathematics in terms of
the two aspects of understanding that we have already identified. Let us
draw on some example problems from the guidance paper to illustrate this.
First, we have a word problem such as ‘How much will seven oranges cost if
four oranges cost £1?’ Based on our existing understanding, we could represent
this problem in a variety of ways (Figure 3.5).

We can then examine each alternative representation to see which is most
useful for providing an answer. Perhaps multiplying by 13, and therefore
multiplying £1 to £1.75, provides the most direct answer. The important issue
here is that the act of representing the problem in alternative ways provides
us with a solution. Also, the act of solving the problem results in different
representations of the concept being linked (for example, multiplication by
fractions with ratios). The sharing of problem-solving approaches in the class-
room through discussion will hopefully result in new connections being made

0000 0000000
—

Added 3 oranges, or
Multiplied by 1%, or
Ratioof 4:7

Figure 3.5 Representing a problem in a variety of ways.
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within children’s understanding. Taking a broader view of mental represen-
tations as well, this will also result in new ‘planning’ representations (for exam-
ple, what to do when faced with a ratio problem) within this understanding.

Let us look at one more problem - this time a sequence problem. What is
the 51st number in the sequence 2, 7, 12 .. .? We can start by representing the
problem in a different way again (Figure 3.6).

2 7 12

N T~

Add 5 Add 5

Figure 3.6 Representing a sequence.

We could keep adding 5 until we reach the 51st number. However, this is
rather laborious - let us use another representation. The first number is 2
with no fives added; the second number is 2 with 1 five added; the third
number is 2 with 2 fives added, and so on. From this pattern, we can reason
that the 51st number would be 2 with 50 fives added, or 252. However, this
is not the end of the problem. We can also examine the reasoning we have
used. Are we correct in reasoning that ‘adding 5’ is the only way in which
the sequence 2, 7, 12 can be obtained? Are there other representations that
we could have used? Likewise, in the previous problem, are there other ways
of approaching this problem? Calling into question our reasoning in a prob-
lem, as well as using a variety of representations, can lead to a development
in our understanding either through strengthening connections or developing
new ones. We can therefore start to see the role of using and applying in
developing our understanding of mathematical concepts.

Let us examine one last implication of the earlier model on teaching
for understanding - this time a particular difficulty that the model implies.
The complex network that makes up our model means that if we are to assess
a child’s understanding of a mathematical concept, then we need to try and
assess the variety of representations and reasonings associated with that con-
cept in a child’s mind. This is no simple task: ‘Understanding usually cannot
be inferred from a single response on a single task; any individual task can
be performed correctly without understanding. A variety of tasks, then, are
needed to generate a profile of behavioural evidence’ (Hiebert and Carpenter
1992: 89).

A broader approach to assessment then, rather than one simply based on
an examination of procedural calculations, is required. Perhaps we can use
problem-solving tasks where we have greater access to the representations that
the child can draw upon or greater access to their reasoning. Davis (1984)
advocates the use of task-based interviews where children are questioned
while they tackle mathematical tasks about the approach they are using,
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the reasons for their approach, the possibility of other approaches, and so on.
Alternatively, we could use other approaches such as mind maps to access the
variety of representations that a child associates with a concept.

This need for a broader approach to assessment is seen in intervention
situations where it is important to access a child’s understanding so that gaps
in understanding and misconceptions can be identified. In the Every Child
Counts intervention (see Dunn, Matthews and Dowrick, Chapter 17), teachers
spend an initial period of around two weeks carrying out a broad assessment of
a child in order to identify particular difficulties in numeracy. This assessment
involves traditional tests, classroom observations and task-based diagnostic
work with the child. In the broader context of teaching for understanding,
we need to be aware of the limitations of our traditional forms of assessment,
and look for opportunities within our teaching where a broader assessment of
children’s understanding can be gained. This approach is very much part of
the introduction of APP or ‘Assessing Pupils’ Progress’ by the National
Strategies in England and Wales (see Hodgen and Askew, Chapter 10).

Implications of the model: understanding for teaching

Through the model of understanding that we have adopted, we have been able
to highlight some implications for how we can approach ‘teaching for under-
standing’ in the mathematics classroom. Another area that we would like to
explore is the understanding that is required by teachers themselves — what the
Williams Review (DCSF 2008: 3) referred to as ‘deep mathematical subject and
pedagogical knowledge’. We can use the picture of understanding that we
have, alongside existing research in this area, to gain further insight into this
‘deep knowledge’.

Previous research by Shulman (1986) has been very influential in provid-
ing a theoretical view for the categories of knowledge possessed by teachers.
With regard to subject-specific knowledge (for example, mathematics), these
categories are:

e subject-matter content knowledge;
e pedagogical content knowledge;
e curricular knowledge.

Subject-matter content knowledge includes not only the organized factual
content of the subject, but also how the subject functions as a discipline in
terms of establishing the validity of ideas. In mathematics, this is the need for
proof and deductive reasoning in order to establish as strongly as possible the
connections between ideas. This view of subject-matter content knowledge is
mirrored by what constitutes our understanding and also how we improve the
quality of our reasonings that we touched upon before. Pedagogical knowledge
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is the content knowledge required to teach the subject. Shulman proposed
the following components to this area of content knowledge: how we repre-
sent ideas, including the most powerful representations (models, illustrations,
analogies, examples, and so on) for teaching, and also an understanding
of how pupils generally learn the subject (including what makes topics easy or
hard, typical conceptions and misconceptions, and how to tackle typical mis-
conceptions). Curricular knowledge, then, is knowledge about the teaching
programmes and teaching materials used in the subject.

Although Shulman’s work is best remembered for these categories of
teacher knowledge, he also strongly emphasized the importance of ‘under-
standing’, that is teachers’ understanding, in the teaching of a subject: ‘With
Aristotle we declare that the ultimate test of understanding rests with the
ability to transform one’s knowledge into teaching. Those who can, do. Those
who understand, teach’ (Shulman 1986: 14).

Returning to pedagogical content knowledge, this emphasis on under-
standing is also highlighted by the need for a variety of representations
required to teach a subject: ‘Since there are no single most powerful forms of
representations, the teacher must have at hand a veritable armamentarium
of alternative forms of representation, some of which derive from research
whereas other originate through practice’ (Shulman 1986: 9).

This last quote also emphasizes the ‘forms’ or sources of knowledge for
teachers. Shulman emphasized propositional knowledge in the form of princi-
ples that are taught to teachers, which is introduced to them through research
on teaching (this chapter is mainly propositional!). We also have case know-
ledge which is more detailed reporting of specific events or sequences of
events which are presented to the teacher (for example, through research,
through courses, through colleagues, and so on). Then we have strategic know-
ledge where the teachers experience particular events themselves, drawing on
propositional and case knowledge but developing these in light of practice.

The understanding of mathematics that a teacher has is based then on
their subject-matter content knowledge and pedagogical content knowledge,
where concepts and ideas are connected, not just through mathematical rea-
soning, but also reasoning based on principles, examples of specific cases and
personal experience in the classroom. In fact, research has shown that for
more experienced teachers, their subject-matter content knowledge and their
pedagogical content knowledge are indeed more connected (see, for example,
Krauss et al. 2008). To illustrate these connections, let us provide an example
from our own experience in the classroom.

We argued earlier that the array representation is a useful representation
for multiplication, as it clearly shows the distributive properties of multiplica-
tion. However, when we have introduced this representation to children in the
classroom, we have found that younger children (for example, Year 2) are very
unlikely to recognize the array as a representation of multiplication. This is
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despite the fact that according to the framework for teaching used in schools
in England and Wales, it is suggested that the array is introduced to them
in Year 2 for multiplication. Even in Year 4, only about half of the children will
have this recognition. In Year 6, however, almost all the children recognize the
array as a representation of multiplication. Therefore, despite our mathemat-
ical understanding that the array is a powerful representation for multiplica-
tion, and despite our knowledge of the curriculum, our pedagogical knowledge
based on classroom experience suggests that we have to be careful about how
we use the array in the classroom. Perhaps we need to introduce it alongside
less abstract representations of multiplication (Figure 3.7). We can, in turn,
examine this reasoning in the future through further work in the classroom to
see whether this does help children to recognize the array as a representation
of multiplication.

What we are emphasizing here is that although the understanding of
mathematics subject matter that a teacher brings to the classroom is import-
ant, the understanding required for teaching is broader than that. In this
understanding for teaching, the constituent representations and reasoning
go beyond that of mathematical concepts alone, but include pedagogical
principles, examples and experiences, informing our reasoning in building up
our understanding.

Conclusion

In conclusion, what we have tried to do in this chapter is to look in detail at
this concept of ‘understanding’ that seems to be of central importance for how
we teach children in the mathematics classroom. What we hope is helpful for
teachers and student teachers is that, by trying to clarify exactly what we mean
by this idea, there are clear implications for how we should be approaching
the teaching of the subject in the classroom. Of course, it is not as if the
recommendations for using, for example, discussion or using and applying in
the classroom are not already there. However, what we feel to be important

Figure 3.7 Array alongside less abstract representation (plate of strawberries).
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about this examination of understanding is that it makes clear why there are
these recommendations. We also hope that it provides a model with which we
can examine our own understanding of the subject.

We have further emphasized that the understanding required for teaching
is more than that. Of course, we all accept that there is pedagogical knowledge
that we need in order to teach the subject. However, our understanding is
more integrated than separate bodies of subject and pedagogical knowledge.
Our subject knowledge informs our pedagogy but, in turn, our pedagogical
knowledge causes us to reflect on our subject knowledge. This then has impli-
cations for teachers’ professional development and the training of teachers
too. In developing their skills in teaching mathematics, we need to develop
teachers’ understanding; we need them to know how they can develop pupils’
understanding; and we need to provide opportunities to reflect upon both
of these so that they can further develop as teachers. We can illustrate this
with two comments from student teachers of primary mathematics that we
work with:

Although I know I have the subject knowledge to be able to teach to
the children, I feel as if sometimes, although I have learnt so much on
the course,  have not learnt things like, how to teach it, how to do the
addition and the subtraction and how they are doing it in schools.

When it came to teaching it, I found it quite difficult to explain what
I knew. I accept rules and . . . I apply it and it works. Trying to explain
that to children, I found it at first a bit like, ‘how am I going to break
down what I just accept?’ ... But by the end of my placement this
year, I felt much more confident in doing that. I would start to go back
over what I knew and figure out how I had learnt it and how I had
come to the point to be just doing it, which helped when it came to
teaching it.

Both comments emphasize the importance of developing understanding in
teaching mathematics. And this development will be an ongoing process,
where, as we have seen from the model of understanding, it is a process
without any end point, where we are continually developing as teachers of
mathematics.
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4 Thinking aloud means talking
allowed: group work in
the primary school
mathematics classroom'

Frank Monaghan

Introduction

The 1980s saw a shift away from a view of mathematics as a teacher-directed
activity where students were taught algorithmic routines that they then
practised in splendid isolation towards a more collaborative, investigative,
problem-solving approach. This change was reflected in, and disseminated
further through, some key documents on the teaching of mathematics in
schools such as the highly influential Cockcroft Report (Mathematics Counts)
(DES 1982). These ideas have survived the various iterations of the national
curriculum orders for mathematics, numeracy strategies and government
reports such as the Independent Review of Mathematics Teaching in Early Years
Settings and Primary Schools (the Williams Review) (DCSF 2008). In all these
documents, the role of discussion in developing students’ mathematical
abilities is seen as central, as Cockroft (DES 1982: 72), for example, stated:

By the term ‘discussion’ we mean more than the short questions and
answers which arise during exposition by the teacher . .. The ability
to ‘say what you mean and mean what you say’ should be one of the
outcomes of good mathematics teaching. This ability develops as a
result of opportunities to talk about mathematics, to explain and dis-
cuss results which have been obtained, and to test hypotheses. ..
Pupils need the explicit help, which can only be given by extended
discussion, to establish these relationships, even pupils whose math-
ematical attainment is high do not easily do this for themselves.

There are essentially two key aspects that have emerged from research into
the explicit teaching of talk. The first is the potential benefits for individual
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learners of participating in effective group work, not only in terms of insights
gained from the contributions of others but also through having an opportun-
ity to externalize and make explicit their own thinking to their partners and to
themselves. The second is the crucial role of teachers in enabling successful
collaborative talk and using the insights gained from it in assessing their
students’ progress and planning for future learning. This chapter addresses
both of these aspects through a description of an approach known as Thinking
Together.

The Thinking Together approach

Thinking Together is a project that began in the mid-1990s at the Open Uni-
versity based on the work of Vygotsky (1986), who argued that children learn
through their interactions with (more capable) peers and adults. He proposed
that engagement in intermental activity (social interaction) fosters the devel-
opment of intramental (individual) cognitive abilities. The research is thus
founded on a sociocultural model of education, in which talking to learn is
central. Its fundamental premise is that the ability to communicate effectively
is a key skill that children need to develop in every aspect of their lives and one
that lies at the heart of educational success. Central to the Thinking Together
approach is the belief that talk for learning can and should be explicitly
taught. A goal arising from this belief is to enable teachers and students to
conceptualize talk as, in Neil Mercer’s phrase, ‘interthinking’, which he defines
as ‘our use of language for thinking together, for collectively making sense of
experience and solving problems’ (Mercer 2000: 1).

The Thinking Together project has sought to investigate and apply these
insights in classroom settings and has had a significant influence on edu-
cational policy and practice in the UK, having been incorporated into official
guidance and training materials. The research and classroom experience of the
Thinking Together team and the teachers involved in its various projects have
shown that the key conditions for, and features of, effective talk are that:

e everyone is encouraged to contribute;

e everyone listens actively;

e ideas and opinions are treated with respect;

e information is shared;

e challenges are welcomed; reasons are required;

e contributions build on what has gone before;

e alternatives are discussed before decisions are taken;

e groups work towards agreement before an action is taken;
e itis possible for participants to change their mind;

e discussion is understood to be a way of learning.
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Left to itself, classroom discussion rarely displays many of these positive fea-
tures. Observation of children working in groups (but sadly not always as
groups) has led to the characterization of three types of talk.

1 Disputational talk

Disputational talk is characterized by assertions, disagreement and short
exchanges between participants in which there is little evidence of any explicit
reasoning. Typical of this sort of talk will be the proliferation of utterances
such as, ‘That’s wrong, it goes there, stupid’, ‘It's number 2, it's number 2/,
‘You're wrong, I'm right, end of story’.

2 Cumulative talk

Cumulative talk is characterized by self-repetition and elaboration leading
to uncritical agreement, again with little evidence of shared meanings being
created. Such talk is usually calm and unaggressive. It often arises when groups
are organized on the basis of friendship. Typical utterances would be, ‘Okay,
well I suppose we mightaswell . . ." or “That’s fine, whatever, so long as you put
in what I said as well . . ..

3 Exploratory talk
As defined by Wegerif and Mercer (1997: 54), exploratory talk occurs when:

Partners engage critically but constructively with each other’s ideas.
Statements and suggestions are offered for joint consideration. These
may be challenged and counter-challenged, but challenges are justi-
fied and alternative hypotheses are offered. Compared with the other
two types, in exploratory talk knowledge is made more publicly
accountable and reasoning is more visible in the talk.

Typical utterances will be, ‘What do you think?’, “‘Why do you think that?’, ‘I
think x because . . .”, ‘Is there another way of looking at it?’

Exploratory talk is the most likely to display the features of effective talk
described earlier. Students are, however, rarely explicitly taught how to engage
in this kind of talk. A more typical pattern is one in which the teacher asks
a question, a student responds and the teacher gives evaluative feedback. This
form of ‘triadic dialogue’ (Sinclair and Coulthard 1975) is termed IRF (Initi-
ation, Response, Feedback), and has been more informally described as ‘guess
what’s in the teacher’s head’; not necessarily the best strategy for developing
reflective thought and practices!

In order to promote the development of exploratory talk, the Thinking
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Together approach typically involves a series of lessons devised with teachers
in order to provide a framework both for them and their students. Numerous
studies (see Mercer and Littleton 2007) have repeatedly demonstrated that
exploratory talk can be successfully developed in primary school children; that
this training improves students’ capacity to reason and solve problems both
individually and in groups; and that this training also has positive impacts on
knowledge and abilities in a range of curriculum areas.

The Thinking Together approach has been applied across the age range
and in a number of curriculum areas, including mathematics. As Wegerif and
Dawes (2004: 102) point out: ‘Maths is not only a way of thinking inside an
individual mind; it is also a kind of language. That is, maths can offer a form of
social communication between people. To become fluent in that language, as
with any language, children need guidance and opportunities to practise.’ This
principle guided the work of the project* described below whose aim was
to develop an approach to enhance pupils’ skills in talking and thinking in the
mathematics classroom.

The study

The study was conducted in six primary school classes across four schools,
two located in London and two in Milton Keynes. Two of the teachers in
the Milton Keynes schools had previous experience of working on a Thinking
Together project; the others were all new to the approach. The study involved
the use of computer software programs produced by SMILE Mathematics®
with which the teachers were not previously familiar. While integral to this
particular study, the approach has been shown to be equally effective in
non-ICT settings and would apply to other similarly constructed group-
work situations, as will be evident from the transcripts of the teachers’ and
students’ talk.

We held two training sessions for the teachers to introduce them to
the software and the Thinking Together approach and then developed a series
of lesson plans in collaboration with the teachers aimed at introducing their
students to the approach and leading in to the mathematics lessons in which it
would be applied. This consisted of three lessons of about 60 minutes dur-
ation, each including activities aimed at developing the skills needed to work
and learn together effectively using ICT. It takes a high level of planning and
commitment to ensure students work as groups and not just in groups.

Twelve lessons were video-recorded including a sequence of three lessons
introducing the students to the approach as described below. We also recorded
children working with various computer programs including the one focused
on here called 3 in a Line, which is a variant on the popular game Connect 4
involving the use of coordinates to identify where counters are to be placed
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on screen, a free version of which (but without the coordinates element) is
available online at http://www.mathsisfun.com/games/connect4.html
(accessed March 2010). Given the competing demands on classroom time,
teachers needed some persuading to take time out of their Year 6 mathematics
lessons in order to ‘talk about talk’. The fact that they were willing to do so in
the face of concern and pressure about preparations for the national tests
spoke volumes about their commitment to the project.

Lesson one: talking about talk

The objective for this lesson, shared with the students, is to raise awareness
of talk: ‘We are learning to talk about talk.” In this lesson students discuss
such questions as:

e Who thinks they are a talkative person?

e  Who thinks they are a quiet person?

e  Who do you like talking to? Why?

e When are you asked not to talk? Why?

e  Why is it really helpful to be able to talk?

e  What sort of things can we do by talking together?

The students work in groups of three, ideally not friendship based and prefer-
ably of mixed gender as this has been found to help avoid unhelpful stalemate
or unconsidered consent. Each group is given a set of picture cards showing
people engaged in various types of everyday talk activities. They discuss what
sort of communication is taking place and try to describe the talk. They feed
this back to the whole class. They then practise talking and listening to each
other in pairs about a topic of their choice, and again feed back to the whole
class. In groups, they discuss their understanding of a set of words related to
talk such as, decide, persuade, interrupt, discuss, listen, share, argue, reason, and so
on. The lesson ends with a plenary discussion on what makes a good talker and
listener, and how these skills might be useful in class.

Lesson two: agreeing the ground rules for talk

The objective for this lesson is to establish a set of ‘ground rules’ for talk:
‘We are learning to agree a set of ground rules for talking to each other.” The
lesson begins with an introduction to the idea of ‘ground rules’ as basic rules
everyone can agree to. There is a discussion of other kinds of rules, such as
those used in a board game, and of what would happen if the rules were
ignored or arbitrarily changed. At this point, the students consider what sort
of rules might apply for talk in the classroom. They then work in groups of
three and are given a set of cards with possible rules on them and have to



THINKING ALOUD MEANS TALKING ALLOWED 63

decide whether they are good, bad or uncertain. They are asked to decide on
the four they think are most important and then to devise a further two of
their own. The outcomes are shared and they agree on a set of ground rules
for their class.

Here, as an example, is a set of ground rules produced by a class in one of
the previous studies:

Class 5D Rules for Talk

e Everyone should have a chance to talk;
e Everyone’s ideas should be listened to;
e Fach member of the group should be asked:
— What do you think?
— Why do you think that?
e Look at and listen to the person talking;
e  After discussion, the group should agree on a group idea.

It is interesting to note how well these rules accord with the features of effect-
ive talk identified previously. The rules developed in each class in this study
(and others) were all similar to this example.

Lesson three: practising the ground rules

The objectives for this lesson are to use the ground rules for talk on mathemat-
ical problems designed to address such problems as mentally adding or sub-
tracting a pair of numbers; mentally adding several numbers; and solving
mathematical problems or puzzles. The lesson begins with a whole-class
session in which the children are asked to recall the ground rules for talk they
have established. An emphasis is placed on applying the ground rules for talk
in a mathematical context. The students are then introduced to (or revise)
the concept of ‘magic squares’ — typically a 3 x 3 grid containing the digits
1-9 which students have to arrange in such a way that all rows, columns
and diagonals have the same sum. We used a simple Word table to demon-
strate this idea and the students then worked in groups of three on the task of
completing the magic grid. The teacher’s role was to monitor and intervene
in their activity, always keeping the focus on using the ground rules for talk.
The plenary required the students to report back on how they had solved the
problems and how they had organized their group work. They were also asked
to comment on how well they had used the ground rules.

Subsequent lessons followed a similar pattern, starting with a review of
the ground rules; an introduction to the objectives (which always included
a ‘talk’ objective) and the activities; group work around the computer;
and a plenary to discuss the outcomes. In these lessons, students worked on



64 FRANK MONAGHAN

programs chosen for their mathematical appropriacy and which were all strat-
egy games that made reasoned discussion essential as they had to reach con-
sensus before making a move.

Outcomes

Previous studies have established the benefits of the Thinking Together
approach on a variety of measures (including the Raven’s Progressive Matrices,
a test of non-verbal reasoning, taken as pre- and post-tests) and on our
own measures of change in language use by the children. In one study (Mercer
et al. 1999) students were recorded doing one of the Raven’s non-verbal
tests prior to the Thinking Together lessons and again afterwards. Table 4.1
emerged, indicating significant changes in the use of key words associated
with collaborative thinking.

These examples demonstrate how the children’s use of key markers of
exploratory talk increased significantly as a result of the intervention, for
example, the fourfold rise in the logical connective ‘because’, indicating
explicit reasoning, and the even more dramatic rise in the use of conditional
verb forms, such as ‘would’ and ‘could’, that indicate hypothesis making.

In this project, however, we were more interested in examining the kinds
of effective interactions and strategies that were developed by the teachers and
students. To this end, we filmed 18 lessons, including initial sessions on devel-
oping the ground rules for talk and work on the mathematical activities. The
analysis of the transcripts revealed some interesting insights into the role of
the teacher in scaffolding effective collaborative talk; into how the students
developed their own ‘community of practice’ (Lave and Wenger 1991); and
into the students’ conceptualizations of the computer as a partner in their
activity. These insights are discussed below.

Table 4.1 Significant changes in the use of key words

Key word Pre Post
Because 25 100
Agree 7 87
| think 7 87
Would 1 15
Could 2 14
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The role of the teacher

Teachers provide a key role in modelling appropriate language and
behaviour to the students. In the following extract (which, incidentally,
demonstrates the effective use of triadic discourse — not all IRF is bad!), the
teacher both models and rehearses the sort of language and conduct that is
expected:

Extract 1

1 Teacher Anything else I might hear?

2 Students I disagree because.

3 Teacher ‘Idisagree with you because,’ good, well done. Esme?

4 Student 1 Have we got any more ideas to share?

S Teacher ‘Have we got any more ideas?” Maybe they're not the

6 only moves we can do. Maybe there are different ideas?
7 Student 2 Don’t think in your head, think aloud.

The teacher here requires the students to make explicit the kind of language
that will be needed and models its use herself by reflecting aloud on alterna-
tives (lines 5-6), focusing on the need to explore and ‘share’ alternatives. Her
own use of positive reinforcement to Esme (line 3) also serves as a model to
the students of the social relations that she is seeking to encourage between
the children.

Another crucial role for the teacher is that of monitor. Moving around the
groups, the teacher is able to observe points at which an intervention would
help, for example, to check the students’ understanding and probe for shifts in
thinking, as in this extract:

Extract 2

1 Teacher Canlaskyouaquestion? Didyou place your counter in the middle?
2 J,Tand C Yes.

3 Teacher Brian was the only one of you three who said you should . . .
4 Have you changed your idea about that?

5] Yes.

6 Teacher Why?

7] Because then you can anywhere. You can go there,

8 there and there . . .

9 Teacher What do you think Claire?

10 C If you do it (4,4) you've got more chance. You can do it

11 anyway. You can block the computer too.

The teacher here is not only checking their mathematical strategies and
ability to justify their reasoning, she is also making explicit the advantages of
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thinking together. By bringing her students to acknowledge that Brian had
been right to pose an initially unpopular alternative, she creates space for the
‘outsider’ to be included and makes being able to change one’s mind a sign of
strength rather than weakness. Her question to Claire (line 9) also models the
desirability of including all participants and allows Claire to externalize her
understanding to the group.

In addition to this sort of direct intervention, teachers have also found
other ways to support the Thinking Together approach by providing students
with cue cards on Post-it notes so that they can refer to the ground rules
during the lesson. This strategy has the positive effect of providing an aide-
mémoire for students during the activity, which has also helped students with
challenging behaviour by giving them a structure to work within as they
develop a new ‘self’ as an effective member of the mathematics discourse
community.

Exploratory talk in action

In the following exchange between two boys (one of whom, R, is learning
English as an additional language), it is possible to see how a student is
encouraged to shift position as a result of positive engagement with a fellow
classmate.

Extract 3

1 A So we move this one to here.

2 R Yeah. Move that one to there.

3 A Wait. Why do you think that?

4 R Because the feeling’s right. The computer hasn’t gone

5 nowhere yet so we can move there and there. All you can do is
6 move them there and there so we might as well move that one.
7 A So you're saying if we can move that one there we can move

8 that one as well.

9 R No. I saying if we move that there and move that there, first
10 move that, then move this here.

11 A But what if the computer moves that?

12 R We've still got a chance. This one can move, thatonecan. ..
13 A I agree now. I get what you're saying.

R shifts from a position where he initially appears to be relying solely on an
unarticulated, instinctive response (‘the feeling’s right’, line 4) to one where,
in the face of A’s positive engagement with, and persistent requests for, clarifi-
cation of his strategy (‘So you're saying . . ./, line 7, ‘But whatif . . ./, line 11), he
is able to explain his reasoning and convince A to follow it. A’s challenge
in lines 9-10 as to the motivation behind the suggested move leads R to make
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his thinking visible to A and possibly also to himself. This then allows A to
rehearse alternative scenarios (line 12) which R responds to (line 13), demon-
strating that he has now thought through his move and its possible outcomes.
Through dialogue he shifts from a casual ‘might as well’ approach to a clearly
articulated strategy.

Shaping a reflective community of practice

A further important feature of the approach is the use of the plenary to con-
sider explicitly what has taken place during the lesson and how it reflects the
aims for the session. The plenary allows the teacher to foreground the talk
objectives and to review how successfully they have featured in the day’s work.
The teacher is able to celebrate the good practice that has occurred; enable
students to hear from their peers the sorts of behaviours that constitute the
targeted discourse; and assess what more needs to be done. This is useful in
shaping the community of practice in that it allows the students to come
together and reflect jointly on what they have been doing and what they have
learned from it, not just in terms of the mathematics but how the mathematics
is explored through language and social behaviour. The following extract is
taken from the end of a lesson. The teacher has gathered the students in a
circle on the mat:

Extract 4

1 Teacher Do you want to sit yourself down, A? S, we're just

2 waiting for you to come and join us on the carpet. Now I
3 had four secret spies amongst you . . . Can you explain to
4 people what you were doing this afternoon G?

S G We were going round visiting the people and seeing

6 what we heard.

7 Teacher Right. So I had four people who were going round, and

8 they are going to help me judge whether or not we gave
9 good explanations because they have been gathering

10 evidence all through this afternoon’s session. They have
11 been looking for all these phrases to see if we are using
12 them, and from the looks of their sheets I think I'm going
13 to have a really big smile on my face the same as

14 everybody else. Can you explain what you found out?

15 What sorts of things are we seeing . . . those people who
16 have been monitoring?

17 H ‘That would be good because.’

18 Teacher ‘Thatwould be good because’. That's one we didn’t

19 even come up with here, but which some people were

20 using really effectively to give reasons and back people
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21 up. Thank you very much. A, what did you find out?
22 What was the most popular way of giving an explanation?
23 A ‘Because’.

24 Teacher Simply ‘because’. Okay. How many times did you hear
25 that this afternoon?

26 A Eight times.

27 Teacher Eight different times in just the groups that you were
28 listening to.

The teacher here has apparently handed over a level of control to the stu-
dents by having them monitor each other’s performance and gather evi-
dence of how it conforms to expectations of their role as collaborative
thinkers and mathematicians. The message is that the language they use is
an important constituent of this community of practice. The teacher locates
this use of language not just in its function as a medium of thought, but
also in its interpersonal functions in sustaining solidarity within the group,
as seen in her evaluation of one of the phrases used by the children to
‘give reasons and back people up’ (lines 18-22, my emphasis). Her use of
monitors to gather examples of exploratory talk (lines 7-16) might also
serve to remind the children of the need to monitor their own use of such
language.

Students were also involved in reviewing the use of the ground rules
so that they become conscious and reflective about their own practices. In
the following extract, taken from the very end of a lesson, the teacher has
reviewed their mathematical strategies and the class have discussed what did
and did not work. The teacher continues with a discussion of how effectively
the students have used the ground rules:

Extract 5

T Let’s finish off. Let’s go back to our rules. We're looking to apply our
ground rules for talk. I'm going to be very interested to look at [the] footage
to see how well we've done there, but what's your assessment? Let’s see the
thumb vote. Compare it to this time last week when we tried somewhat
unsuccessfully to apply those ground rules. Think of that last session.
Think of how you interacted with your partners. Yes, [thumb up] I applied
the rules as well. Okay [thumb horizontal], but definitely room for
improvement. Let’s have a thumb vote. Okay, [addressing one pair] you're
not happy with the ground rules but your partner is. That’s interesting.
Maybe we need to clarify that. We’ve got a lot of thumbs up, the majority.
Okay, thank you. I'd generally agree. I think we're getting better at the
ground rules. There was a lot of conversation there, there were a lot of
people listening to each other’s ideas and also giving reasons for those
ideas.
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This sends out a very different and far more engaging message about how the
teacher sees their students’ role in becoming members of this particular com-
munity of practice than one finds in lines from the poet W.H. Auden: ‘Minus
times minus is plus, the reason for this we need not discuss’; or the Hungarian
mathematician von Neumann'’s icy put-down of an inexperienced journalist:
‘One does not understand mathematics, young man, one just gets used to it’.
The students engaged in Thinking Together group work are expected to reflect
not only on the day’s performance but also to see it as part of a continuous
process of conscious learning and adaptation. They learn that to get it they
need to discuss it.

Implications for teaching and learning

The transcripts of the students’ and teachers’ talk provide evidence to support
our belief that the explicit teaching, agreement and practice of ground rules for
talk will lead to effective group work in the primary mathematics classroom.
The extracts have provided evidence about the contribution that the Thinking
Together approach can make to students’ abilities to articulate their math-
ematical thinking to make it visible to both their partners and themselves. It
has also shown how, through the explicit teaching and agreement of ‘ground
rules’ for talk, teachers can provide a solid basis for effective group work and
support the development of reflective practice in their students. While the
linguistic development of students learning English as an additional language
was not a focus of this research, some evidence has emerged from the data that
this approach may also have advantages for them by exposing them to models
of collaborative talk and thinking in a socially supportive and linguistically
scaffolded context.

These findings also tally well with the principles of other approaches and
initiatives such as assessment for learning (see Hodgen and Askew, Chapter 10)
and guided group work, the latter promoted in the Williams Review (DCSF
2008: 67) which states:

Guided group work in mathematics, where teachers work with
smaller groups of children within the class, offers an organisational
approach where attention can be given to particular children who
may require additional support or challenge to ensure they continue
to progress in learning. Working with a group can provide assessment
information that is more difficult to capture in the whole class con-
text; it provides an opportunity to discuss the mathematics in more
detail with individuals in the group. The focused attention given to
a group helps to inform future planning and teaching. It also gives
children who are not active contributors to the whole class the
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opportunity to participate more directly, share their ideas and extend
their learning within a small group of peers.

Given all the above we can be confident of concluding with the following
observation from Wegerif and Dawes (2004: 102):

Children working in groups can offer one another chances to explore
their conceptions, to employ their new vocabulary, and an audience
for explanation, planning, suggestion and decision-making. In this
way children learn to speak the language of maths. Challenges and
explanations in groups, guided by teachers, can lead children to learn
more expert ways of talking.

Notes

1  This chapter grew out of research into group work in mathematics with Year 5
and Year 6 primary school students (9- to 10-year-olds). It draws on and
describes the Thinking Together approach to teaching children how to engage
in effective collaborative talk and thinking as developed by Neil Mercer, Karen
Littleton, Lynn Dawes, Claire Sams and Rupert Wegerif (Mercer and Littleton
2007; Wegerif and Dawes 2004) together with many teachers and their stu-
dents. I would like to take this opportunity to express my indebtedness and
thanks to them all.

2 For afull description of the project including sample lessons and DVD footage
visit http://smile.open.ac.uk/project.htm (accessed March 2010).

3 SMILE Mathematics is no longer in operation but work is under way to provide
freely downloadable digitized versions of the materials.
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5 Making connections: teachers
and children using resources
effectively

Kev Delaney

Introduction

Concrete objects such as counters, buttons and beads have been used for a great
many years in the teaching and learning of early number (although fingers
probably go back a lot further). We know that nineteenth-century educational-
ists like Tillich and Froebel advocated the use of practical apparatus for teaching
elementary arithmetic, and that in the early twentieth century Montessori
used practical apparatus such as bead bars, rods and counting frames in her
‘alternative’ schools. More recently, the Association for Teaching Aids in
Mathematics (now the Association of Teachers of Mathematics) was formed
in 1952, and, true to its name, set about arguing a strong case for the use of
‘teaching aids’ and structural apparatus in mathematics classrooms. Caleb
Gattegno, the driving force behind the new association, was particularly enthu-
siastic about Georges Cuisenaire’s coloured rods for the teaching of number.

During the 1950s and 1960s, educationalists were gradually becoming
aware of the work of educational psychologists such as Piaget and Bruner.
Piaget’s work was interpreted as being about ‘learning by doing’, and Bruner’s
as being concerned with three distinct modes of representing the world: enact-
ive (actions), iconic (pictures) and symbolic (words and numbers). These
interpretations, along with the work of the Association for Teaching Aids
in Mathematics, the myriad courses organized by the enthusiastic HMI,
Edith Biggs, and the publication of the Plowden Report in 1967 (see Brown,
Chapter 1) led to great emphasis being placed on the use of structural appar-
atus for the teaching of number work, to the extent that it would not have
been surprising to find structural equipment such as Tillich blocks, Stern rods,
Dienes multibase arithmetic blocks or Cuisenaire rods in a great many primary
schools in the late 1960s.

The Cockcroft Report (Mathematics Counts) (DES 1982: 84) recommended
the use of practical equipment throughout the whole of the primary school
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(and beyond), and was unequivocal in its view on the value of practical work:
‘For most children practical work provides the most effective means by which
understanding of mathematics can develop.” Askew and Wiliam (1995: 10),
in a review of research findings, concluded that ‘practical work can provide
images that help pupils contextualise mathematical ideas’. The National
Numeracy Strategy Framework for Teaching Mathematics from Reception to Year 6
(DfEE 1999a: 29) includes number tracks, ‘washing lines’, number lines, num-
ber squares, digit cards, place value cards, addition and subtraction cards,
sets of shapes, construction kits, base-ten apparatus and the spike abacus in
a discussion of classroom resources. The resource focus of the Independent
Review of Mathematics Teaching in Early Years Settings and Primary Schools (the
Williams Review) (DCSF 2008) is mainly on multi-sensory equipment for
under-attaining children involved in the Every Child Counts project (see
Dunn, Matthews and Dowrick, Chapter 17). Interestingly, we appear to have
come full circle, in that the Williams Review (DCSF 2008: 61) provides a
glowing account of work in one particular school that uses Cuisenaire rods!

The brief historical overview outlined above would appear to suggest that
there is a consensus (see also Ollerton, Chapter 6, and Beishuizen, Chapter 13)
that apparatus of different kinds can enhance the teaching of mathematics.
However, there are several writers who raise caveats, one of which is most
interestingly expressed by Ball (1992: 17) who argues that ‘Although kinaes-
thetic experience can enhance perception and thinking, understanding does
not travel through the fingers and up the arm.’ Elsewhere (Delaney 2001: 124),
I comment that mathematics can only be brought to a resource by children
and teachers interacting with it: ultimately it is the child who must own the
awarenesses made possible in this way.

In Chapter 2, Askew describes the Effective Teachers of Numeracy project
(see also Askew et al. 1997) whose aim was primarily to identify those factors
that enable teachers to put effective teaching of numeracy into practice. What
seemed to distinguish some of the effective teachers from others was what the
project team described as a propensity to make connections, such as:

e connections between different aspects of mathematics, for example,
addition and subtraction or fractions, decimals and percentages;

e connections between different representations of mathematics, mov-
ing between symbols, words, diagrams and objects (see Barmby,
Harries and Higgins, Chapter 3);

e connections with children’s methods - valuing these and being inter-
ested in children’s thinking but also sharing their methods.

The researchers found that this connectionist theme was more important than
either the teachers’ style of organization for teaching mathematics or the level
of mathematical qualification they achieved. The set of connections between
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Figure 5.1 Making connections.

different representations of mathematics described above can be illustrated
diagrammatically (Figure 5.1).

Is there a rationale for using resources within the
Primary National Strategy?

Neither the Primary Framework for Literacy and Mathematics (DfES 2006) nor the
mathematics pages of the National Strategies’ website currently offer a clear
rationale for the use of resources in primary mathematics, despite the fact that
models, images and practical resources are recommended for various blocks of
work in different years. However, it does seem reasonable to assume that cur-
rent expectations about resources are substantially underpinned by various
training materials produced by the original National Numeracy Strategy (NNS)
in 1999.

As these are available in every school and have been extensively used for
training purposes within schools and initial teacher education institutions, it
is interesting to consider the way in which resources are used in the videotapes
for Books 1 and 2 of the NNS professional development materials (DfEE
1999b), which were part of the first NNS training pack provided for primary
schools. While there have been developments within primary mathematics
since the introduction of the NNS, particularly with the advent of electronic
resources, it seems reasonable to argue that these tapes still represent aspir-
ations for the use of resources within the revised Primary Framework for Literacy
and Mathematics (DfES 2006).

There are a number of problems surrounding the viewing of films of
teachers in action, particularly when they are clips of edited films of math-
ematics lessons. We need to be cautious about how we interpret these
sequences, given the reduced relationship they have to ‘reality’. The purpose
of these clips was to illustrate aspects of the NNS’s approach to teaching and
learning, and so it makes sense to question the relationship that they might
have to the teachers’ ‘natural teaching style’. Because they are just ‘snapshots’
it is also all too easy to speculate as to what might have happened before or
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after the actions that we see in the videos. It is easy to be seduced into feeling
that we are actually ‘there’ in some sense or other. However, because the video
clips are still widely available, this makes them a useful focus for discussing the
possible use of resources.

In one extract (Video clip 4, tape 1) Roger uses a counting stick (this is a
wooden stick about 1 metre long, usually marked into ten sections) to help a
Year 4 class with learning the multiples of 7. Roger is keen that his pupils come
to perceive relationships between the various multiples of 7 and connect this
with work previously done on doubling and halving. By inviting children to
add on 7, he establishes that the first and second divisions on the stick are
7 and 14. He then affixes appropriate labels using Blu-Tack (Figure 5.2).

Lo, 1 N N

Figure 5.2 Multiples of 7 on a counting stick.

Next, he asks what number they think will appear at the end of the stick,
relating this to the children’s previous knowledge of multiples of 10. Based on
the responses of the children Roger affixes the number 70 at the end, and then
moves to the middle of the stick, establishing it as a half of 70 and also as a
useful reference point that will enable them to calculate further multiples. To
emphasize this he leaves his thumb on the mid-point. He then starts to draw
attention to doubling relationships, first finding 4 x 7 from 2 x 7 and then 8 x 7
from 4 x 7. By now 7, 14, 28, 35, 56 and 70 have been labelled, and Roger
continues to label the rest by adding or subtracting 7s. He then removes half
of the labels and children recite the 7 times table forwards and backwards.

It is useful to consider how Roger has used this resource and what other
approaches he might have taken. The first thing that is clear is that he is using
the counting stick for demonstration purposes. He also leaves us in no doubt
that it is his agenda that is being followed (‘I'm going to teach you to . ..’). He
believes that certain multiples of 7, in relation to the stick, are important, and
he is ‘coaching’ the children to operate with his awareness of this and of
doubling and halving relationships in order to arrive at the whole set of mul-
tiples to 10. He does not ask the children to offer their own views on arriving
at particular multiples.

There is no doubt that Roger is a thoughtful and skilful teacher who has
clearly considered relationships between different multiples, and has transmit-
ted his awareness of these relationships in a highly focused manner. However,
it is not possible to ascertain, except in a very limited way, the extent to which
this has connected with the children. In the main, his approach seems to be
determined by the structure of the daily mathematics lesson (the section we see
appears to be of a mental/oral starter) with its emphasis on direct teaching. On
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the little evidence that we have, we cannot describe Roger as a connectionist
teacher since he does not attempt to make connections with the children’s
methods. We cannot, of course, say anything about Roger’s normal approach
to teaching, but it is interesting to ask whether there are other approaches
that he might have used with this particular resource. First, however, it is
worth considering different approaches to the use of resources in general.

Two different views of resources

I believe that we first need to make a distinction between the use of a resource
to demonstrate to a class and the use of a resource for children to engage with
(Delaney 2001). The first approach emphasizes the resource as an aid or sup-
port for teaching, whereas the latter puts more emphasis on the resource as a
support for learning, although clearly one cannot really make such a sharp
distinction. Of course, both emphases are laudable and entirely justifiable —
but they are different in the purpose they attribute to the resource, and there-
fore have different implications in terms of the actions and thoughts of the
teacher and the learner.

Resources for demonstration purposes

The National Numeracy Strategy’s professional development resources pack
(DfEE 1999Db: 20), suggests that resources can be used in what the document
describes as ‘Effective teaching’ — which is seen to involve:

Directing — explaining what has to be done and when;

Demonstrating and modelling — showing children how to do something
or providing an image to help them understand something;

Instructing — running through a procedure or process to be followed;

Explaining and illustrating — providing reasons and giving examples;

Evaluating children’s responses — giving them feedback and dealing with
misconceptions and errors.

These are ‘traditional skills’ to which all teachers would wish to aspire. However,
there is an assumption in the list that the teacher has appropriate insights
into the nature of some mathematical idea or procedure which they will pass
on to pupils. In this idealized picture, the pupil is initiated into these insights
by the demonstration of ideas or processes by means of appropriate resources.
Explanations and illustrative examples are provided by the teacher and the
child’s responses are measured against a range of correct responses that the
teacher has in mind. If this were the only diet offered to the children it would
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be viewed as a purely transmissive mode of teaching mathematics, with all
the limitations that this implies.

Provided they are balanced with other modes of teaching that involve
pupils more actively, the categories listed above seem entirely appropriate. It
is perfectly reasonable for a teacher who understands the mathematics that
they are teaching to offer their view of how things could be fitted together (as
Roger does, for example, in the video clip already discussed). Such demonstra-
tions are worth having for those children who are able to make sense of the
connections that teachers draw to their attention by their choice and use of
resources and language. Of course, each child still has to reconstruct the math-
ematics in their own mind, despite the teacher’s intention of ‘pre-digesting’
the mathematics being presented. For those children who are not able to
make these connections so easily, opportunities to engage with the resource
individually will give them space for making connections in a different way;
‘quicker’ children are also likely to benefit from this opportunity.

Resources for ‘engagement’ purposes

There is nothing more frustrating than being obliged to watch someone else
manipulate a resource when you really want to explore it in your own way. It
is probably the case that the least productive method of engaging in your
own meaningful way with a resource is in the context of a fast-paced, direct
teaching session, where someone else has the resource and your attention is
constantly being called to their concerns. Even in the context of a whole-class
lesson, slowing the pace and asking questions that invite children to notice
and describe are more likely to engage children in using the resource to make
meaning for themselves.

Ultimately we all have to make individual sense of whatever mathematics
we learn. Those teachers who have observed children working in groups
will have noticed how children often engage with the group for a while then
withdraw to consider the matters under discussion in order to make sense of
them individually, before finally re-engaging with the group.

A list was provided above that considered the ways that resources might
be used with an emphasis on demonstrating. A complementary list, focusing
on children engaging with resources, might look like this:

Playing around with and getting a sense of — how does this resource help
me visualize this calculation, these patterns, this relationship . ..?

Noticing and describing - patterns, structures, similarities,
differences. ..

Discussing and showing — this is how I do it/see it. How do you do it/see
it? Is there some way that we could make sense of this together?
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Articulating — putting different kinds of relationships into words.

Asking questions — of yourself and others and trying to find answers to
these questions. How does this work? Why does it work? Does it
always work? Are there other ways of doing this?

Testing out — conjectures, hypotheses, approaches and ideas — both
your own and those of others.

Convincing —yourself, and others, about these conjectures, hypotheses,
approaches and ideas.

Practising and consolidating — can I do further examples with increasing
understanding, confidence and fluency? Can I repeatedly carry out
this procedure reliably?

Developing new situations and contexts — what would happen if . . .? Are
there any other situations similar to this?

This list feels very different. The demonstrating list involves someone else pre-
senting you with their view of the world, whereas with the engaging list there is
a feeling of personal involvement in making decisions and choices. Highly
focused engaging with resources is probably best done individually and in a
situation where time is available. But part of the organizing skill of a teacher
is to arrange situations in such a way that, when you go into that individual
space, ideas have already been seeded and your reflections are as productive
as they could be.

When you are unable to grasp, for example, the fact that any two numbers
added together give the same result independently of the order in which they
are added — what we call the ‘commutative property’ of addition — it may be no
use to contemplate this on your own without some supporting structure. A
particularly useful structure for this situation might involve an initial demon-
stration, using Multilink blocks or Cuisenaire rods, that, for example, 3 + 5 and
5 + 3 have the same sum. This could be followed by an invitation to investigate
whether this is true for any other pairs of small numbers. Working with a
partner as part of this invitation to produce such pairs of numbers is very likely
to generate productive discussion.

If the participants encounter a problem, then a well-timed intervention
by the teacher might well produce a different focus. An apposite question
could lead to a more constructive discussion between members of the group.
However, throughout all these events the final ‘making sense’ belongs to the
individuals who must withdraw, for however short a time, into a more private
space to persuade themselves that the newly acquired awarenesses are correct
and in some way fit with their previous knowledge. Resources play a crucial
role in this process, as does the teacher. However, if intervention is limited to
yet another demonstration rather than fostering the possibilities in the second
list, then a crucial opportunity is lost.

If Roger had at some stage decided to involve the children in finding a
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useful method to arrive at multiples of 7, he could have done this within his
own agenda, for example, he might have asked them:

e If you know that 2 sevens are 14, how could you work out 4 sevens
... and 8 sevens?

e Do youremember the work we did on doubling — can anyone see how
we could use that idea to work out some of the missing multiples?

Or in a more open way:

e How could I work out 6 sevens (for example) from what we already
know?
e How else could we find 6 sevens?

The children could have used a paper image of the counting stick and worked
in pairs to decide on different ways of finding multiples. The children (and
Roger) might have learned something from sharing in these ways.

The training videos include a strong emphasis on demonstrating or mod-
elling mathematics and on explaining and illustrating a piece of mathematics
(DfEE 1999b: 20), and Roger is operating effectively within the spirit of that
principle by using a resource to demonstrate. However, it would be interesting
to know whether he also uses resources to engage the children in making mean-
ing for themselves by acting as facilitator. Of course, we cannot know the
answer having watched just a few minutes of video film.

A more flexible use of resources

In another clip (Video 2, clip 1c) Mary works with a Year 1 class using a range of
resources in order to show different aspects of place value. Her aim is to show
how number names give us information that we can use to write the numbers.
In order to achieve this aim she makes use of the Gattegno grid (see Figure 5.3)
to encourage children to say two- and three-digit numbers using the grid.

The next step is to emphasize the difference between saying and writing
numbers. For this step she uses place value cards (sometimes called Gattegno
cards) (Figure 5.4) to show children how we ‘squeeze numbers together’ when
we write them.

T 2 3 4 5 6 7 8 9
10 20 30 40 50 60 70 80 90

100 200 300 400 500 600 700 800 900

Figure 5.3 A Gattegno grid.
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Figure 5.4 Place value cards illustrating ‘squeezing together’.

Later in the lesson, she uses the computer program Developing Number
(ATM 1999) to show the links between the two pieces of apparatus that she has
used thus far. Developing Number is an animated combination of both the
Gattegno grid and place value cards, and demonstrates how to combine, for
example, 400 and 50 and 3 to make 453. In order to ensure that the children
have the opportunity of also seeing numbers as quantities, Mary uses the
plenary session to involve the children in using bundles of straws in hundreds,
tens and ones in order to move away from the essentially abstract images
of the place value cards and Gattegno grid. A discussion of the difference
between the quantity value and the column value aspects of place value can be
found in Thompson (2003).

Towards the end of the lesson, she also asks the children to visualize what
numbers are formed as she says ‘eight hundred and eighty-eight’. She is trying
to help them internalize the useful mental images that the resources have
hopefully made available. Some children draw what they have visualized, and
it becomes clear that the resources that Mary has offered have indeed been a
rich source of images for internalizing. It is also interesting to consider in this
lesson how many connections have been made in terms of Figure 5.1.

Mary’s teaching session successfully involves the children and engages
their ideas, although the context is probably more limiting than finding mul-
tiples of 7. The lesson certainly involves direct teaching in a whole-class format
for the purpose of establishing familiarity with the apparatus to be used and
with specific ideas of place value. However, children are also given some space
in pairs to choose numbers on an adapted Gattegno grid for their partner to
make with the place value cards. This enables them to make their own connec-
tions in a less public way. A great deal of discussion is apparent in the film,
although unfortunately none of it is audible.

The impression is very much that we are watching a connectionist teacher
at work, especially given Mary’s invitation for children to have their own
images in the plenary section of the lesson, although we can always ask ques-
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tions about alternative uses and timings of the resources she chooses. Once
again, analysis of this clip is perhaps most usefully seen not as an end in itself
but as a means of throwing light on important issues about the appropriateness
of resources; ways of combining their use; and the order of use for particular
purposes.

Towards a rationale for resources

It is interesting to compare the approach to resources exemplified in these
videos with curriculum development work in other European countries.
Rousham (2003) has compared the development of the use of the empty num-
ber line in England and the Netherlands, and it is revealing to compare the
approach to the use of resources in Germany and England. Wittman (1995)
was in a position to adopt a much more sensible timescale in developing a
rationale for the use of resources in the Dortmund-based Mathe 2000 project.
Working within the principle of what, in this country, we might translate as
‘guided active discovery’, Wittman lays down the following set of criteria for
the selection of teaching aids:

e Thevisual aids offered within a given school year should be compatible
and small enough in number for pupils to deal with them thoroughly
in the time available.

e Fach and every aid should incorporate the basic ideas of the topic
under consideration, and should be exploited intensively over a long
period of time in order that the structure it offers can be assimilated.

e Teaching aids need to be structured as clearly as possible and be easy
to handle.

e  Wherever possible, teaching aids should be available as a large model
for class demonstration and as small models for individual pupil use,
with dialogue concerning different examples using these two versions
encouraged.

e Every pupil should have their own individual set of resources (the
suggestion is made that this is generally only possible where the
resource is made of paper).

What is different about the Dortmund approach is that time has been made
available to think through important issues about the fine detail of their
approach to numeracy, and in particular to the provision of teaching and
learning resources within the project. The Mathe 2000 project began in 1987,
and even at that stage, it was based upon substantial earlier research by
key members of the development team. A similar situation obtained in the
Netherlands with the development of the Wiskobas and Realistic Mathematics
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Education (RME) projects of the 1970s. Interestingly, the approach to learning
resources in both these projects — with their focus on a limited number of well-
researched resources — conflicts with the English approach that is clearly
spelled out in the Independent Review of Mathematics Teaching in Early Years
Settings and Primary Schools (the Williams Review) (DCSF 2008: 54): ‘Local
authorities and schools found it useful to be provided with suggested resources
and noted that it was helpful to include a wide range of types of resource [my
italics] so that children can work with those that appeal to them. These should
include resources for kinaesthetic activities.’

Implications for teaching and learning

It is the complementary nature of the demonstration and interaction
approaches set out above which, in my view, offers the most powerful way
forward in optimizing the use of resources. There has always been a tendency
to emphasize demonstration. The heavy endorsement of this direct approach
since the introduction of the NNS and the Primary National Strategy (PNS)
has tended to turn parts of mathematics lessons into ‘performance art’, and
this emphasis on exposition has been to the detriment of children ‘playing
with’ underlying concepts in appropriately supported ways to further their
understanding in a more embedded way. Some teachers work hard to hone
their demonstrations, and this affords clear benefits for their classes. However,
this essentially ‘one way traffic’ limits the possibilities afforded by more
explicitly involving the children in their own learning (and potentially that
of their peers) by facilitating their engagement with resources as well. This
is clearly recognized by the Office for Standards in Education (Ofsted),
who observed the negative effect of interactive whiteboards in reducing the
use of practical resources. They further noted that ‘Teachers generally under-
used practical resources . . . to develop pupils’ understanding of mathematical
ideas and help them to make connections between different topics’ (Ofsted
2008: 28).

The important focus of good (mathematics) teaching is to keep the inter-
action between teacher and learners high. A resource which facilitates demon-
stration and interaction mediates discussion in powerful ways. It offers the
possibility for teachers to support their talk with appropriate actions and,
in turn, to watch and listen to pupils interacting with the same resource,
revealing their inherent understanding of important concepts as well as any
potential misconceptions. It is the individual and changing nature of this
interchange that keeps a teacher fresh and the potential for learning high. If
one has the view of a teacher as essentially a researcher, then, within this
approach, teachers are constantly assessing understanding and supporting a
more grounded development of mathematical concepts.
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6 Using problem-solving
approaches to learn
mathematics

Mike Ollerton

Introduction

Problem-solving or more open-type tasks enable children to find different
approaches and different solutions to puzzles and problems. When children
have opportunities to discuss ideas and share methods, to offer alternative
explanations, by working together, this provides a different, richer experience
of learning mathematics than working individually through an exercise from a
textbook or worksheet (see Monaghan, Chapter 4). The Independent Review
of the Primary Curriculum: Final Report (the Rose Review) (DCSF 2009: 68)
places: ‘a greater emphasis...on developing mathematical understanding
through more practical, problem-solving activities’. This chapter, therefore, is
about the value of using problem solving as the vehicle to support children’s
learning of mathematics.

Problem solving is something people ‘do’ at all ages and in all walks of life,
socially, academically, in employment and in retirement. Problems are of all
shapes and sizes, ranging from doing a jigsaw, a crossword, a sudoku or a kakuro,
toreading amap, organizing rotas in the workplace or building a carbon-neutral
house. The innate need to solve problems is the fundamental basis for the exist-
ence and the construction of mathematics. We invented numbers so we could
count and measure; we created and defined properties and names of shapes so
we could construct and communicate our understanding of the world. In brief,
mathematics has been constructed through the ages in order to solve problems.

In this chapter I link the teaching and learning of mathematics through
problem-solving approaches and the broader qualities which I believe are
desirable for children to develop to support their learning. I consider how,
through problem solving, we can simultaneously help children make sense
of mathematics and develop these qualities. I argue that by using problem-
solving approaches we can challenge some of the prescribed orthodoxies,
such as teaching in ‘three-part lessons’ and the flawed notion of differentiation
occurring at three different levels in classrooms. Using problem-solving
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approaches teachers can embrace issues of differentiation by outcome and
simultaneously enable the practice and consolidation of key numerical con-
cepts. I offer examples of problems to demonstrate how these learning qual-
ities and issues can be worked on. Finally, I consider the issues of problem
solving and ‘real-life’ mathematical contexts.

Learning mathematics through problem solving

I draw upon the concept of multiplication in order to illustrate how mathemat-
ics can be learnt using a problem-solving approach and how an important shift
can take place away from the kind of situations where only one ‘right’ answer is
possible. For example, asking: ‘“What is six times four?’ is a closed question for
which there is only one answer. Those children who can speedily provide the
answer of 24 may inevitably be seen as the ‘successful’ ones. However, speed
of calculation can mask deeper understanding. If we pose a problem such as
‘Tell me some ways of multiplying numbers together so the answer is 24’, this
question has a range of answers, one of which might be 1 x 2 x 3 x 4, at which
point a teacher might take this as a learning opportunity to explain that such a
calculation can be written in a mathematical shorthand as 4! (factorial four).

A starting point for such a question might be to give pairs of children 24
square pieces of card (such as those produced by the Association of Teachers of
Mathematics, atm.org.uk) and ask them to make different rectangles using all
24 pieces. Clearly there are just four solutions (24 x 1, 12x 2, 8 x 3 and 6 x 4)
unless, of course, we count the reverses which would clearly be an important
consideration if these pairs of values were to be plotted as coordinate points on
a graph, thus enabling learners to see what a picture of the function x x y = 24
looks like.

If this task were to be extended to making ‘L’ shapes, the resulting dia-
grams could be translated into mathematical sentences such as ab + cd. For
example, the mathematical sentence for the diagram in Figure 6.1is 5x 2 + 7
x 2 and some children may be ready to write this as (5§ + 7) x 2.

Figure 6.1 Diagram illustrating 5x2+7 x 2.
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Of course a different dissection could produce the sentence 5 x4 +2 x 2 as
illustrated in Figure 6.2.

Figure 6.2 Diagram illustrating 5 x4 +2 x 2.

Such a situation could be reversed and this would create other challenges.
For example, if the sentence is 3 x 4 + 2 x 6, what could the picture look like?
How many different ‘L’ shaped diagrams are there for 3 x 4 + 2 x 6?

A development task could be to provide children with 24 linking cubes
and ask them to make all the different solid boxes. Using this equipment the
third dimension comes into play; again it is important that the solids made are
described in terms of multiplication. The solutions are: 24 by 1 by 1, 12 by 2
by 1,8by3by1l,6by4by1, 6by2by2and4by 3 by 2.

Asking children to explain why they think they have found all the solu-
tions might also be pursued, and this could develop into a proof by exhaustion
based upon the divisors of 24. A further development could be to consider
the different surface areas of these cuboids and for children to produce
calculations pertaining to them. As an example the surface area of the 6 by 4
by 1 cuboid (see Figure 6.3) could be writtenas 6 x4+6x1+4x1+6x4+6x1
+4x1,0oras(6x4+6x1+4x1)x2

Figure 6.3 A cuboid 6 by 4 by 1.

This type of work enables children to actively engage with pictorial
representations of the concept of multiplication (see Barmby, Harries and
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Higgins, Chapter 3). The sense-making process is essential for learners to
see how abstract concepts can be accessed through concrete manipulatives
(see Delaney, Chapter 5). Furthermore, because a range of answers is possible,
all children will have opportunities to achieve some degree of success. Success,
in turn, breeds confidence and confidence underpins competence.

Learning qualities and problem solving

When I read a school’s mission statement I always feel curious about how
words in the statement are translated into actions in classrooms. What is it
teachers do to support learners to ‘live-out’ the intentions behind a mission
statement? How do teachers’ daily interactions with learners, the types of les-
sons they plan and the tasks children subsequently carry out, fulfil the words
in a mission statement? I have another question about what any school’s aims
are and this is, what learning qualities does a school want its children to
develop? You may wish to construct your own list before reading on.
My list would contain the following qualities:

e resilience;

®  perseverance;

e being able to cope with ‘stuckness’ and ambiguity;
e independence;

e sharing with and supporting others.

In my experience teachers are keen to celebrate learners’ success; this might
involve drawing attention to particular achievements or positive behaviours
that individuals exhibit. Recently, I was working with a Year 2 class using an
activity about number bonds to ten based upon playing cards. I gave the chil-
dren, working in threes, 18 playing cards. The cards were two of the four
suits with the 10, J, Q and K removed, leaving the cards from 1 to 9. Cards were
placed face down and the children took turns to turn over two cards. If these
cards totalled ten, then the child kept them as a pair; thus the children were
practising number bonds to ten.

I noticed one child had not been able to collect any pairs of cards. I also
noticed she was not daunted; indeed she seemed keen to play another game in
the hope she might gain at least one pair of cards that totalled 10. When we
gathered around at the end of the lesson I chose to bring this event and the
qualities I felt the child exhibited to the attention of the rest of the class; I
wanted to show that this seeming ‘failure’ had in fact been a great success in
terms of the desirable personal quality of perseverance the child had shown.

Of course the game itself could hardly be described as a problem-solving
activity, apart from trying to memorize where certain cards were when a pair
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did not total 10 and therefore had to be turned face down again. However, by
asking the children to work out how many pairs there would be altogether that
total 10, and following this up with a question about what all the numbered
cards add up to in a complete pack of cards was a planned development and
one which the class teacher planned to follow up in the next lesson. A further
development would have been to turn over three cards and see whether
any two of these cards totalled 10; this would potentially involve the children
in carrying out three addition calculations at each turn.

Mathematical qualities and problem solving

Alongside the development of these qualities I also want children to develop
ways of thinking mathematically. These include:

e gathering and ordering information;

e analysing information by searching for patterns and seeking
connections;

e making conjectures;

e offering generalities.

Mathematics, as mentioned above, is intrinsically a problem-solving discip-
line: it has been constructed in order to make sense of the social, physical and
economic world. Teaching and learning mathematics through the central
medium of problem solving is, therefore, symbiotic. Consequently, math-
ematical thinking skills can only be developed when children are provided
with problems to solve; the skills cannot be developed as disembodied entities.
A typical problem-solving task which I call ‘Exploring addition’ is based on
adding together two two-digit numbers and is described in Figure 6.4. The task
provides children with opportunities to engage with each of the mathematical
thinking skills listed above.

As learners are working on this problem, perhaps in pairs or in a group of
three, I can circulate among them and, depending upon how any pair or group
is ‘getting on’ with the task, I can ask a series of questions such as:

How many different totals have you found?

Do you think you have found all the different possible totals?
How can you be sure you have found them all?

What are your minimum and maximum totals?

Questions such as these are intended to focus learners’ attention on what
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Exploring addition

On six cards you have the digits 2 and |E| together with

an addition sign | 4 | and the equal sign | =

The idea is to arrange the cards into two two-digit numbers and to explore the
different totals that can be made. For example, the total below is 55.

JIEENTIENE

Figure 6.4 Exploring addition.

they are doing; to cause them to analyse the information they have gathered;
and ultimately to try to construct a proof. Of course, different pairs/groups of
learners will take different amounts of time to work on such questions; with
this in mind I need to use the knowledge I construct about the members of a
class. This is dependent upon the ‘signs’ I see and hear, the observations I make
and the discussions I have with learners.

Through such interactions I can determine the nature of the questions I
might ask and further problems I might pose. For example I might be delighted
if some children begin to demonstrate a confidence in adding two two-digit
numbers together while I may expect others to construct a robust proof that
they have indeed found all possible solutions. This is, obviously, an aspect of
the teacher responding to differentiated learning outcomes.

Development tasks could be:

e Arrange your totals in order from smallest to largest and calculate the
difference between successive pairs.

®  Choose four other consecutive digits and see what kind of answers you find.

*  How do these answers compare to the answers for the digits 1, 2, 3 and 4?

*  Suppose you started with the digits 3, 4, 6 and 7.

¢ What will the minimum and maximum totals be now?

e What happens to the differences between successive answers?

e  Suppose you had the ‘values’ g, b, cand d, wherea <b < c<d.

e How would you arrange these to minimize and maximize totals?
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This final question is clearly one for the most confident mathematicians and
would challenge many KS3 or KS4 students. Indeed, I have seen adults write a
generalization such as: da + cb instead, of course, as 10d + a + 10c + b or in a
slightly more elegant form: 10 (d+¢) +a + b.

The balance between teaching and learning mathematics

When mathematics is learnt through problem solving, the focus is on child-
ren’s activity, their explorations and their explanations. This contrasts with
children trying to follow a teacher’s predetermined pathway. Problem solving
in classrooms shifts energy from teacher as ‘deliverer’, using mainly didactic
approaches, to teacher who lights the blue touchpaper and retires a strategic
distance — which is probably a convoluted way of describing a ‘facilitator’!
The teacher can still see and hear the action and can, therefore, intervene
when they deem it appropriate. Working on shifting the energy in classrooms,
therefore, from the authority of the teacher to responsibilities of the learners
involves the teacher working strategically to create space for children to
develop qualities of resilience, perseverance, and so on. This approach mirrors
Gattegno’s ‘subordination of teaching to learning’ (1971: ii): ‘A radical trans-
formation occurs in the classroom when one knows how to subordinate teach-
ing to learning. It enables us to expect very unusual results from students — for
instance that all students will perform very well, very earlyon . . .’

The important issue here is the act of ‘doing’ by contrast to something
that is ‘done to’ individuals. The parallels with teaching and learning are that
teaching is something teachers do and learning is what learners do; the
teacher clearly cannot do the learning for the learners. When problem solving
is used as a teaching strategy it is the learners who must solve the problems;
the teacher cannot do this for them. Using a problem-solving pedagogy,
therefore, requires the teacher to use less didactic methods and employ a
greater range of facilitative approaches. As such, teaching must, in some ways,
be subordinated to learning. Broadly speaking, the role of the mathematics
teacher is to help learners develop skills inherent within problem solving:
organizing, analysing and generalizing. As Mason et al. (2005: 297) argue: ‘a
lesson without the opportunity for learners to express a generality is not in
fact a mathematics lesson’.

It is this emphasis on generality that needs to be encouraged in mathemat-
ics classrooms from the earliest age. A simple example would be to ask learners
what they think it means to add two numbers together. Asking such a question
is likely to require learners to do fewer ‘sums’ and instead spend time thinking
about what it means ‘to add’. If, in response to such a question, the learner
draws a picture or reaches for some linking cubes in order to demonstrate the
act of ‘putting togetherness’ or ‘totalling up’, then generality is taking place.
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Building on this, the learner needs to be encouraged to describe situations,
contexts or suggest models where concepts appear. If a learner has secure
knowledge of the process behind a concept then, in theory, they should
be able to apply this process to any situation involving addition. The same
is true whether the concept is multiplication, Pythagoras’ theorem, trig-
onometry, logarithms or calculus. No matter how complex a concept is, the
issue is about the learner being able to explain concepts as well as carry out
calculations connected to a concept. The big challenge is whether learners
recognize when it is appropriate to ‘use and apply’ their knowledge when
solving a problem.

Teacher autonomy and professional decision making

A further important issue concerns teacher autonomy and the type of minute-
by-minute decisions they make in the ‘busyness’ of classrooms. Problem-
solving approaches do not fit into prescribed three-part lessons or into the
ubiquitous notion of planning for three different ‘ability’ levels within
any class. When children embark upon a problem they do not all achieve
similar depths of understanding; neither do they progress at a specific rate
or at three different rates. Understanding occurs on as many different time
continua as there are children in a class. Of course, when working in pairs or
small groups children can support one another. However, to construe a notion
that at some point in a lesson it is time to stop everyone in order to hold a
plenary is counterproductive to learning per se across a class. Problem-solving
approaches work hand-in-hand with differentiated outcomes and these, as
argued, occur at different speeds and to different depths of understanding.
Trying to match any problem with three different levels of ability within a
class is nonsensical; what we need is a range of starting points that every child
can access together with a sequence of developmental tasks and questions that
cater for different speeds and depths of cognition. Two tasks to illustrate these
issues are shown in Figures 6.5, 6.6, 6.7 and 6.8. The first is about sequences
and the second is about place value.

Sequences task

This task (Figure 6.5) is based on creating sequences of numbers and asking
children to analyse the outcomes. They can be given the option of building the
sequences using linking cubes.

Sequence A generates numbers one more than multiples of two. Sequence
B produces multiples of four. Sequences C and D both generate square
numbers from 4 onwards, using different methods. Sequence E generates
multiples of three from 6 onwards. We can obviously make up many more
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For each of the following sequences:
Continue the pattern;

Write down what you notice about each set of answers;
Try to explain the pattern you notice.

Sequence A
1+2=
2+3=
3+4=

Sequence B
1+3=
3+5=
5+7=

Sequence C
1+3=
1+3+5=
1+3+5+7=

Sequence D

1+2+1=
1+2+3+2+1=
1+2+3+4+3+42+1=

Sequence E
1+2+3=
2+3+4=
3+4+5=

Figure 6.5 A ‘sequences’ task.

such addition-type patterns, though it would be of greater value for children to
create their own. Indeed, the idea of children creating sequences feeds per-
fectly into the notion of differentiation by outcome. As a teacher I can have a
minimum expectation that everyone will work through the examples I offer,
whereas some may develop their own and others might consider sequences

involving multiplication as well as addition.

Here the strategy of offering learners concrete manipulatives, such as link-
ing cubes, provides an important opportunity for learners to physically see a
structure. This, in turn, serves to enhance numerical patterns so created. The
issue is about shifting from the concrete to the abstract — something so central

to children making sense of concepts.
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Place value task

This task requires children to be given an enlarged version of the grid
in Figure 6.6, perhaps copied onto card, or even laminated. The problem
can be used with various grids according to the complexity of the work a
teacher may wish to offer children. The idea is to give pairs of pupils a copy of
one of the three grids (Figures 6.6, 6.7 and 6.8). Ask them to place cards
with the numbers 2 and 5 somewhere on the grid and carry out an addition
calculation.

Again, the value of children being able to physically shift numbers around
on a grid cannot be overstated. Holding, placing and moving actual numbers
around is a very different kind of activity from just writing numbers down;
this is about offering children a first-hand engagement with numbers, making
decisions about where to place the numbers and thinking about creating
a systematic order. The initial challenge is to find how many different answers
can be made. This task will create opportunities to discuss which zeros are
unnecessary or redundant — an important aspect of place value, particularly
when working with decimal values.

The first two grids produce sets of answers that contain exactly the
same digits, but those gained from the HTU grid are ten times larger than the
corresponding set of answers achieved using the TUet grid.

For each grid pupils can order their answers from smallest to largest
and analyse the differences between adjacent pairs of values. Development
tasks can easily be created by using two digits which when added ‘bridge a

100 10 1
Hundreds Tens Ones

H T u

0 0 0

Figure 6.6 The HTU grid.
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10 1 l 1/10
Tens Ones @ tenths
T U ® t
0 0 ® 0
0 0 e O
!

Figure 6.7 The TUst grid.

10 1 ® 1/10 1/100
Tens Ones @ tenths hundredths

T U ® t h

0 0 ® 0 0

Figure 6.8 The TUeth grid.

10’; by placing three digits on a grid; or by using a grid with more columns
(see Figure 6.8).

Asking pupils to try to explain how they know whether they have
found all the possible answers is aimed at causing them to think of working
systematically and to become more adept at explaining their reasoning.
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Problem solving and ‘real-life’ contexts

So far, all the problems I have offered have arisen from ‘pure’ mathematical
contexts, about exploring mathematics in a similar way to how we might
tackle puzzles or play games. Of course, children also need to engage with
‘applied’ or real-life problems where they can use their knowledge to work on
problems which could be described as cross-curricular contexts. However, the
phrase ‘real-life’ trips easily off the tongue yet is shark infested in its manifest-
ations. This is because teachers’ ‘adult’ contexts are rarely those which chil-
dren might be concerned with (VAT, shopping, paying the plumber, average
fuel consumption of a car, and so on) or, indeed, even interested in. The Rose
Review (DCSF 2009: 75) argues that: ‘Children use and apply mathematics
confidently and competently in their learning and in everyday contexts. They
recognise where mathematics can be used to solve problems and are able
to interpret a wide range of mathematical data.” With this in mind it is import-
ant to create problem-solving situations which children can actively engage
in, such as:

e measuring their height changes month by month during the course
of a school year;

e making maps of their immediate environs;

e creating scale drawings of themselves;

e calculating how far from the school they live;

e drawing diagrams showing what they do and how long these activ-
ities take over the course of a day or a week;

e carrying out experiments and recording data.

Discussing with children the kind of real-life tasks they are interested in find-
ing out about is another useful starting point. For example, we may find some
children are keen to engage in environmental issues such as working out how
much it costs to transport them to and from school. Some children might want
to find out about the environmental cost of litter; indeed, asking them to work
out how the amount of litter in the school grounds could be ‘measured’ would
be a significant challenge.

Conclusion

When problem solving is used as the fundamental approach in mathematics
classrooms, many changes to, or developments of, practice are potentially
achievable. These are about placing an emphasis upon the development
of both wider learning qualities and mathematical thinking skills. Because
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problems will be solved at different rates and to different depths we can
break away from some of the teaching approaches prescribed by national
initiatives. This is because problem solving — just like life — rarely follows or
adheres to neat sets of rules or narrow, imposed frameworks. As teachers
we have to work things out for ourselves, and so do children when they
are learning mathematics; this is the prime motivation for creative thinking
to emerge. Problem-solving approaches offer children the ‘buzz’ of working
things out for themselves, of making sense of situations and doing so at a pace
and a depth appropriate to their capability. When accessible and interesting
problems are used in classrooms, opportunities arise for children to participate
in, and demonstrate, what they are capable of achieving.

References

DCSF (Department for Children, Schools and Families) (2009) Independent Review of
the Primary Curriculum: Final Report (Rose Review). Nottingham: DCSE. http://
publications.teachernet.gov.uk/eOrderingDownload/Primary_curriculum_
Report.pdf (accessed March 2010).

Gattegno, C. (1971) What We Owe Children: The Subordination of Teaching to
Learning. London: Routledge and Kegan Paul.

Mason, J., Graham, A. and Johnston-Wilder, S. (2005) Developing Thinking in
Algebra. London: Paul Chapman Publishing.



7 TheroleofICT

Richard English

Introduction

When published in June 2008, the recommendations of the Independent Review
of Mathematics Teaching in Early Years Settings and Primary Schools — the Williams
Review — (DCSF 2008) substantially exercised the minds of the government,
local authorities, primary practitioners and those involved in initial teacher
training. This should have come as no surprise since the review represented
one of the most significant government reports into the teaching of math-
ematics in primary schools since the Cockcroft Report (Mathematics Counts)
(DES 1982). The key issues highlighted included the provision of a mathemat-
ics specialist for every primary school; the need for greater emphasis on the use
and application of mathematics; a renewed focus on oral and mental math-
ematics; and the promotion of high-quality discussion, particularly in the
early years. Some of these would have been instantly recognizable to those
familiar with the Cockcroft Report, and so one could have been forgiven for
thinking that little progress had been made during the 26 years separating the
two publications. The debate about ‘progress’ (or lack of it) will not be initiated
here; instead, an interesting contrast between the two publications will be
highlighted, that is, the almost total absence of any discussion by Williams
about the role of Information and Communications Technology (ICT) in the
teaching and learning of mathematics. Cockcroft, however, affords a whole
chapter to this, as well as giving it frequent coverage elsewhere in the report.
One interpretation of Williams'’s lack of reference to ICT is that he was
aware of the prominent position that it would be afforded in Jim Rose’s sub-
sequent Independent Review of the Primary Curriculum (DCSF 2009a), which rec-
ommended that ICT should be embedded throughout the primary curriculum
and, along with literacy and numeracy, should form the core knowledge, skills
and understanding for children. Another interpretation is that we had reached
the stage where educators acknowledged ICT as being simply a resource to
support teaching and learning. Perhaps we no longer felt the need to highlight
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ICT’s potential because practitioners were aware of this already and were
exploiting it fully. Office for Standards in Education inspection evidence sug-
gested otherwise. In its 2008 mathematics report it concluded that ‘the poten-
tial of ICT to enhance the learning of mathematics is too rarely realised’
(Ofsted 2008: 27). A later report by the DCSF concluded that ‘A high propor-
tion of ICT applications in mathematics centre around games, puzzles and
revision/practice web-sites which often provide little more than the practice of
basic skills’ (DCSF 2009b: 25) and recommended that ‘Pupils’ experiences of
ICT could be extended to support deeper and enhanced learning in mathemat-
ics’ (DCSF 2009b: 27).

Survey evidence indicated that the availability of ICT resources in primary
schools had continued to improve (Smith et al. 2008), but the reports from
Ofsted and the DCSF cited above suggested that this improvement had not
been matched in terms of effective utilization in the classroom. Nowhere is
this more clearly evident than with the use of interactive whiteboards (IWBs).
Smith et al. (2008) report that the average number of interactive whiteboards
per primary school rose to 18 in 2008 compared with just eight in 2007, but
in a review of the literature on the introduction of interactive whiteboards
as a pedagogic tool, Higgins et al. (2005: 65) conclude that there is ‘a clear
preference for IWB use by both teachers and pupils’, but ‘it remains unclear,
however, as to whether such enthusiasm is being translated into effective and
purposeful practice’. This view is echoed by my own observations in primary
schools where the interactive whiteboard is used as an effective presentation
tool to convey large amounts of information in an attractive, engaging man-
ner, but with little meaningful interaction between the teacher and the pupils
or between the pupils themselves. When the expression ‘interactive white-
board’ first entered our language the ‘interaction’ was referring to the ability to
touch the whiteboard, to move things around and to generally make things
happen, but the most important interaction is that between the teacher and
the pupils. In the hands of an effective teacher an interactive whiteboard can
significantly improve the quality of interaction in the classroom, but it cannot
compensate for bad teaching.

The aim of this chapter is to explore some of the issues identified above by,
first, providing a justification for using ICT to support teaching and learning,
and, second, discussing the role of ICT in addressing some of the key priorities
raised in the Williams Review.

Why use ICT?

If you want to argue the case for an ICT-rich primary curriculum then you need
look no further than your own lifestyle, starting with what is in your jacket
pocket or handbag. Many of us carry around a single, compact device that
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combines the capabilities of a mobile phone, a high-resolution digital video
camera, a CD-quality music player, and a high-specification computer with
email and Internet access. Looking beyond our pockets and handbags there is
the wider high-technology world in which we live, for example, the wealth of
electronic gadgetry that we have in our homes, as well as the technology we
encounter when we go through the self-service supermarket checkout, fill the
car with petrol, withdraw money from the bank, make a hotel or restaurant
reservation online, borrow a book from the library, and so on.

Our working lives provide further evidence of the vital role of technology,
with very few occupations not utilizing it in some form or another. We there-
fore owe it to pupils to prepare them to be citizens in a technology-rich world
and this should start in the earliest stages of their schooling. Aubrey and Dahl
(2008: 4) provide evidence to suggest this is already happening, when they state
that ‘most young children aged from birth to five years are growing up in media-
rich digital environments in which they engage actively from a very early age’.
So preparation for the realities of their future adult world should be sufficient
justification for ensuring that all children see and experience the full potential
offered by ICT, not just in mathematics but in all areas of the curriculum.

The availability of ICT in primary schools allows purely mechanical tasks
to be carried out very quickly and efficiently, thus freeing the user to concen-
trate on higher-level things such as analysis, interpretation, reasoning and
problem solving. One example of this is pupils’ use of data-handling software
to sort, search and graph data that they have collected. The speed of a com-
puter also allows real-life situations to be modelled effectively. For example,
random numbers on a spreadsheet can be used to simulate the rolling of
dice, hundreds or even thousands of times. If two dice are involved, then the
spreadsheet can add the scores, produce a graph of the outcomes and calculate
the average score, all in a matter of seconds. As well as being fast and powerful,
computers can also store and retrieve huge quantities of information, both
locally, for example, using hard disks, DVD-ROMs and memory sticks, and
remotely via wireless networks, intranets and the Internet. Teachers, pupils
and parents therefore have access to a wealth of resources that were simply not
available a few years ago. Technology also allows the information to be pre-
sented more accurately and more attractively than by traditional means, thus
engaging the target audience. Why rely on a hand-drawn pie chart on the
board when you can produce a far superior visual aid with a computer? Tech-
nology is also inclusive in that the information can be presented in a variety of
ways according to the size of the audience and the particular needs of indi-
viduals. One can also combine various media such as text, graphics, sounds,
animations and video in an interactive way, to capture the interest of the user
and motivate them to want to learn.

It is not possible within the constraints of this chapter to conduct a discus-
sion of the many theories about learning that have been put forward over the
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years, so instead one simple observation will be offered: children learn what
they choose to learn. We cannot force pupils to learn and it is this optional
feature of learning that requires us to inspire, to motivate, to encourage and to
make them want to learn. ICT can play a key part in achieving this. Many
teachers will have anecdotal evidence of how children are motivated by ICT,
but there is a growing body of research literature to support these beliefs. This
evidence suggests that ICT can have a positive impact on pupils’ levels of
concentration, self-confidence, self-esteem, independence and behaviour.
This applies to all pupils, but there are particular benefits for those who are
reluctant learners or have special educational needs. One reason for this is that
the ICT-based approach requires pupils to employ different sorts of skills from
those needed when using traditional tools such as pens, pencils, rulers, pro-
tractors, graph paper, and so on. These pupils adapt to the ICT-based approach
more readily than the traditional approach and so have an opportunity to
savour some much needed success, thus raising their self-esteem. Similarly,
ICT also provides access to the curriculum for those with a special educational
need of a physical nature, for example, those with poor motor-control who
find it difficult to produce legible work by hand, or those with a visual
impairment.

ICT can also benefit pupils with special educational needs in other ways,
particularly when they are using computer-based learning materials. First,
such materials often break down the skills and content being taught into
small, achievable steps, thus allowing the learner to demonstrate measurable
progress and enjoy the praise that results from it. Second, there are advantages
in terms of the learning taking place ‘in private’, particularly at a time when
whole-class teaching approaches continue to be encouraged. The child can
work at their own pace without fear of appearing slow or holding back the rest
of the class. If a mistake is made then the child does not have to worry about
looking foolish in front of everyone else and they can simply have another go,
usually after being given additional hints or clues by the computer. The com-
puter is no substitute for good quality interaction with an effective teacher but
the instant, impartial feedback it offers is something that the teacher is not
always able to provide.

When engaging in computer-based activities, pupils are also more likely
to experiment and take risks, which is precisely what we want them to do,
particularly when carrying out investigative, open-ended, problem-solving
activities which encourage the pupils to make decisions, predictions and gen-
eralizations, and to employ skills such as trial and improvement, estimation
and reasoning. A spreadsheet can be used by the pupils or the teacher to model
particular mathematical situations, for example, how the volume of a box
changes as its dimensions are altered, or how a bank deposit appreciates in
value over time depending on the interest rate. ICT also enables pupils to get to
grips with tricky mathematical concepts quickly, for example, the use of a



THEROLEOFICT 101

programmable floor robot makes the concept of angle as an amount of turning
accessible to young children. Another example, involving older children, is
the use of data-logging equipment which opens up complex scientific and
mathematical concepts such as the warming and cooling of liquids and the
graphical representation of these changes over a period of time.

To summarize, ICT enables teachers to access or create stimulating
resources; to distribute or display them attractively to individuals, groups and
whole classes of pupils; to capture the interest of their pupils and motivate
them; to address the issue of inclusion by providing all pupils with access to
the curriculum; to share resources with colleagues; and to carry out the many
administrative demands more effectively and efficiently. Essentially, there are
many things that are done better with ICT than without it although, as we will
see in the next part of this chapter, ICT does not always provide the best
solution.

ICT and the Williams Review priorities

Of the key issues highlighted by the Williams Review, three will now be exam-
ined more closely in terms of the role that ICT can play: the need for greater
emphasis on the use and application of mathematics; a renewed focus on
oral and mental mathematics; and the promotion of high-quality discussion,
particularly in the early years.

The use and application of mathematics

The lack of opportunities for pupils to genuinely use and apply mathematics
continues to be an issue in primary schools, as noted by Ofsted in its 2008
report into the teaching of mathematics, stating that ‘the majority of pupils
had too few opportunities to use and apply mathematics’ (Ofsted 2008: 6) and
that as a consequence of this ‘achievement and standards in “using and apply-
ing mathematics” remain lower than in other areas of mathematics’ (Ofsted
2008: 335). Since the advent of the National Numeracy Strategy in 1999 there
have been improvements in pupils’ abilities to carry out the mechanical pro-
cesses of mathematics, for example, those relating to mental and written calcu-
lation, but the majority of teachers still do not acknowledge that the whole
point of learning mathematics is so that we can use and apply it (see Ollerton,
Chapter 6). This problem is compounded by national testing structures which
‘do not require pupils to use and apply mathematics in substantial tasks’
(Ofsted 2008: 35), which in turn limits tasks that pupils typically engage in to
no more than tackling ‘word problems’.

Using and applying mathematics encompasses far more than the ability to
identify the operation hidden within a word problem. It includes the ability to
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represent and communicate mathematical ideas effectively; to solve problems
through careful planning and enquiry; and to employ logical thinking, reason-
ing and deduction skills. The consequence of not providing pupils with
opportunities to develop these skills is identified by the Williams Review
(DCSF 2008: 62) which states that: ‘if children’s interests are not kindled
through using and applying mathematics in interesting and engaging ways,
and through learning across the full mathematics curriculum, they are unlikely
to develop good attitudes to the subject’.

Improving both the quality and frequency of pupils’ engagement in the
use and application of mathematics is clearly a challenge for schools, but it
becomes an even bigger challenge when ICT is included in the discussion, given
that most examples of pupils’ ICT use are restricted to ‘closed’ drill and practice
type activities which could not be further removed from the notion of using
and applying mathematics. Meeting this challenge will depend on teachers’
subject and pedagogical knowledge and thus the availability of high-quality
initial and in-service training, all of which are beyond the scope of this chapter.
However, by way of illustration, a few examples of how ICT can be used to
promote the use and application of mathematics are described briefly here.

Examples of how a spreadsheet can be used as a modelling tool have been
mentioned already in this chapter. In addition to those examples, a spread-
sheet can also be used to investigate the ratio between consecutive terms in
adding sequences such as the Fibonacci sequence, or to investigate the sums
of sequences created by repeated halving (that is, %2, 4, %...) or repeated
division by three (that is, %5, %, ¥57...).

The ICT-based data-handling encountered by pupils is often restricted
to the mechanical tasks of sorting, searching and graphing data. Instead
of these closed tasks, why not offer more open alternatives? For example,
if pupils have access to a data file containing their personal information
(height, weight, arm span, shoe size, date of birth, gender, and so on) they
could investigate whether there is any evidence to suggest that boys are taller
and heavier than girls, or whether the older pupils have bigger arm spans and
bigger feet than the younger ones.

A data file providing nutritional information for different types of food
could be used to investigate which types of food are good for us, or the rela-
tionship between calorific value and the amount of fat foods contain. Climate
data for weather stations around the world (average temperature, average
rainfall, altitude, latitude, and so on) could be used as a starting point for an
investigation into relationships between latitude and temperature or altitude
and rainfall. The key feature of all these examples is that pupils have to make
decisions about the way they are going to tackle the problem; they need to
employ a wide range of mathematical and ICT-related skills; and in terms of
curriculum coverage the focus is not exclusively on mathematics.

The National Strategies website offers teachers a range of interactive
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teaching programs (ITPs) which are ideally suited for use with an interactive
whiteboard, although equally they can be used by pupils sitting at computers.
They tend to be used by teachers for demonstration purposes with the whole
class, but there is a huge potential for more creative open-ended activities,
such as:

e the ITP ‘Area’, which could be used to investigate the relationship
between the area and perimeter of different shapes, or the number of
different rectangles of a given area that can be made;

e the ITP ‘Fixing Points’, which pupils could use to investigate how
many squares of different sizes can be created on a 6 by 6 arrangement
of pins and also find ways of working out the area of each one
(the sides do not have to be vertical and horizontal!);

e the ITP ‘Number Grids’, which is typically used by teachers to demon-
strate the visual patterns when the multiples of 2, 3, 4, and so on are
shaded on a hundred square. A far more productive task would be to
ask pupils to investigate the patterns produced when the width of
the grid is altered for a given multiple, leading to the pupils making
valuable predictions and general statements.

Most of the examples provided above could be carried out by pupils manually
using pens, pencils, rulers, squared or spotty paper and an electronic calcula-
tor, that is, entirely without ICT. However, for the reasons outlined earlier
in this chapter, ICT offers a range of benefits which ultimately enhance the
learning experience for pupils.

A renewed focus on oral and mental mathematics

This is one of the key recommendations identified in the Williams Review,
although one could be forgiven for initially questioning the reason why
(see Thompson, Chapter 12). With the oral-mental starter being a resident
feature of the daily mathematics lesson since the inception of the National
Numeracy Strategy in 1999, surely pupils’ oral and mental skills have
improved. Well, yes they have, but a closer examination of the situation
reveals that progress has stalled to some extent and so there is still room for
much improvement.

Two government publications (DfES 2007a; DCSF 2007) identify
recurring issues in relation to oral and mental mathematics: mental methods
seemed to lose importance once formal written methods were introduced;
pupils tended to use a limited range of traditional algorithms in preference to
mental approaches in the belief that they were better; and pupils often lacked
confidence with regard to mental methods and so were reluctant to use them.
These findings are mirrored by those of Ofsted which noted a ‘reliance on
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formal written methods and a reluctance to use informal or mental strategies
which are sometimes more efficient’ (Ofsted 2008: 21).
To remedy this situation:

e pupils must be provided with a wider repertoire of approaches to cal-
culation, with a continued emphasis on mental methods throughout
Key Stage 2;

e teachers must encourage pupils to explain, compare and contrast
methods, perhaps sometimes using a pupil’s inefficient method as a
stimulus to discuss better alternatives;

e time for discussion should be planned for and implemented through
paired, small-group and whole-class activities;

e discussion should be encouraged through the use of open rather
than closed questions that require only brief responses (see Ollerton,
Chapter 6), and accompanied by sufficient thinking time for pupils to
formulate their responses;

e correct mathematical vocabulary should be modelled and reinforced
by the teacher and pupils should be encouraged to use this in their
discussions and explanations;

e there needs to be a move away from the belief that the desired out-
come at the end of every mathematics lesson is an exercise book full
of correct answers.

Interestingly, ICT has contributed to the issues described above rather than
provided a possible solution. The widespread availability of interactive white-
boards, combined with the preponderance of drill and practice type resources,
has resulted in the oral-mental starter often being reduced to no more than a
quick-fire question and answer session based around closed tasks that provide
little or no opportunity for discussion. The same resources are also used by
pupils themselves at other times during the lesson, but again the activities are
not structured by the teacher in a way that promotes discussion. In the hands
of a skilful teacher these sorts of resources can be used with the whole class to
encourage reflection, discussion and the development of reasoning skills, and
likewise a carefully planned computer-based activity for a pair of pupils can do
the same, but this tends not to be the default position.

A skilful teacher will also acknowledge that oral and mental work in
mathematics do not only take place in the oral-mental starter and do not only
involve mental calculations. Pupils should be encouraged to reflect, explain,
discuss, question and reason throughout the lesson, in whole-class situations,
in pairs or in small groups, and in contexts covering the complete mathemat-
ics curriculum as well as other subjects, but this does not necessarily require
the use of ICT. For example, when exploring aspects of place value the teacher
can use large place value cards for modelling, questioning and discussion



THEROLEOFICT 105

purposes as a low-technology alternative to the National Strategies ITP ‘Place
Value’. A counting stick, with number cards stuck to it provides an effective
visual aid when considering mathematical concepts based around a number
line (see Delaney, Chapter 5). Interactive whiteboard tools can be used to
produce attractive number lines, but the counting stick allows the teacher to
move around the classroom, targeting particular individuals or groups, and
providing a focal point for the pupils’ attention.

When considering the properties of two- and particularly three-
dimensional shapes there is no substitute for being able to hold and examine
real models, no matter how attractively they can be presented and animated
on an interactive whiteboard. The key point to be drawn from these examples
is that the teacher must make an informed professional decision as to whether
the ICT approach is the most appropriate one, but the overriding consider-
ation should always be fitness for purpose and the resulting quality of the
pupils’ learning experience.

Promoting high-quality discussion

This has already featured in the preceding section but will be continued here
with specific reference to the early years since this was afforded particular
attention in the Williams Review. Within its early years chapter the review
recommends that ‘Early years settings should ensure that sufficient time is
given to mathematical discussion’ (DCSF 2008: 36) because high-quality
mathematical learning is supported by ‘opportunities for open-ended discus-
sions of solutions, exploration of reasoning and mathematical logic’ (DCSF
2008: 37). The review also identifies the key role of staff, stating that as part of
effective mathematical pedagogy ‘practitioners’ use of mathematical language
in open-ended discussions is essential’ (DCSF 2008: 34).

The Early Years Foundation Stage (EYFS) curriculum has a strong emphasis
on communication, language and literacy; indeed it is identified as one of the
six areas of learning and development. Mathematics in this phase appears as
‘Problem Solving, Reasoning and Numeracy’ (PSRN) and there is a section for
ICT within the ‘Knowledge and Understanding of the World’ area of learning
and development. The challenge for early years practitioners is in bringing
these three areas together so that high-quality discussion can be developed in
mathematics, possibly through the utilization of ICT.

A study by Aubrey and Dahl revealed that those working in the EYFS are
‘generally positive about the role of electronic media and ICT’ (2008: 4) but
goes on to say that those interviewed during the study tended to associate the
use of ICT with the development of children’s language and literacy skills
rather than mathematics. In defence of those working in the early years,
the content and structure of the EYFS guidance documents do not help to
alleviate this problem. The 14-page PSRN section of the Practice Guidance for the
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Early Years Foundation Stage (DfES 2007b) makes no reference at all to the use
of technology. This omission is mirrored in the two-page ICT section within
‘Knowledge and Understanding of the World’, which similarly makes no refer-
ence to mathematics. The ICT section does refer to the role of talk, but this is
restricted to encouraging teachers and children to talk about the ICT appar-
atus, rather than the effective use of ICT to promote high-quality discussion.
The PSRN section is also extremely limited in terms of promoting high-quality
talk/discussion, with most of the examples provided being of a closed nature,
focusing on the learning of mathematical vocabulary.

If we want early years practitioners to use high-quality discussion in
mathematics, possibly supported by the effective use of ICT, then much
needs to be done in terms of providing clearer guidance that highlights the
interrelated nature of language and mathematical development, otherwise
the two will continue to be viewed separately. Meeting this challenge will
be dependent upon establishing practitioners with high levels of subject and
pedagogical knowledge.

The importance of high-quality discussion is identified by Williams (DCSF
2008: 65) when he states that it ‘develops children’s logic, reasoning and
deduction skills, and underpins all mathematical learning activity’ and research
suggests that this is possible to develop this with young children. For example,
Mercer and Sams (2006) have shown that children can be inducted into a
collaborative style of reasoning in mathematics, and Monaghan (2006: 15),
working in the same Thinking Together project, showed the extent to which
primary children, who had benefited from explicit instruction in how to talk
in a group, proceeded to work together playing a game against a computer, and
managed to ‘articulate their mathematical thinking and make it visible to both
their partners and themselves’ (see Monaghan, Chapter 4).

Conclusion

The first part of this chapter put forward the case for utilizing ICT in math-
ematics teaching and learning and concluded that many things are done bet-
ter with ICT than without it. The second part has considered three of the key
issues identified in the Williams Review and discussed the role that ICT can
play in addressing them. Here, the case for fully embracing ICT is not so strong
and there are some cautionary words. This is partly because the issues them-
selves are not fundamentally related to ICT and this is possibly the reason why
the Williams Review makes no direct reference to the role of ICT in the teach-
ing and learning of mathematics. Instead, the issues discussed present more
immediate challenges that can be tackled initially without the need to con-
sider the ICT dimension. That is not to say that ICT has no role to play, but for
many teachers the development of their subject and pedagogical knowledge in
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relation to ICT as well as mathematics may present too big a challenge in the
short term. A longer-term view is therefore needed in which the role of the
teacher or early years practitioner is seen as crucial in improving the quality
of teaching and learning. However, to achieve this, current levels of math-
ematics subject and pedagogical knowledge among the workforce at all levels
will have to be improved.

References

Aubrey, C. and Dahl, S. (2008) A Review of the Evidence on the Use of ICT in the Early
Years Foundation Stage. Coventry: Becta.

DCSF (Department for Children, Schools and Families) (2007) Getting There —
Able Pupils Who Lose Momentum in English and Mathematics in Key Stage 2.
Nottingham: DCSFE.

DCSF (Department for Children, Schools and Families) (2008) Independent
Review of Mathematics Teaching in Early Years Settings and Primary Schools
(Williams Review). Nottingham: DCSE. http://publications.teachernet.gov.uk/
eOrderingDownload/Williams%20Mathematics.pdf (accessed March 2010).

DCSF (Department for Children, Schools and Families) (2009a) Independent
Review of the Primary Curriculum: Final Report (Rose Review). Nottingham:
DCSE.  http://publications.teachernet.gov.uk/eOrderingDownload/Primary_
curriculum_Report.pdf (accessed March 2010).

DCSF (Department for Children, Schools and Families) (2009b) Beyond Engagement:
The Use of ICT to Enhance and Transform Learning at Key Stage 2 in Literacy,
Mathematics and Science. Nottingham: DCSE.

DES (Department of Education and Science) (1982) Mathematics Counts: Report of
the Committee of Inquiry into the Teaching of Mathematics in Schools (Cockcroft
Report). London: HMSO. http://www.dg.dial.pipex.com/documents/docs1/
cockcroft.shtml (accessed March 2010).

DfES (Department for Education and SKkills) (2007a) Keeping Up — Pupils Who Fall
Behind in Key Stage 2. Nottingham: DfES.

DfES (Department for Education and Skills) (2007b) Practice Guidance for the Early
Years Foundation Stage. Nottingham: DfES.

Higgins, S., Falzon, C., Hall, I, et al. (2005) Embedding ICT in the Literacy and Numer-
acy Strategies. Newcastle: University of Newcastle upon Tyne.

Mercer, N. and Sams, C. (2006) Teaching children how to use language to solve
maths problems, Language and Education, 20(6): 507-28.

Monaghan, F. (2006) Thinking aloud together, Mathematics Teaching, 198: 12-1S5.

Ofsted (Office for Standards in Education) (2008) Mathematics: Understanding the
Score. London: Ofsted.

Smith, P., Rudd, P. and Coghlan, M. (2008) Harnessing Technology: Schools Survey
2008. Coventry: Becta.



8 Shaking the foundations:
does the Early Years Foundation
Stage provide a secure basis for
early mathematics?

Sue Gifford

What are the issues for the Early Years Foundation Stage?

There are vast differences in children’s pre-school mathematics learning.
Lewis, aged 2, when asked to count backwards, recited ‘one two three four five
six seven eight nine ten’ while walking backwards! Although he cannot actu-
ally count backwards, he is well set to do so by the time he goes to school and he
is beginning to say ‘three!’ when he sees three things. However, many 4-year-
olds struggle to recite numbers forwards to 10 (Threlfall 2008). Pre-school
children can vary enormously in their experiences of numbers and they all
need a lot of practice to use counting confidently and with understanding.
According to Aubrey (2008), research shows that those who start behind in
Key Stage 1 get further behind. She argues that differences between children’s
early experiences are exacerbated by formal education and in reception
‘the whole-class teaching contexts. .. are precisely those that research has
shown accentuate initial variations in mathematical attainment rather than
decrease them'.

In England, official recommendations for whole-class teaching for 5-year-
olds may have overlooked the fragility of some children’s mathematics and
exposed them to failure. Rather than creating secure foundations for math-
ematics, this may build anxiety and negative attitudes: as Dowker (2009: 6)
argues, ‘when children fail at certain tasks, they may come to perceive them-
selves as “no good” at mathematics’. Children in other countries who start
formal schooling later than in the UK subsequently do better in mathematics.
However, this does not mean they receive no mathematical education, just
that they may do so at home or pre-school in informal contexts.

The implications are that pre-school settings need to provide experiences
for the mathematically disadvantaged, and that teachers in Reception and Key
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Stage 1 need to cater for children sensitively as individuals, so no child is left
behind. They need to be able to assess early mathematical understanding
so they can plan for and monitor individual learning. Research also shows
that early number learning is a complex process, requiring the synthesizing of
many skills and concepts, which are challenging in terms of verbal and spatial
memory, coordination and reasoning (Gifford 2005). Children with difficul-
ties or delays in any of these areas are going to take longer to master these
skills. Young children need both frequency of experiences and time in order
to gradually develop understanding of counting, number relationships and
symbols.

Young children who have mastered the skills of counting still may not be
able to use counting to solve problems: for instance, when comparing two
lots of sweets, a young child may be able to count both groups but not be able
to say whether five is larger than four. It seems that children need some time
to make connections between the results of counting and number size: they do
not necessarily realize that numbers are ordered so each is worth one more
than the previous number (Gifford 2008).

Without awareness of the complexities of early number understanding, it
is easy to assume that children who can count and recognize numerals are
ready to move on to addition and subtraction. In this way mathematics teach-
ing and learning are built on shaky foundations, and children are unlikely to
feel confident in later learning and may well go backwards, as Aubrey found.
Therefore early years educators need to be knowledgeable about children’s
developing mathematical understanding, as advocated in the Independent
Review of Mathematics Teaching in Early Years Settings and Primary Schools (the
Williams Review) (DCSF 2008a).

With regard to whole-class teaching, currently, there is hope that UK
official guidance is changing. There is increasing emphasis on personalized
learning and formative assessment (see Hodgen and Askew, Chapter 10),
which should empower teachers to monitor children’s learning according
to their needs, rather than those of tests and targets. There have also been
expert recommendations to continue the informal approach of the Early Years
Foundation Stage (EYFS) into Year 1 and even to defer the start of formal
schooling, according to Children, their World, their Education: Final Report and
Recommendations of the Cambridge Primary Review (Alexander 2009). With the
demise of the Primary National Strategy and its directives about
whole-class numeracy lessons, there may be much more freedom for teachers
to decide how to teach. The issue then becomes whether the EYES provides
guidance on what to teach as well as how.
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The Early Years Foundation Stage

Since 2008, educators in England are in the rare position of having a math-
ematics curriculum for children from birth to 5 in the Early Years Foundation
Stage. Some may have wondered why singing number rhymes to the unborn
has been ignored! While a statutory curriculum for children so young is
in danger of threatening childhood freedoms, it nevertheless provides an
entitlement for all children to learn mathematics. It should also empower
educators to preserve children’s freedoms by indicating what is not appropri-
ate for young children. For too long, some parents lovingly and successfully
taught their children to count and understand numbers at home, while some
pre-school educators hesitated to teach disadvantaged children mathematics
for fear of over-pressurizing them.

The EYFS sets out principles for early years education which could go some
way to prevent inappropriate mathematics teaching. Its four themes — a unique
child, positive relationships, enabling environments, learning and development — are
linked to principles which emphasize emotional well-being, individualized
provision, partnership with parents and respect for home cultures. There are
pedagogic ‘commitments’ of play and exploration, active learning, creativity and
critical thinking, which are very relevant to mathematics. Mathematics is one
of six areas of learning in the EYFS and is (curiously) entitled ‘Problem solving,
Reasoning and Numeracy’. While we might welcome the emphasis on prob-
lem solving and reasoning (and wonder why spatial mathematics is ignored)
the titles allocated to the other curriculum areas unfortunately signal that
‘communication’ and ‘creativity’ are separate from mathematics.

Within the mathematical area of learning, there are three strands: Numbers
as labels and for counting, Calculating and Shape, space and measures. In the
Practice Guidance for the Early Years Foundation Stage (DfES 2007: 64-74), there
are lists of key competences for each of these, named ‘development matters’,
grouped for overlapping age ranges, such as 30-50 months and 40-60+
months, culminating in the Early Learning Goals, which are the focus of
assessment at the end of the Reception year (see Table 8.1). These key aspects of
development are arranged on a grid alongside ‘look listen and note’, ‘effective
practice’ and ‘planning and resourcing’. At first glance it seems that key com-
petences are ordered down the left-hand side in developmental progression,
matched with examples of assessment pointers, provision and adult role. While
this would be useful, there is no alignment of the ‘development matters’ points
with the relevant points in the other columns, so that examples are not pro-
vided for each of the competences.

In Table 8.1, it would be useful to suggest contexts where children might
represent numbers in their own way, as in scoring games and making labels.

At 40-60+ months, estimating, counting objects, the numerosity of zero
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Table 8.1 An example of a page from the Practice Guidance for the Early Years Foundation
Stage

Development Look, listen and Effective practice  Planning and
matters note resourcing
40-60+ - Beginto Children’s Ensure that Create opportunities

represent methods of children are for children to
numbers using  counting out up to involved in making experiment with a
fingers, marks  six objects froma displays, for number of objects,
on paper, or larger group, for  example, making  the written numeral
pictures example, when their own and the written

— selecta childrendo a pictograms of number. Develop
numeral to jigsaw together lunch choices. this through
represent 1-5, and share outthe Develop thisasa  matching activities
then 1-9 pieces, counting 3D representation with a range of
objects to check everyone using bricks and numbers, numerals

— recognize has the same discuss the most  and a selection of
numerals 1-9  number popular choices objects

and rote counting are mentioned without exemplifying either the mathemat-
ics or the pedagogy. This does not help in explaining ambiguous phrases like
Using ordinal numbers in different contexts, which practitioners might think
includes using vocabulary like ‘third’, which is not to be expected at this age
(see Gifford 2005).

The key competences are also not helpfully organized. Numbers as labels
and for counting lists several aspects of early number, including counting, esti-
mating, ‘ordinal numbers’ and numeral recognition, some with several com-
petences. These are all mixed up together and with no discernible progression.
While it is true that children learn all these aspects in parallel and not in the
same order, it would be more helpful to have a clear structure which helps
educators identify the progressive knowledge, skills and understanding
involved in counting. For instance, Count out up to six objects from a larger group
precedes count actions or objects which cannot be moved and the Early Learning
Goal count reliably up to ten everyday objects. However, counting out from a
larger group is more demanding, because it requires understanding that the
‘stopping number’ gives the number of the set, whereas counting actions and
objects requires only skills.

Confusingly, the ‘Look, listen and note’ example offered (see Table 8.1)
involves counting several groups formed by sharing, then comparing them,
which is a more challenging counting problem, involving several sets but
no counting out from a larger group. A more useful framework for counting
would emphasize progression in understanding, for example:
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e know some number names;

e say numbers in order;

e coordinate saying one number for each object (including actions or
sounds);

e keep track of which ones have been counted (fixed and irregular
arrays);

e count out a number from a larger group;

e use counting to solve problems.

The last two demonstrate understanding of the cardinal principle - that the
last number of the count gives the number in the group. Examples of problem-
solving purposes would also help practitioners plan, for example:

e to get the right number of things (setting up an activity, in a game);
e  to compare two groups;

e to check that shares are fair;

e tocheckif any are missing.

Problem solving is one of the early learning goals, and is important for fostering
understanding and positive dispositions, but according to Williams (DCSF
2008a) it needs developing in pre-school settings.

The list relating to numerals also seems in reverse order:

e begin to represent numbers using fingers, marks on paper, or pictures;
e select a numeral to represent 1-5, then 1-9 objects;

e recognize numerals 1-9;

e know that numbers identify how many objects in a set.

Inviting children to represent in their own way is a useful assessment of under-
standing, involving problem solving, communication and metacognition, and
so would be better emphasized as a higher-level activity. The example given in
Table 8.1 includes the written numeral and the written number, which confuses
understanding the meaning of numerals with reading number words. However,
the Early Learning Goal ‘recognize numerals’ does not require children to
understand the meaning or cardinal value of numerals. It would be helpful
if there were some meaningful examples, like using numbers on labelled
containers to check contents when tidying up; using numeral dice to play
collecting games; or buying priced goods with penny or pound coins.
Calculating has more appropriate Early Learning Goals: these include
comparing numbers and finding ‘one more or one less than’ numbers to ten.
Research has shown that understanding the relative size of numbers is a key
predictor of later success or difficulties (Locuniak and Jordan 2008). However,
understanding the ‘one more than’ relationship between consecutive numbers
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requires children to integrate understanding of both the cardinal value of
numbers and counting, and is a later development. ‘One more than-ness’ is
such a basic feature of the number system that it may be overlooked, with
provision moving from number friezes of randomly arranged ducks and frogs
to abstract number lines, without helping children explore how numbers grow
by ones. This involves the important idea that each counting number includes
the previous number and one more. Trundley (2008:19) refers to this as the
‘successor function’ and describes 3-year-old Alice, when told there are four
toilets in the changing room, looking at one toilet door and asking ‘where
are the other three?’ Alice can also mentally partition numbers: this implies
understanding part-whole relationships and seeing numbers as made up of
other numbers.

Another listed competence for calculation is being able to ‘select two
groups of objects to make a given total of objects’. This requires a knowledge
of number bonds which seems a more appropriate expectation for Year 1.
However, the ability to visualize numbers as wholes made up of parts is
important to develop, especially since a reliance on counting in ones charac-
terizes the calculation strategies of older children with number difficulties.
Young children can readily recognize small numbers of objects without count-
ing, that is, they can subitize. Through playing dice games or finger rthymes,
they come to see six as made up of three and three or five and one. Locuniak
and Jordan (2008) found that knowing number combinations at 6 years is a
good predictor of later arithmetical achievement: subitizing seems a painless
way of learning these, building on children’s intuitive skills.

It also seems that dot patterns are effective with children who find learn-
ing number facts difficult. The Practice Guidance for the Early Years Foundation
Stage (DfES 2007) does recommend using fingers to help children understand
that five and five make ten and using egg boxes to show three and three make
six (although it is not clear what activity children would actually do). There
could be more encouragement for subitizing, for instance, in dice and domino
games and making arrangements for a number in different ways with shells
or matchsticks.

Recommendations for recording calculations include encouragement of
children’s own recording but also demonstrating recording calculations, ‘using
standard notation where appropriate’. Aubrey’s (2008) finding that children
who start formal schooling later are mathematically more successful suggests
that the ability to write equations at an early age is not important. Furthermore,
there is little evidence that such young children can do so with understanding.
However, Worthington and Carruthers (2006) have shown the importance of
children recording in their own way both as a means for children to develop
their own understanding and for teachers to understand children’s thinking,
especially after the age of 5, alongside the introduction of standard notation.
The danger here is that written ‘sums’ are seen as appropriate, whereas evidence
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indicates the contrary. Unfortunately, they are also seen as evidence of high
achievement in the Early Years Foundation Stage Profile Handbook.

With Shape, space and measures, there is also a mixture of aspects including
data handling, although this is not mentioned in the strand title. Williams
notes the Early Learning Goals’ focus on language with little mention of explor-
ing capacity or time. There is an emphasis on sorting and vocabulary, which
can result in children merely ‘barking at shapes’. Young children can intui-
tively discover relationships between shapes by investigating how shapes fit
together, combine to make other shapes, contain shapes within them and can
be dissected. Children will readily create three-dimensional (3D) shapes using
linking shapes such as Clixi, discovering properties of nets. If educators were
more aware of these mathematical relationships they would be better able to
evaluate and provide for children’s exploratory shape play: they are not guided
in this by the Early Years Foundation Stage Profile Handbook (DCSF 2008b).

This EYFS profile, which is used to gather assessments of children by the
end of the Reception year, has nine scale points for each of the three strands.
These are based on the Early Learning Goals, which comprise the middle four
points on each scale, with points 1-3 for children who have not reached these.
So for instance where point 6 is count reliably ten objects, point 2 is count three
objects reliably and point 3 is count five objects. The eighth point in each strand
is Using developing mathematical ideas and methods to solve practical problems.
The ninth point on each scale, for example, the child recognizes, counts, orders,
writes and uses numbers up to 20 is for high-achieving children, at a level above
the Early Learning Goals.

The Early Years Foundation Stage Profile Handbook (DCSF 2008b) provides
a range of examples which emphasize the need for understanding, by, for
instance, including counting out from a larger group as evidence for count reliably.
However, the points at the ‘top’ of the scales encourage practitioners to
emphasize writing and recording, for instance, in writing numbers to 20, or
the example of a child setting out ‘addition sums’. This gives unfortunate
messages as to what mathematical achievement looks like in the early years,
suggesting that young children need to produce written mathematics in order
to be recognized as high achievers. With shape, space and measures, the scale
points focus almost exclusively on language, whereas investigative play could
have received more emphasis, especially for higher achievers. However, the
examples include a wide range of contexts, as it is recommended that assess-
ment takes place mainly in child-initiated activities.

Conclusion

The current EYFS has much to recommend it in principle. In practice, it is
muddled, and fails to give clear messages about key content and what the
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principles look like in practice. As argued elsewhere (Gifford 2008), the
examples in the Practice Guidance for the Early Years Foundation Stage (DfES
2007) are rather pedestrian and do little to foster commitment to exploration,
creativity or critical thinking. The Early Years Foundation Stage Profile Handbook
(DCSF 2008b) provides better exemplification, including useful videos, and
the emphasis on child-initiated activity should deter inappropriate whole-
class teaching. However, the scale points narrow the focus, and with shape,
space and measures there is a missed opportunity to identify mathematical
relationships in exploratory and creative play. The Practice Guidance is also
muddling, with no clear progression or exemplification which will help educa-
tors look for significant learning and plan accordingly. This does not support
an approach which might reduce the differences in expertise between children
from an early age.

There could also be more guidance on appropriate assessment such as
puppets making errors to correct and explain; watching children play games in
pairs; inviting children’s own recording; and ideas for problem solving. It
would be more helpful to assess understanding of a few key mathematical
ideas, such as cardinality and relative number size, through exploratory activ-
ities and problem solving. This assessment then needs to be carefully built on
in Key Stage 1, so that children develop confident understanding and are not
rushed into abstract manipulation of numbers too soon.

This is what the Numbers and Patterns materials (DCSF 2009), produced by
the National Strategies, aim to do: they bridge the EYFS and the Framework for
Year 1, by identifying key aspects of number from both. The materials include
a new structure of key competences listed in six developmental phases,
roughly corresponding to the EYFS age phases, with phase 6 listing objectives
from Year 1. There are two new strands, Number words and numerals and Count-
ing sets, which seem based on ordinal and cardinal number, and include calcu-
lation in the latter. Progression through the phases is helpfully identified for
groups of skills and related to Potential difficulties and Learning and teaching
approaches. There are also useful suggestions for developing areas of play provi-
sion and Adult-led activities, which include playful and outdoor activities, like
squirting water bottles and finding a number of things hidden in the sand. The
key messages for the adults’ role emphasize modelling, the use of language and
the importance of repetition, and allowing time for learning. Unfortunately,
despite mention of subitizing and estimation, there is more emphasis on skills
of rote counting, numeral recognition and sequencing than on understanding
number meanings and relative values and supporting problem solving. Des-
pite the title, there is very little advice on developing awareness of pattern or
on exploration and investigation. It is also unfortunate that practitioners are
to be given yet another structure to grapple with, in addition to two existing
ones. It remains to be seen whether this will make transition easier.

It would also be helpful in the EYFS if the commitments to play and
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exploration, active learning, creativity and critical thinking, were more rigorously
adhered to in the mathematical examples. Young children’s mathematical
potential should not be underestimated; babies are hard-wired to spot patterns
and to investigate shape and space, and young children are usually keen to
learn to count and get excited by large numbers. The pedagogy of play is
important for investigative work and for developing positive attitudes in
mathematics; playing with numbers and shapes is one description of what
mathematicians do. In the Foundation Stage and later key stages there could
be clearer encouragement for:

* role play with adult modelling, for example, shops, garden centres
and cafés;

e playing with measuring equipment and structured apparatus;

e games in pairs;

* physical skills and games outdoors to develop and score;

e pattern spotting and creating;

e children’s own recording;

e construction and pattern making with shapes.

More generally, there is a need for more open-ended, exploratory and extended
activities (see Ollerton, Chapter 6), which may be adult initiated and child
developed, and unobtrusively structured. If they are based on observation and
assessment, they can be challenging and aspirational. These are more likely to
maintain positive attitudes to learning and self-esteem. This is what math-
ematics should be about: independent enquiry, risk taking, and prioritizing
positive identities as successful learners. If these aspects were emphasized more,
then the somewhat shaky mathematical foundations of the EYFS would build
more secure mathematical futures for all children.
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9 Home-school knowledge
exchange

Jan Winter

Introduction

Olivia loves Beanie Babies. She has well over a hundred and they are carefully
organized and displayed in her bedroom. She has a file of information about
them - prices, particular characteristics, those she wants to buy, the rare ones
she is looking out for and how much they might cost her. Her mum works in a
day centre for people with learning disabilities and each week Olivia counts
the takings from the coffee bar and sorts it ready to be banked.

Nadia has learned, from her Bengali family, a way of counting up to 30 on
her hands, using finger joints rather than just whole fingers. She also uses a
similar method in which each finger represents four, so that she can count to 40.
She doesn’t use these methods in school though, just at home.

The teachers of these two girls, who are both in Year 4, don’t know much
about these parts of their lives. Both Olivia and Nadia are good at mathematics
and actively use it in their lives out of school, supported by their families and
their very different social backgrounds. These two stories illustrate what we all,
of course, know: that learning is not just something that happens in school
and that children manage to integrate what they learn in school with what
may be quite different kinds of learning taking place outside school. This
chapter is about how teachers can make connections with this wider learning
going on in children’s lives, so that their learning can be more effective. There
has been research showing the ‘disconnection’ between school learning and
out-of-school use of mathematics in real-life situations (Carraher et al. 1985).

In a research project at the University of Bristol, we worked with four
schools, two in Bristol and two in Cardiff, to develop ways of sharing know-
ledge between homes and schools. In the mathematics strand of the project
(which also looked at literacy in Key Stage 1 and transfer to secondary school)
we worked with one class in each school, going through from Year 4 to Year 5
over two years. A seconded teacher-researcher worked with the class teachers

to develop and implement ways of sharing knowledge. We also followed some
]
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of the children, who we called ‘target children’, such as Olivia and Nadia, and
talked to their families to understand better how they learned and used math-
ematics out of school, so that the activities we developed would meet their needs.

Life for families is often busy and complex — so contact between schools
and home is not straightforward. Parents’ contact with their children’s teachers
reduces as children go through primary school. The familiar picture of parents
in classes supporting reading and other activities in Key Stage 1 is far less
common in Key Stage 2. Some families we worked with had significant barriers
to their involvement in their children’s learning — perhaps through work
commitments or through language issues. What is also true, but sometimes
not recognized, is that children’s out-of-school learning is rich and varied
whatever the context. We gained a different perspective on children’s learning
through the wide variety of their family backgrounds. We drew on ideas
of ‘funds of knowledge’ (Moll et al. 1992) which emphasized the diversity
and abundance of the contributions to learning from family contexts rather
than taking a perhaps more typical view of a deficit model of families in less
advantaged economic circumstances.

The rest of this chapter will look at the mathematics we found being done
out of school and then consider in more detail some of the issues we found
talking to parents — what did they want to know more about and what difficul-
ties were there in doing this? Then we offer examples of some of the activities
we developed and how schools and families used them. Finally, implications
for how this might work more widely are discussed.

Mathematics at home

In this section we look at what mathematics we found being done out of
school. We collected this information in various ways — through interviews
with parents and with children and through videos which our target child-
ren made with cameras we provided for them to take home. We categorized
the mathematics we saw into three main groups: play and games, authentic
household activities and school-like mathematics.

Play and games

Perhaps this is the most obvious way in which we would expect mathematics
to be used by children outside school. Many games have strong mathematical
elements, as do sport and other play activities. We saw examples of children
playing card games, board games, strategy games, activities involving spatial
skills and scoring, as well as games they invented themselves.

A boy showed us a photograph of himself playing Scrabble, a game which
is not necessarily considered mathematical, and wrote about how he was trying
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to make a high score using triple letter scores and other features of the board.
Monopoly was another game recognized by some of our target children as
mathematical with the use of money being an obvious link for many. The
more strategic aspects of the game may not have been so quickly identified as
using mathematical skills. Carrom is a South Asian game with some similar-
ities to pool. It involves ‘potting’ pieces which are pushed across a board and
one of our target children showed us, on video, a game between him and his
brother, clearly recognizing the spatial skills involved.

In Ryan’s video, he and his friends played a game they had invented
themselves, ‘Kerbs’. In their quiet street, they took turns in throwing a ball at
the opposite kerb. The aim was to hit the kerb, scoring 20 points. A near miss
gave the player a second attempt, from the middle of the road, from where
a hit was worth 10 points. The group were well-practised at playing this
and very competitive. Interestingly, later in the project Ryan told us they no
longer played - they had moved on to other activities. Children’s worlds are
fast-evolving places.

We have already heard about Olivia’s use of mathematics in recording her
Beanie Baby collection. She took this very seriously and was methodical and
accurate in the details she kept. Indeed, this recording itself seemed to be an
activity she enjoyed:

I write down their names and I just have, well, in my room it’s kind of
shelves but it has boxes and stuff and they’re in there. So I just name
the boxes, box 1, box 2, box 3 and there’s 18 boxes and stuff, and I just
say like one, two, three, four, five, six in a box and then just add them
up all together and keep a total and just cross out the old total and put
in the new total when I get a new one and stuff.

Another target pupil, Chloe, played at being an estate agent, collecting
information about houses and then matching them to what ‘pretend’ people
want to buy:

I'll go on like the laptop and I'll look and see what one’s the best
quality and they have to choose and something like that. Then I write
it all down, like where they’re moving and how much they really
want to spend, and then how much it costs, and then they have to
write me a cheque out, and then I'll pretend to fax the cheques off,
and then I'll do other stuff . ..

Authentic household activities

Here we saw lots of activities related to money - an area in which parents
clearly want their children to become confident. Children were given gradually
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increasing responsibility for money in various ways — relating to managing
their pocket money and taking part in household spending.

Nadia would often accompany her mother on shopping trips, as her
mother’s English was relatively modest. Nadia would check prices and ensure
they received the correct change. Her father would also use Nadia’s pocket
money to give her the opportunity to practise her skills: ‘She needs a pound
every week. We give her one pound every Monday, so sometime, I give her
20p, 22p, 29p and so “what’s left over?”, so we say “it’s 60p left” and she says
“no dad, it’s 70p”. So she knows how much is left, so we can’t cheat her!’

Ryan would be given money for his trips to the local swimming pool
and his mother told us how he knew how much he would need, although
Ryan was not necessarily aware that he was using mathematics: ‘He knows
how much I'm giving him, because if he goes to the baths, he needs £1 to get
in, 50 pence for the locker and then £1 for sweets (laughs) although he gets
his 50 pence back, so he knows he needs £2.50. So he’s counted there. And
he doesnae know he’s doing it obviously like.’

Other household activities involved, for example, programming the DVD
recorder — with inevitable examples of children being more competent than
their parents in doing this! Bryn said he was the only one in his family who
understood how to manage Sky Box Office and explained all the mathematical
skills this involved — both using money and time calculations. In another
video we were shown how Ellie calculated the amount of cat food she needed
to leave for a neighbour to feed her cat while the family were on holiday. This
involved weighing the cat, which was not very cooperative, so Ellie held the
cat in her arms and then subtracted her own weight from their combined
weight. The amount of food needed was then calculated, with an unfortunate
final error in units meaning that Ellie announced her cat would need
700 kilograms of food for the fortnight they were away! We also saw videos of
children cooking with their families and working out the distance they would
travel to a holiday destination and how long the journey would take.

Although some of these situations were set up for the videos, they were all
a real part of the families’ lives and the outcomes mattered. Children were
using the mathematics they had learned in real ways to contribute to the
running of the household. A side effect of collecting some of this data was that
some parents told us they were made more aware of the mathematics that both
they and their children did as part of their everyday lives.

School-like mathematics

The final category that we identified was that of children doing ‘school
mathematics’ at home. Other researchers working in this area have dis-
tinguished between the site of an activity (school or home) and the domain
(also school or home). They would therefore call this ‘school-domain
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mathematics on the home site’ (Street et al. 2005). A common example of this,
of course, is children doing homework that is sent home by their school - a
possible source of conflict. Ryan has written, in a vertical ‘sum’, 43 — 15 =32.

Mother: 1don't think that’s right, that one there (points to the subtraction
sum). You can’t take five from . . .

Ryan: You have to take three away from five . . . four, three, two . . . You
don’t get it, do you?

Mother: If I was doing a take-away sum, . . .

Ryan: (getting cross) It's the way I do it, we do it a different way.

Mother: (tries to explain how she would do it) To be able to take five away
from three, you have to put one unit off the four, and put it on
the three, do you not?

Ryan: No.
Mother:  You have to.
Ryan: (in a plaintive voice) You don'’t, not at my school you don't.

Parents are very aware that school methods have changed (we’ll hear more
about this later) and they may not be very confident in their own mathemat-
ical skills. Sometimes other family members provide support: Olivia would
call her grandparents who lived nearby; Nadia would ask her elder sister; and
Saqib would sometimes ask an aunt for help.

At the end of the project, Chloe described how she had been set the task of
learning her times tables at the end of Year 5:

'Cos in Year 6 now, we have to learn . . . this summer holidays, we had
to learn our times tables like our name. Like if we say ‘what’s your
name?’ and we say ‘Chloe’ really quick, we have to learn the times
tables like that. So if we say ‘7 x 9?” we have to go whatever the answer
isreally quickly . . . I just need to learn my 6s and my 9s . . . no, my 8s.
That’s all now, ‘cos they’re the hardest. I can’t remember ... I can’t
remember the pattern in them. So tonight I'll probably go up to my
bedroom ... I'll have a bath, I'll go up to my bedroom and then I'll
probably just sit at my desk and just do it until I know them.

We also saw parents who set school-type problems for their children. In
Nadia’s video she worked through a sheet of problems set for her by her elder
sister and Olivia described car journeys with her mother where Olivia would
do mental calculations set for her. Some families used commercially available
workbooks of examples or mathematics software packages for extra practice.
So, we saw a wide range of uses of mathematics in children’s lives. Part
of the aim of the project was to find ways of sharing these with children’s
teachers. We also wanted to find out what parents’ concerns and priorities
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were, although traditionally the flow of information from school to home
has been the dominant direction. It still may not be that the information
going home about their children’s mathematics learning was really what par-
ents wanted. The next section will look at what emerged from our discussions
with parents.

Parents’ memories of mathematics at school

Everyone went to school. So most parents feel they know quite a lot about
how schools work. Some did not go to school in this country, so are not
confident about how different it may be here. Some have bad memories
of school and do not really want to be reminded of these. And most are aware
of how teaching methods have changed in recent years, especially in primary
mathematics, where the National Numeracy Strategy has had a big impact.
Here are comments about what three parents remember:

He's brought some maths home before and I'm no too bad at maths,
but some . ..I don’t know if it’s just the way they pronounce some
things and he’s explaining it to me and I just hav’'nae a clue and I
just can’t help him.

(Ryan’s mother)

Oh, it was horrific, it was horrible . . . we used to have chalk thrown at
us and things for getting it wrong and be humiliated in the classroom
by being asked to stand up and say your times table, and if you got it
wrong repeating it until you said it, time and time again.

(Olivia’s mother)

The simple questions I understand because it’s adding, subtracting,
multiplication, but when it’s a question written in English, I don't
understand. I've studied maths up to 6 or 7 class, junior/infants,
isn’t it? But after that I didn’t go to school but I was taught how to do
basic maths.

(Saqib’s mother)

So in our project, we tried to find out about how some parents felt about their
children’s mathematics learning and what information they felt would help
them contribute more effectively to it. The combination of parents’ ideas and
our discussions with teachers led to the development of a range of activities,
over the two years of the project. These were different in each school, with
some overlaps as teachers heard about what was working well in other schools.
The next section describes some of these activities and their outcomes.
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Activities taking knowledge from school to home

As we mentioned before, this is the traditional route of information — school
reports tell parents and carers about children’s progress, and at parents’ meet-
ings it is usually the teacher who is providing information to parents, rather
than the reverse. So this was where we started, building on strategies teachers
already used and developing them to try to meet the needs parents had
identified.

Classroom visits

In one school, sessions were set up for parents to be taught calculation
methods in the same way that children were being taught. This helped parents
understand their children’s experience of learning this topic. These sessions
were targeted towards the parents of children who were finding this difficult -
the parents valued something specifically aimed at meeting their children’s
needs, rather than a general approach aimed at all. Where a small group of
parents is singled out, care must be taken that the selection criteria are not
presented in such a way that the children or the parents might be stigmatized
by inclusion in the group. One parent’s response was:

They had an afternoon where some of the mums went in and they
actually taught us for an hour how they teach children, and it helped
so much. We got all these sheets and we came home and once I had it
in my head - this is how she’s got to do it. | mean the answer came out
the same whether I did it my way or her way but it was nice to know
how they’re being taught, how they break it all down. And she really
did ... even her teacher said they noticed such a huge difference,
once I knew what she was doing and was able to give her more
help ... it was just breaking it all down and showing you how to do it.

Linked to this, we also worked with parents who spoke English as an additional
language. We visited some parents at home with an interpreter which proved
to be a very successful way of ‘breaking the ice’ in involving mothers who had
been wary of contact with schools. This led to sessions in school where
mothers came in and worked with their own children in making mathematical
games that were then taken home to play. There is more detail about this, and
all the other activities, in the project book (Winter et al. 2009). The Ethnic
Minority Achievement Service (EMAS) teacher observed: ‘(At first) they met up
in the yard beforehand and they came in en masse, now they come in on their
own, and . . . walk upstairs and they’re not bothered if they’re by themselves.’

The children enjoyed having their mothers in the classroom and their
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behaviour and standard of work improved when parents were present. This
applied to all the children whether their parents were able to attend or not.
The EMAS teacher said that the whole experience had been a ‘real eye-opener’
for her: ‘Well it’s been absolutely wonderful to have the parents coming in and
working with the children, and you can’t believe how pleased and proud the
children are. They still . . . Imean they still get really thrilled when their mums
come through the door . . .’

Videos of teaching

Of course, it is not convenient for all parents to come into school — work
and care commitments can be difficult to manage. We decided to make
some videos which parents could see, to illustrate classroom strategies. Com-
mercially produced videos were available, so, following the success of the vid-
eos children had made of their home mathematics, we decided to make videos
in which the children would demonstrate the ways they learned mathematics
at school.

This idea was very popular: the children thoroughly enjoyed ‘being
teacher’ and parents enjoyed watching children take this responsibility. We
made some videos in children’s home languages with Pakistani or Bangladeshi
heritage children working together. One child used the opportunity to give his
teacher some advice: ‘I tried to make it as fun as possible when I could, just
to make him (the teacher) see I made the people I was teaching laugh, and I
thought that would show him that they enjoy it much more when they’re
allowed to laugh and have a little joke but do work as well.’

A parent told us:

One time she had the chance to be a teacher on her own, so she had to
think properly what to explain to the rest of the kids. She said she did
find it difficult 'cos the way the teacher says it is really easy but when
it comes to the children’s turn she found it quite difficult but she did
get the hang of it . . . I did enjoy it ’cos it was like a whole new differ-
ent thing they were doing, and it gave more chance for the children to
speak out or have their own self confidence in front of the video.

Home—school files

A final example in this category is the home-school file. Each child had an AS
ring-binder with their own photograph on the front. Teachers sent home a
variety of materials in the file — for example, weekly sheets describing the
mathematics being covered, what activities were being used in school and
suggestions for activities to do at home. This regular direct focus on what
mathematics was being done at school was valued by families and teachers,
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although it was demanding to produce the sheets regularly. An example of one
of the weekly sheets can be found in Figure 9.1.

Comments could be made by parents on the activities they did at home,
and children enjoyed bringing these to show their teachers. One activity sug-
gested measuring the dimensions of the family car and then suggesting dimens-
ions for a garage. One parent, a builder, commented in the file: “Without
any help from me Jay has designed almost exactly a standard single garage.
Well done. Dad.’

Activities taking knowledge from home to school

This section offers three examples of sharing knowledge predominantly in the
opposite direction — from home to school.

Photographs of everyday mathematics

One successful activity involved giving children disposable cameras to take
photographs of mathematical activities at home. Children were given a camera
at the start of the summer holiday and asked to record any mathematical
activities they engaged in over the summer. They also had a diary in which to
record brief details in case they forgot by the time the picture was developed!
When the cameras were returned the photographs were developed and then
children were able to choose which ones they wanted to share. This element
of privacy was important in creating trust in the process. In one school
the photographs were used to make a class album and in another, a large
wall display.
The range of mathematical ideas was very wide. For example:

e a photograph of bus timetables and description of the time calcula-
tions Olivia and her mother made about the journey;

e a photograph of a child’s grandparents, another of a picture of their
wedding day and a calculation of how long they had been married;

e aphotograph of a pair of trainers and a calculation of how much had
to be saved to buy them;

e aphotograph, mentioned earlier, of playing Scrabble and the scoring
system.

As digital cameras have become more cheaply available, this activity might
now be easier for schools. Parents, and even some children, may have cameras
on their mobile phones, thus removing the need to provide them.

Sometimes, different members of the family got involved. Ryan’s mother
took several of the photographs while Ryan did the mathematics:
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Ryan: Remember that day we had to ... if you do any sort of maths
...like if I give the woman a tenner and then what change I'd
get back, we had to (take a photo of it) with the camera.. . .

Mother: Oh yeah, you were actually doing maths . . . if you were going to
an ice-cream van or something . . .

Saqib’s teacher said:

When they brought the photographs in, I think they were quite a
big . .. theywereabigthing formebecause they showed . . . gavemean
insight into their homes and actually made me thinkof ... um.. . yes,
you know when you have a maths lesson in class, say of weighing
scales, whatever, and you talk about maths at home and children tend
to sort of — ‘oh miss’ — they sit there and you're thinking, you know,
you're trying to draw it out of them and then you have these pictures
where they are actually using maths at home, and you can see it.

Using games

We have already seen that this is a well recognized use of mathematics in the
home. So it was a natural focus for activities which would bring that home
experience into school.

We have mentioned earlier the activity in which parents came into school
to work with their children on making games that they then took home to
play. In Nadia’s class children designed games that they then made. This was a
further development of the mathematical challenge — designing a set of rules
which makes a game that is fun and 'works’ is no easy task!

We also provided games for children to take home and then report on in
their home-school file. In some schools children brought in games from home
to play - this let them be ‘the expert’ in their game and provided breadth of
activities in which teachers could encourage the development of collaboration
and group work. In one school an after-school mathematics club was set up,
focusing on fun activities. Games were widely used in this context.

Creating and using mathematics trails

A range of activities using mathematics trails was used in project schools. In
one a trail around the school and grounds was developed that parents were
invited in to follow with their children. In another, a ‘family maths trail’ was
developed, using children’s ideas. For example, they suggested including ques-
tions about family members: their ages, heights, and so on. Children custom-
ized these to include specific questions about their own areas and families and
then carried them out at home. When they brought the completed trails back
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to school they were keen to share information that they had gathered. Saqib’s
teacher noted that children who rarely participated fully in mathematics les-
sons were fully engaged in the activity, actively seeking help from others when
necessary rather than passively letting other children take the initiative.

One of the mothers who came in to take part enjoyed the occasion and
showed some ingenuity in her approach to solving the problems:

I felt it was great...but there was one where there was a line. ..
people were making the assumption about how many centimetres
and [ said ‘I don’t think they are’, and I lay down . . . fortunately it was
a dry day, because I know I'm more or less roughly five foot, and I said
‘Look, actually on my passport I think I'm 1.5 metres’. .. I think they
had to do something like find where two metres was . .. and I said
that’s not right because I'm one and a half metres, and I was really
enjoying it.

Conclusion

This project tried to bring together children’s two worlds — home and school. It
recognized that learning takes place in both and that learning can be enriched
by better connections. The activities we developed with the schools were based
on what parents and teachers wanted — but of course the main agents in mak-
ing them work were the children themselves. A note of caution: it is important
to remember that children may not want these two worlds to come too close
together. Remember Nadia, who did not want to use her ‘finger counting’
method in school. Children may need to be different people in these two
worlds and this must be respected. How often do teachers hear ‘She’s not like
that at home!’ in discussions at parents’ meetings? So there is a balance to be
struck here between sharing knowledge and letting children develop their own
identities as they move between these parts of their lives.

Some of the activities were quite time-consuming to develop, so it is also
important to focus on what needs are for individual schools and classrooms.
We hope that the insights we gained through our close collaboration with
families and children can help others to make these decisions and enrich
learning in their classrooms through better understanding of the contexts
within which children’s learning is taking place.
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SECTION 3
Assessment issues

Until the mid-1990s assessment was either ‘summative’ or ‘formative’. Sum-
mative assessment is carried out periodically, at the end of a unit of work, a
term, a year or — particularly with reference to the English education system —
at the end of a key stage. Results of this type of assessment are reported in
terms of marks, grades or levels to a range of different audiences. Formative
assessment, on the other hand, takes place in the classroom at all times, and is
concerned with the generation of information that can be used as feedback to
influence the nature of the teaching and learning activities taking place. The
key message is that formative assessment is concerned with using the informa-
tion gathered to improve learning in the classroom. Alternative descriptors for
these two aspects of assessment are ‘assessment of learning’ (summative) and
‘assessment for learning’ (formative).

The original material produced by the National Numeracy Strategy (NNS)
in 1999 advises teachers to think of assessment as being at three connected
levels: short, medium and long term. Within the list of purposes ascribed to
short-term assessment, teachers are told to check whether their children have
any misunderstandings that ‘need to be put right’. In Chapter 11, Julie Ryan
and Julian Williams offer a different perspective on ‘errors and misconcep-
tions’, suggesting how they can be used to develop classroom discussion.
They argue that an understanding of children’s (developmental) errors and
misconceptions may provide teachers with insight into their current math-
ematical thinking and inform teachers’ decisions about the starting points for
productive ‘next steps’ in teaching and learning. The authors report on the
results of their own research involving the large-scale testing of children in
England from 4 to 15 years and small-scale research of discussions with chil-
dren. They present a classification of errors that may exemplify cognitive
development and, finally, point to a dialogic pedagogy that supports children
in reorganizing their mathematical thinking.

The original NNS material discussed above identifies medium-term assess-
ment as being concerned with reviewing and recording the progress that
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children are making over time in relation to key objectives. Long-term assess-
ment is concerned with assessing children’s work against the key objectives
for the year and, at the end of a key stage, against national standards. Given
this focus on the achievement of key objectives, it is clear that the major
emphasis of the material is on the summative rather than the formative aspect
of assessment.

In Chapter 10, Jeremy Hodgen and Mike Askew trace the shift in focus
in England from summative to formative assessment (or what is now called
‘Assessment for Learning’ (AfL)). They argue that summative assessment is
concerned with what children already know, whereas AfL focuses on what
they need to do to learn more, and is much more interested in what they can
achieve with the help of others. They give practical suggestions on issues such
as the generation of higher-level questions, the optimization of ‘wait-time’
and the development of focused listening skills. They also discuss the different
types of mathematical problem that can help generate discussion, which in
turn can enable teachers to give constructive feedback to individual children.



10 Assessment for learning:
what is all the fuss about?

Jeremy Hodgen and Mike Askew

Introduction: assessing progress or assessing learning?

One of us (Mike) remembers coming to the end of a project that had been
developing case studies of pupils. At the end of several visits to a class to
observe some of the children working on mathematics and to gather data on
their understandings, the teacher commented on how much she had learned
about the children during his visits. No particular skill or ‘trick’ had been
employed during the visits: all Mike had done was sit with the children as they
were working and say ‘tell me what you are doing’. Eavesdropping on these
conversations was how the teacher had learnt about the pupils. But she could
have sat and had similar conversations herself. Why did it take someone else
in the room to allow these conversations to happen?

One possible reason is that as a researcher Mike had the luxury of not
being responsible for the overall management and control of the class. He
could spend a few minutes with individual children and listen to them with-
out needing to keep an ear open for what was going on elsewhere in the room.
But this was a well-behaved and calm class: the teacher could have spent a few
minutes with individuals.

Another possible reason is that the researcher had no vested interest in how
successful the pupils were at completing the tasks. From the researcher’s point of
view a pupil misinterpreting a task provided valuable evidence into the child’s
thinking. From the teacher’s point of view the same misinterpretation might be
seen to be getting in the way of learning. So, rather than letting the child pursue
their line of reasoning and seeing where that led (and often it leads to the child
realizing something is amiss), the ‘teacherly’ thing to do is to help the child get
‘back on track’. The researcher is curious about the child’s thinking, the teacher
has responsibility for the child’s progress. These two perspectives are not
irreconcilable. Good formative assessment requires teachers to be curious about
children’s thinking. So the question is: how can teachers be encouraged to
adopt a more researcher-like attitude in their interactions with children?
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Assessing pupils’ progress

In England, Assessing Pupils’ Progress (APP) is being officially promoted as
the principal approach to teacher assessment that all schools should adapt.
As the guidance to schools highlights: APP ‘is not a “bolt-on” to existing
arrangements. APP is all you need’ (DCSF 2009: 2).

At first glance the APP initiative would seem to be a move in the direction
of teachers becoming researchers into children’s thinking. It is presented as a
‘basic’ and ‘straightforward’ three-step approach:

Step one: Consider evidence
Step two: Review the evidence
Step three: Make a judgement
(DCSF 2009: 3)

We will not go into all of the details of these steps here; the documents con-
taining details are easily located on the Internet. We do think, however, that
that final step — make a judgement — is one to consider in a little more detail.

At the end of the APP the objective is to decide which ‘Level’ (according to
National Curriculum Statements of Attainment) a child has reached and
whether or not their position in this level is ‘high’, ‘secure’ or ‘low’. In case
there is any doubt about this being the ultimate goal of the assessment, the
Chief Advisor on School Standards in her Foreword to Getting to Grips with
Assessing Pupils’ Progress (DCSF 2009: 1) points out: ‘The bottom line is that
when you make a judgement, you use national criteria, and keep a note of the
judgements made over time so that you can see how pupils progress.’

So the purpose of the assessment is clearly about judging, and judging,
we suggest, entails a different mindset from being curious. In making such
judgements, pupil progress is seen to be developing along predetermined lines
(or up pre-positioned ladders as high, secure or low implies). But we know that
development in learning is not that straightforward: learning does not always
mean moving forward or up. Sometimes learning involves ‘unlearning’ some-
thing you previously held true. Another difficulty with such ‘tracks’ or ‘lad-
ders’ metaphors of learning is the ‘one route fits all’ implication - there is
only one route of progression, and that is as set out in official documents. But
learners don’t fit such models.

Anna Sfard (2008), in arguing for thinking being a form of communica-
tion, talks about the process of reification and alienation. A pupil’s particular
actions on a particular day become reified into general objects. For example,
the observation that ‘Mike answered 20 two-digit subtraction calculations’
becomes reified into ‘Mike understands two-digit subtractions’. The process
of alienation, according to Sfard, makes a step one further away, and ‘Mike
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understands two-digit subtractions’ becomes a ‘judgement’ contributing to
‘Mike is a secure level 3’.

At the end of these processes of reification and alienation what is the
teacher left with that might inform teaching and learning? ‘Mike is a secure
level 3’ is, on its own, of limited use-value. Such statements have ‘exchange’
value: the teacher can ‘exchange’ the records of her assessments for recogni-
tion of her children’s ‘progress’, thus she has played her part in ensuring that
‘every school has in place structured and systematic assessment systems for
making regular, useful, manageable and accurate assessments of pupils, and
for tracking their progress’ (DCSF 2009: 4). In fact, APP is far less useful,
manageable and accurate than the guidance suggests.

For assessment to have use-value the information needs to have value for
the teacher and for the learner. Being told that you are a secure level 3 doesn’t
provide any useful information that can be acted upon. (Mike is reminded of
getting the results of a cholesterol-level test that simply told him his score was
4.3. There was no scale provided and nothing to indicate whether this was
good or bad.)

Deep down we suspect that most teachers intuitively know that the result
of this process does not result in anything of ‘use-value’. And so we turn our
attention to formative assessment, which evidence shows does have use value.

What is formative assessment?

The interest in formative assessment, in the UK at least, originates in a
substantial review of its effectiveness that was later summarized in a pamphlet
by Black and Wiliam (1998). In this, they define formative assessment as
assessment with the main aim of promoting learning. They distinguish forma-
tive from summative assessment. Summative assessment focuses on what
children already know, whereas formative focuses on what they need to do to
learn more. Formative assessment is much more interested in what children
can achieve with the help of others. Vygotsky called this the zone of proximal
development and argued that this is key to understanding learning.

Black and Wiliam describe the broad characteristics of formative assess-
ment as including the use of rich and challenging tasks, a high quality of
classroom discourse and questioning, feedback and the use of self and peer
assessment. In particular, they argue that ‘the quality of the interaction
[between child and teacher] . . . is at the heart of pedagogy’ (1998: 16). Teachers
in primary classrooms do already spend a great deal of time interacting with
children. They ask questions, listen to children’s responses and give feedback.
Often the majority of a teacher’s time is spent on these sorts of activities. So
what could teachers do differently? The research evidence suggests that what
distinguishes more-effective from less-effective interventions are the kinds of
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questions asked, the ways in which these questions are asked and how the
teacher responds.

Putting it into practice: questioning and talk
Asking better questions

Much classroom discourse consists of what Bloom (1956) terms low-level ques-
tions for which the teacher knows the answer (for example, asking children
to recall facts and procedures: what is 8 times 6?). Generally, increasing the
proportion of higher-level questions is associated with increases in children’s
understanding (Burton et al. 1986). Higher-order questions require children
to think (for example, ‘How would you work out 8 times 6 if you didn’t know
it?’). Such questioning is often focused less on what children already know
(although this may be important) and more on what they need to do in
order to learn more. But the situation is not straightforward. Whether a ques-
tion is actually challenging depends on what the children already know. So,
a high-level question for one class may be a low-level question for another.
To come up with ‘good’ questions a teacher needs to know the children. But
higher level questions are also ‘harder’. Children need to think and thinking
takes time.

Giving children time to think

One strategy for higher-order questions is to increase the wait time (the time
between a teacher asking a question and taking an answer). The wait time is
typically less than 1 second in most primary mathematics classrooms. For
higher-order questions, increasing wait time to around 3 seconds can have
very dramatic effects on the involvement of children in classroom discussion
(Rowe 1974) — more children say things, and the things that they do say are
longer and more revealing.

But, while wait time is very powerful, increased wait time is not an effect-
ive strategy for lower-order more straightforward questions (for example,
recall of number facts). Somewhat paradoxically, increasing wait time to more
than about 5 seconds can actually decrease the quality of classroom talk (Tobin
1986). In fact, if children cannot respond within 3 seconds, this may indicate
that they need time to talk or work on the problem in pairs or small groups.

Listening to children

Listening to children is perhaps the most valuable source of assessment infor-
mation. Typically, however, many teachers listen to children in a way that
Davis (1997: 357) calls ‘evaluative’. They ask a question, then listen for
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the correct answer. When children give partially correct answers, they say
things like, ‘Almost’ or ‘Nearly’. This encourages children to believe that
the teacher is more interested in the correct answer, rather than finding out
what they think and understand. A more useful approach is to listen interpre-
tively, listening to children in order to work out why they respond in the
ways they do.

Teachers are likely to find out far more about what the children can do by
intervening less in order to observe them collaborate on a task. For example, in
the APP Mathematics Standards file, the exemplification of standards includes
a video of a teacher working with Babigail on ordering numbers on a washing
line."' The clip begins as follows:

Teacher: Where are you going to put that one?

Babigail: Here.
Teacher: Put it there then. What number have you got, what number is
that one?

Babigail: Twelve.

Teacher: No, this one sweetheart, what’s that one?

Babigail: Five.

Teacher: Five, good girl, pop it there then.

Teacher: What have we got here then? Can you count them?

Babigail: One, two, three, four.

Teacher: What's the matter?

Babigail: Four.

Teacher: Is that number four? Where’s number four then? Do you want
to put that one in?

Teacher: Babigail, can you count them along for me? Starting at number
one.

Babigail: One, two, three, four, five, six, seven, eight, nine, ten.

Although there are two other children present, this excerpt is typical of the
assessment, which consists of the teacher asking questions with short, gener-
ally closed responses from Babigail. While the teacher does learn a great deal
about what Babigail can and cannot do individually, she finds out much less
about what the child can do with help and, thus, what she, as a teacher, could
do to help Babigail do more.

Intervening less and observing more gives children more space to con-
struct mathematics. Often, this will mean that children make mistakes, which
allows the child or one of her collaborators to correct or comment on the error.
This in turn tells you more about what children know rather than simply what
they can do. Children then realize the teacher is actually interested in what
they say and are thus encouraged to say more. When teachers spend less time
talking, children’s contributions tend to get longer. As a result, children have
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more opportunities to listen to and compare their own ideas to those of others.
Where children are actively involved in discussion, not only do they learn
more, but their general ability actually increases (Mercer et al. 2004).

Listening more also gives the teacher more time to think about the inter-
ventions she does make. In Babigail’s video, for example, the teacher suggests
that the child uses the strategy of reciting the numbers from one to help her
order the numbers. Giving herself more time might help to generate alterna-
tive questions (for example, what is one more than four?), or to modify the
activity (for example, put these numbers in order: 9, 5, 6, 2) or to ask the
children to set themselves ordering challenges.

Responding to children
Providing feedback

Talking is central to teaching mathematics formatively. But talking is not
in itself enough. Talking allows children to express what they know. But they
then need feedback on what to do next. Providing feedback in mathematics
can be tricky. Part of the power of mathematics is that ideas can be expressed
very concisely. Yet, this strength can make mathematics difficult to teach and
learn. Through exploring and ‘unpacking’ mathematics, children can begin to
see for themselves what they know and how well they know it. By listening
to and interacting with pupils, a teacher can provide feedback that suggests
ways in which pupils can improve their learning.

Talk also provides opportunities for children to give each other feed-
back. This peer feedback is often even more useful to children simply because
it is framed in ways that are ‘closer’ to their own thinking (see Monaghan,
Chapter 4). Listening to children talk among themselves is invaluable for
us as teachers as it provides us with richer information about children’s under-
standings and more time to think about how we will intervene.

If we want to find out what children understand in mathematics rather
than just what they can recite, then we need to challenge children with activ-
ities that encourage them to think and talk about their ideas. This may involve
presenting children with the unexpected: an ‘obvious’ answer that is in some
way inadequate, a problem that does not have just one correct answer or a
teacher defending the ‘wrong’ answer. Sometimes a good problem is one in
which, paradoxically, a pupil who knows more is more likely to get it ‘wrong’
and in doing so reveals to themselves or the teacher something about the way
in which they understand the mathematics in question. But working
formatively is about finding out how to help children learn, not simply about
finding out what they can do currently. Hence, these activities also provide
opportunities for feedback on what to do next.
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Pose problems where the correct answer is not obvious

Much of school mathematics consists of exercises in which answers are either
right or wrong. Posing problems in which there may be more than one answer
encourages pupils to defend their ideas. The ensuing discussion can provide
an opportunity for pupils to examine their ideas and how well they know
them. In the following activity children are presented with four items and
asked which is the odd one out (Figure 10.1).

Figure 10.1 Find the odd one out.

Most will immediately choose the triangle, because it is the only shape
with three sides. That is one possible reason for it being the odd one out. How
many different reasons can the children come up with?

Its angles add up to 180 degrees (the others all add up to 360).
It has three lines of symmetry.

It has the smallest area.

It has the smallest perimeter.

It has three angles.

All its angles are acute.

Six will fit together to make a hexagon.

But the triangle is not the only possible odd one out — what reasons can the
children find for each of the other shapes? And what about these numbers:?

1S 25 10 23

The next steps in learning are often indicated in the children’s answers — either
a child’s own responses or those of others. The teacher has a crucial role to play
in finding ways to make these next steps explicit. Doing so may involve ques-
tions which simply ask children to say more — and the strategy of silence is
very powerful. Alternatively, it may involve asking pupils to think and, thus,
extend their knowledge into new areas such as:

Is the square the only shape with four lines of symmetry?
How do we know 23 is prime?
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The particularly important feature of this activity is that the challenges
are directed at a wide range of ability and attainment levels providing an
opportunity for pupils to learn from each other. This benefits all children —
those who understand more get an opportunity to explain, while those who
understand less can listen to and quiz these ideas. Asking pupils to generate
different ways of solving a problem is one way of focusing their attention on
the process of mathematics. The following activity asks pupils to find different
ways of solving what is essentially a question about factors:

Chocolates are packed in rectangular boxes and in a single layer.
Design boxes that can hold 24 chocolates.

Through examining and comparing different techniques, the pupils can assess
their own mathematical strengths. Knowing one solution can help pupils gen-
erate and understand another and this can enable them to understand the
connections between different mathematical domains. Feedback might be in
the form of a reflection on the activity:

What are the advantages and disadvantages of the ways you looked
for all the different solutions?

What is similar . .. what is different about the ways of solving the
problem?

Did you find one method easier than another?

Encouraging pupils to unpack and share the ideas they consider easy and hard
can provide pupils with some insight into strategies that they themselves find
difficult. Problems with no solution can be equally productive. The following
challenge has no solution:

Create a quadrilateral with four equal sides and exactly one right
angle.

Initially the children are likely to work by trial and improvement. The
problem looks possible (and teachers do not pose impossible questions).
As they begin to realize it is impossible they can be challenged to convince
others.

Probing the children’s knowledge might involve the teacher playing
devil’s advocate:

I'm sure I've seen tiles like that. You mustn’t have tried enough
examples.

Used sensitively, giving children the opportunity to prove the teacher ‘wrong’



ASSESSMENT FOR LEARNING 141

can be a powerful way of promoting independent learning. Alternatively, the
teacher might ask a pupil to explain her thinking:

You say there’s no solution. How do you know?

Feedback on ways of improving conceptual understanding might come in the
form of teacher questions such as:

Can you show us what happens as you try to construct your
quadrilateral?

Alternatively, feedback may come from the pupils themselves in listening to,
adding to and improving the ideas of others.

Mistakes are often more informative for learning than ‘correct’ answers

Mistakes can often offer more opportunities both to assess how well a pupil
grasps a mathematical concept and to offer feedback on how she could
improve or adapt her ideas. Even successful pupils can have difficulties with
what appear to be relatively simple ideas in new or less straightforward con-
texts. For example, faced with the question ‘Jo got 15 spellings correct. Jo got
three times more spellings correct than Sam. How many spellings did Sam
get correct?’, many children, even high achievers, give an incorrect answer of
435. Crucially here, the context is one that lulls the child into giving an incor-
rect response. The use of ‘three times’ leads the children to assume this is a
multiplication problem. Asking a question (for example, what is confusing
about that problem?) can focus children’s attention on what they need to
do to improve their understanding.

Often the context in which a problem is set can make it more or less
straightforward. In their study of children’s mathematics, Julie Ryan and
Julian Williams (see Chapter 11) examined how 6-year-olds understood
measurement using non-standard measures (see Figure 10.2). Ninety-one per
cent of children correctly measured a toothbrush to be 7 paperclips when
the paperclips were aligned with the ends of the toothbrush, but only 50 per
cent correctly measured the comb to be 5 paperclips long when the ends
were not aligned. Only 18 per cent could compare the length of the two
correctly.

In primary mathematics, teachers often support children by giving more
straightforward problems like the toothbrush problem. By posing the problem
in less straightforward contexts like the subsequent examples, teachers can
learn more about how well children understand mathematics and help them
understand it better. Activities that focus on identifying and correcting com-
mon errors can be helpful in both the assessment and the feedback stages
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m 6-year-olds:
| |

D) gib) gib) gSb) gSb) gEB) @EB)

‘The toothbrush is __ paperclips long’ 91% correct

AR

) i) i) @) gE) @gEB) @),

‘The comb is __ paperclips long’ 50% correct

‘The toothbrush is __ paperclips longer than the comb’
18% correct

Figure 10.2 6-year-olds’ understandings of measurement (from Ryan and Williams
2007: 95).

of formative assessment. For example, in the multiplication in Figure 10.3,
the ‘whole number’ and fractional parts of the number have been multiplied
separately.

This faulty calculation could be presented among a set of similar
calculations — some with errors, others not — and children asked to identify
which are correct or incorrect. Asking pupils to find what has gone wrong in
this algorithm can help some pupils to identify the mistakes they themselves
make. More importantly, by focusing on the process of the multiplication
calculation rather than its result, pupils can identify why such errors are made.
This in turn can help pupils understand what they know well and what they

9 2 7
x 3
276 .21

Figure 10.3 A faulty calculation for 92.7 x 3 (correct answer: 278.1).
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know less well. Feedback could take the form of pupils providing advice to
others on why such errors happen and how to avoid them.

Mistakes and errors are a necessary part of learning. Children’s miscon-
ceptions and errors are invaluable for teaching and learning — provided the
classroom is one in which these mistakes are valued (see Ryan and Williams,
Chapter 11).

Looking for similarities and differences

Identifying similarities and differences can enable pupils to begin to under-
stand for themselves the big ideas in mathematics. For example, to experi-
enced mathematicians and mathematics teachers all subtraction problems are
essentially (mathematically) similar. This structure is much less clear to pupils
encountering them in school mathematics lessons: why should ‘Mike has
£7 and Jeremy has £9. How much more does Jeremy have?” be linked to
‘Teremy has £9 and gave £7 to Mike. How much does Jeremy have left?” One
teacher, for example, gave children a set of 20 word equations, each written on
a card. She asked pupils in pairs to sort the equations into groups of no more
than five. In the discussion that followed, the teacher’s questions included:

What do you think is similar about those two questions What
mathematical sentences could you write for each problem?

You put those two problems in different groups. What do you think is
different about the two equations?

Two crucial factors in this activity’s strength were that the teacher had
structured it so that different groups of pupils grouped the problems in differ-
ent ways thus providing some mathematical disagreement, and each pair
had considered all the problems thus enabling all pupils to engage in the
discussion.

‘Closed’ questions can sometimes be valuable

Closed questions have come in for much criticism in mathematics education,
but some closed questions can be very powerful. The teacher could ask the
following question (using say mini-whiteboards to get a response from all
the class):

Are all squares rectangles?
If all children get the answer correct, the teacher can move on. If no one gets it

correct, then the teacher might re-teach the definitions. But if part of the class
get it right and part get it wrong, then the teacher can organize a discussion:



144 |JEREMY HODGEN AND MIKE ASKEW

You thought the statement was true. Why?
You thought the statement was false. Why?

The use of provocative statements (such as, can a third be bigger than a half®) is
particularly powerful in mathematics and often more powerful than a direct
question. This can provide an opportunity for pupils to challenge the teacher
and for pupils to debate a particularly difficult aspect of fractions.

Finally

Implementing formative assessment is far from easy, but the benefits are sub-
stantial. Many teachers have found collaborating with other teachers helpful
in putting these ideas into practice. Collaboration might involve joint plan-
ning, team-teaching or observing each other’s classes. Another powerful tool
is the children themselves. Some teachers have found time to interview a
small group of children. They have found listening to children talk and grap-
ple with mathematics to be an immensely powerful way of understanding how
children learn.

Further reading

The Black Box series of pamphlets contain useful information and advice on
questioning both in general and specifically in relation to mathematics and
primary teaching: Inside the Black Box (Black and Wiliam), Working Inside the
Black Box (Black, Harrison, Lee, Marshall and Wiliam), Mathematics Inside the
Black Box (Hodgen and Wiliam) and Inside the Primary Black Box (Harrison and
Howard) are all available from nferNelson (http://www.gl-assessment.co.uk).
There is a great deal of published research on the way children understand
mathematics on which teachers can draw. See Cockburn and Littler (2008) and
Ryan and Williams (2007) for some of the difficulties primary pupils
encounter. A good source of problems for the type of activities that we describe
is Carpenter et al. (1999).

Notes

1  APP mathematics standards file: Babigail (Year 1 below level 1). Available from
http://nationalstrategies.standards.dcsf.gov.uk/ (accessed March 2010).

2 The odd one out could be any of the numbers: for example, 25 as the only
square number, 23 as the only prime, 15 as the only multiple of 3, 10 as the
smallest. Children will generate even more reasons.
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3 15 can sometimes be ‘bigger’ than %:: for example 3 of £6 is larger than
Yo of £3.
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11 Children’s mathematical
understanding as a work in
progress: learning from errors
and misconceptions’

Julie Ryan and Julian Williams

Introduction

Underlying our chapter is a positive and respectful view of children as learners
in classrooms. Knowing about their errors and misconceptions gives teach-
ers an opportunity to consider how children’s mathematical thinking may
be developing - such knowledge provides us with the starting points for
productive teaching. That is, learning often starts with mistakes and those
mistakes may provide us with a window to look into and see the child’s think-
ing. We believe that children construct their own understanding of mathemat-
ics and that they may need considerable time in classrooms to express (think,
speak) and reorganize that understanding (see Barmby, Harries and Higgins,
Chapter 3). In this view, a teacher can productively plan for mistakes, provide
opportunities for the testing and articulation of ideas, and support learners’
growing mathematical identity.

Classrooms can be places where children see themselves as mathemat-
ical beings rather than simply receivers of pre-digested knowledge. The most
wonderful moments for us as teachers have been when a learner exclaims,
‘Ah, I get it now!” and when they then go on to explain their mathematics
with clarity and confidence. Before these moments of clarity, the learner
has necessarily made false starts or faulty connections. We, as teachers, may
simplistically term these ‘mistakes’ or ‘errors’, but there is thinking behind
these errors and much for teachers to interpret and understand as we sup-
port the learner in making the next steps. Dialogues provoked by ‘mistakes
and misconceptions’ involve mutual learning by the teacher as well as the
learner.



CHILDREN’S MATHEMATICAL UNDERSTANDING AS A WORK IN PROGRESS 147

Errors and misconceptions as starting points for learning

When we as teachers first recognize a child’s ‘mistake’, we may be tempted
in the highly paced classroom flow to simply label the response as incorrect
and resort to a teaching strategy to ‘fix it’ and quickly. But there can be more
thoughtful and engaging reactions: we could identify the response, for exam-
ple, as partially correct, partially misconceived, stumbling or tentative. Such
labels might suggest that a particular pedagogical view is at work here: that
here is a teacher who is trying to make sense of the response in order to create
a learning experience that works with the child’s ideas and helps to build
on them.

So you can see that our professional vocabulary may be useful because it
can guide our teaching response to learning. We must use some vocabulary to
communicate, and words take on all sorts of meanings of course, so we state
here that in our use of the terms ‘errors and misconceptions’ we are promoting
a positive view of errors and misconceptions as productive starting points for
learning. The word ‘error’ describes an incorrect response that you hear or see,
while the word ‘misconception’ describes incomplete conceptions, or partial
reasoning, usually hidden behind the error, and which may ‘explain’ the error:
this may not be immediately accessible to the teacher. Questions such as “‘Why
has the child made this response?’ and ‘What is their reason for it?” help us
to consider the current understanding of the learner. We believe that when
children are learning mathematics they are trying to make sense of difficult
ideas. They are usually trying to enter a world of thinking that is often quite
puzzling and alien to their everyday experience. We, as teachers, can sup-
port them as they express their own ideas, their own explanations and,
importantly, their own identity as independent learners, if we have a teaching
strategy that explicitly values errors and seeks articulation of (mis)concep-
tions. This approach is usually called diagnostic teaching, because it involves a
process of ‘diagnosis’, that is, the revealing of the underlying causes or explan-
ations for errors (in this view errors are only symptoms, and we do not just
‘treat’ symptoms).

Learners’ responses are not usually thoughtless or random - we are all
thinking beings trying to make sense of the world. But there are several forces
at play when we respond erroneously and the public classroom itself intro-
duces a special dynamic to learning. We may be panicked to respond when we
are not ready or confident; we may have been distracted, troubled or be day-
dreaming; we may have misheard or misread; we may have made a slip; or we
may have dismissed ourselves already with negative beliefs, thinking ‘I'm one
of those people who can’t do maths’.

Teachers can be sensitive to all these possibilities, both social and cognitive.
We remember one story where a child wrote that the mathematical drawings
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presented to her were ‘angels’. The sensitive teacher thought the child had
made a spelling mistake and did know that the drawings represented ‘angles’.
On checking with the child, however, she found that she actually thought the
drawings were flying angels. So teachers’ first thoughtful responses can be
erroneous, partial and misconceived too! We can all jump to the wrong
conclusions.

Perhaps the challenge of discovering what a child is really thinking is what
makes our profession so special — it is ongoing ‘detective’ work. Investigation
starts with building up your teacher knowledge base by reading, researching
and developing on-the-job experience about children’s likely responses. A
useful plan is to anticipate children’s responses to mathematical tasks; create
opportunities for the children to articulate their reasoning; keep an open mind
about their understanding; and be prepared to change your mind based on
the evidence.

We are promoting a pedagogy where teachers anticipate and identify
likely errors and work with them; lesson design where children have oppor-
tunities to consider their own conceptions and work towards strengthening,
refining or reorganizing their understanding, themselves. We call this approach
diagnostic teaching.

Naming errors and misconceptions

Research over many decades has identified and named many common errors
that learners make as we/they build mathematical understanding. The error
diagnosed as ‘decimal point ignored’ is one of the most well-known errors in
the research literature (for example, APU 1982; Ryan and Williams 2007) but
the error has not been ‘eradicated’ since it was identified and named so long
ago. Why? We think it is still a common error because there is reasonable (but
partial) thinking behind it, that explains and so ‘causes’ it. Children of all ages
make this error. Consider the question: ‘Is 0.15 greater than 0.2?" Many chil-
dren think ‘Yes’. This is a reasonable suggestion if your experience to date is
that the number 15 is greater than the number 2 and you ignore the decimal
point. Understanding the new ‘decimal numbers’ here requires recognition
that 15 and 2 are not whole numbers of a common unit when placed after a
decimal point - their units are different, namely 15 is a number of hundredths
and 2 is a number of tenths, that is, their ‘place value’ has changed.

How will teachers find out what the children are thinking about this ques-
tion? How can teachers support children in reasoning their way through here
so that they can justify the surprising new fact that ‘0.15 is less than 0.2’? How
can teachers find carefully crafted tasks that provide enough (but not too
much) cognitive conflict (that is, discomfort that something is not reasonable
or consistent) so that children establish correct reasoning for the new number
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domain? (see Ryan and Williams 2007 for more on peer group discussion
[pp. 31-9] and task design [pp. 44-5]) (see also Monaghan, Chapter 4, for more
on group discussion).

A less common error in ordering decimals, and more likely as children
get older, is the error called ‘longest is smallest’. The reasoning here is that
the more decimal places you have, the smaller the place value of the decimal
fraction. So with this reasoning, 0.625 would be regarded as smaller than
0.25 because 625 (with three digits) is longer than 25 (with two digits),
that is, simply because ‘thousandths’ are smaller than ‘hundredths’. Could
there be other reasoning? The ‘teacher-detective’ may uncover alternative
reasoning drawn from generalization for unit fractions where ‘the bigger
the fraction denominator the smaller the fraction’ which is correct but not
complete (for example, Y625 is smaller than Yss). But decimal fraction form is
different and 0.625 is greater than 0.25. How could children explore the
reasoning here? Is there other reasoning behind this response that might also
be misconceived? What will persuade children to change their mind? How will
they articulate this?

Notice that the two errors and misconceptions — decimal point ignored
and longest is smallest — sometimes give the correct answer, but not always.
The decimal point ignored strategy gives the correct answer for 0.25 < 0.42, but
not the correct answer for 0.25 < 0.4 because the strategy gives the incorrect
statement 0.25 > 0.4. The longest is smallest strategy gives the correct answer
for 0.625 < 0.8 but not for 0.625 > 0.5 because this strategy gives the incorrect
statement 0.625 < 0.5. A generalization should be treated first as a conjecture,
asking ‘Does this statement work sometimes, always or never? Children are
then engaged in exploration, discussion and reasoning. Some children hold
multiple rules for comparing fractions and switch rules according to the con-
text. This is not an unfruitful strategy if the restrictions for the rules are known
(knowing that this rule works ‘sometimes’ but ‘not always’), but it can create
an overload on working memory and prevent connections being made be-
tween rules. As learners we are striving for efficiency, and a universal rule (that
works ‘always’) gives us some power and satisfaction.

A well-known counting error for young children involves ‘counting the
numerals’ or, on a number line, ‘counting the tick marks rather than the
jumps’. For example, children asked to ‘take 3 away from 9’ might answer 7 by
counting down three numerals: ‘9, 8, 7/, giving 9 — 3 = 7. If teachers notice that
children’s counting answers are mostly one out, they may find that children
are using this strategy. Or if answers are sometimes out by one or two,
teachers may find that the children have an error somewhere in their counting
sequence (for example, ‘nine, eight, six, seven’).

Some children have a conception we have called a ‘unit fraction proto-
type’, meaning they expect fractions to be ‘unit fractions’, that is to have a unit
(one) in the numerator. For example, if they are shown six apples and three of
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them are put on a plate, and then they are asked ‘What fraction of the apples is
on the plate?’ they may select % as the relevant fraction. Or if they are asked to
‘Shade one-third’ of a circle that is divided into six equal sectors, they may
then shade one sector only. These are not unreasonable (mis)conceptions —
they are early steps on the way to full understanding of fraction symbols.

Anticipation of errors and misconceptions: how are
children likely to respond?

The ‘wisdom of practice’ that teachers build on the job and over time may
include a growing store of knowledge of the errors that children commonly
make in different areas of the mathematics curriculum, like those above.
Researchers have systematically gathered and verified many of these errors and
have sometimes uncovered errors and misconceptions that were not widely
known by practising teachers (for example, see Williams and Ryan 2000).

Thus researchers’ knowledge can complement and add to the knowledge
base of the busy teacher quite significantly. Knowing what to look for -
anticipating responses — can focus the professional view of the teacher and
support their lesson planning. Classrooms are busy places and our experi-
ence suggests that teachers may not recognize all the common errors or the
significance of the misconceptions behind them without first reading about
them, naming them and considering different teaching strategies to work
with them.

Japanese teachers have used a ‘lesson study’ approach to their lesson
planning and evaluation for decades and their methodology makes use of
anticipation of known errors and misconceptions for productive classroom
learning. The lesson study approach involves a small team of teachers working
together to plan and research their lessons, continually analysing each other’s
lessons and refining their plans and, through this research cycle, building their
knowledge base of children’s responses and productive learning. This is a
collaborative approach supporting ongoing professional development and
has been particular to the Japanese teaching culture. However it was taken
up enthusiastically in the USA and Australia in the 1990s and later in
England.

Teachers in the USA have reported that their subject-matter knowledge
has been strengthened through lesson study as they became aware of missing
knowledge that was needed to inform their pedagogical practice.

Lesson study alone does not ensure access to content knowledge.
But teachers are likely to build their content knowledge as they
study good lessons, anticipate student thinking, discuss student work
with colleagues, and call on outside specialists. Lesson study can help
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educators notice gaps in their own understanding and provide a
meaningful, motivating context to remedy them.
(Lewis 2002: 31)

As you can see, anticipation of children’s thinking is a key focus of lesson
study. But how do teachers build knowledge that helps them anticipate?

The research work discussed in this chapter was drawn from large-scale
testing of children in England from 4 years to 15 years of age across the
mathematics curriculum, as well as from smaller-scale research investigating
children’s underlying reasoning, and from research in real classrooms where
teachers developed children’s discussion of their errors and misconceptions
(see Ryan and Williams 2007). The book’s appendix 1 describes all the test
questions, what percentage of children answered correctly, the common errors
and the percentages showing how frequent each error was, as well as the
inferred misconceptions, for each age group (Ryan and Williams 2007: 174-
221). Appendix 2 has six prompt sheets for classroom discussion (Ryan and
Williams 2007: 222-7). We will discuss several examples here, mostly with
regard to number, but there are many other interesting errors to explore across
the mathematics curriculum in measurement, shape and space, handling data
and algebra.

We note though that the particular nature of a task or a test question can
restrict how a child responds: test questions or tasks are not neutral, and con-
text in particular can be misleading (Cooper and Dunne 2000). But we think
that a well-crafted question can help uncover unstable knowledge and provide
a starting point for a child to sort out their thinking and form more robust
understanding of mathematical ideas.

Identification: classifying errors and misconceptions

When we studied children’s erroneous responses to test questions, we tried to
classify different types of response in terms of the thinking that (perhaps) lay
behind them. There were, naturally, careless slips of memory or attention;
jumping to conclusions; only dealing with one of the two conditions or steps
in a task; and there were some errors that we could not diagnose. Many of
these may be due to the assessment conditions - lack of motivation or high
test anxiety. But there were several categories which we thought were signifi-
cant in terms of cognitive development: they suggested there were underlying
(mis)conceptions or conceptual limitations behind the errors. We explained
these types of errors as due to modelling, prototyping, overgeneralizing or
process-object linking. We concluded ‘that the latter four types of errors are
the result of intelligent constructions that should be valued by learners and
teachers alike’ (Ryan and Williams 2007: 13).
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Modelling

We use the word modelling to refer to the way mathematics is connected with
a ‘real’ everyday world - the everyday world being then represented by the
mathematics. ‘One can say perhaps when a child has a “modelling error” that
the child has their own “model” of the situation, in conflict with the “math-
ematical model” expected in the academic context of school’ (Ryan and
Williams 2007: 16).

The representations and contexts we use in classtooms to model the
mathematics — such as fractions of cakes, number lines, hundred squares, the
context of money for decimals - ideally bring meaning by providing connec-
tions with what is already known intuitively by the learner and the mathemat-
ics under consideration. But such representations have their limitations: one
model or context will not represent all of the mathematics and the learner will
need to experience several models and be able to move flexibly between them
to successfully build the mathematics (see Delaney, Chapter 5, and Barmby,
Harries and Higgins, Chapter 3).

Prototyping

We use the phrase ‘prototype of a concept’ to mean a culturally typical
example of the concept. For example, we will perhaps all share an image of a
‘triangle’ as an equilateral triangle oriented on its ‘base’; think of a hexagon as
always regular; read scales as marked in units; make a half-turn for ‘turn’; or
think of fractions as unit fractions. As a consequence, an error may result, for
example, in not recognizing some triangular shapes because they are in
untypical orientations; or a scale may be incorrectly read ‘1, 2, 3, .. ." because
the unitary prototype is intuitively so powerful for the child.

Prototyping is an intelligent — even essential — element of concept learning
and draws on early first experiences of concepts. Questions that challenge
prototyping include:

e What makes this or that a triangle (or a hexagon)?

e  Where is the whole unit on this scale?

¢ How much should I turn?

e  What do the numerators and denominators in a fraction represent?

From the prototype we refine and broaden our conceptual understanding.

Overgeneralizing

Overgeneralizing is also an intelligent response to earlier experience and is
closely related to prototyping — it involves an active attempt to build on
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previous learning. One of the most common overgeneralizations is that
‘multiplication makes bigger’ or ‘division makes smaller’. These statements
were correct for previous classroom situations and experiences but outside the
domain of whole numbers they are no longer always true.

Almost all the overgeneralizations we have found in our research sprang
from generalizing rules that worked for the whole numbers into domains like
fractions, decimals and negative numbers. Consider these paired statements:
4 x 2 >4 but 4 x ¥2 < 4 (the effect of multiplication by a whole number or a
fraction); 42 > 5 but 0.42 < 0.5 and 2 > 1 but -2 < -1 (ordering numbers).
Clearly, generalizations of rules for whole numbers do not always hold in the
new number domains of fractions and negative numbers. Mathematics is
largely about generalizing, so an important focus in classrooms is testing a
generalization and drawing attention to the domain in which it ‘works’.
Again, this involves refinement and development of mathematical under-
standing, in which the formulation and testing of false conjectures is an
essential element.

We also found quite sophisticated overgeneralizations for decimals. Some
children (and trainee teachers) read a decimal number as a pair of whole num-
bers separated by a point. This leads to a ‘separation strategy’. This strategy
works well for additions like 2.4 + 5.1 where you add the two numbers to
the left of the decimal point and then the numbers to the right giving 7.5.
However, it no longer works in the case 2.4 + 5.8 = 7.12. Similarly, 2.3 + 1.47
does not equal 3.50.

Another overgeneralization occurs with the overuse of the ‘additive strat-
egy’ when a multiplicative strategy is required. For example, children using an
additive strategy for completing a fraction question like ‘3/12 = 6/?’, may write
15 as the missing denominator. They see that 3 has been added to the numer-
ator (3 + 3 = 6) so they add 3 to the denominator (12 + 3 = 15) rather than
multiply by 2 (3 x 2 = 6, and 12 x 2 = 24) to establish equivalence. This
strategy is very resistant to change and is found across many mathematical
contexts up to the age of 16 years for many children.

A key question we suggest for challenging generalizations in classrooms is:
‘When does a particular generalization not apply?’ For example, when does
multiplication not make numbers bigger? Such questions foreground attention
to overgeneralization and thus foster metacognition.

Process-object linking

Concept formation often requires that processes be made into new mathemat-
ical objects. If we ask young children ‘How many toys are here?’ the question
may signal a response of counting, for example ‘1, 2, 3, 4, 5, 6’. What we are
interested in is the 6-ness of the set of toys, that is, the cardinality of the set. We
are hoping the child will make the link between the counting from 1 to 6 and
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the cardinality of the set of toys (6) by realizing that the last number name
spoken answers the question we posed. Thus there is a need for a link between
the process of counting and its object, the last number in the sequence (see
Dunn, Matthews and Dowrick, Chapter 17).

Questions that teachers ask children may prompt process or object con-
ceptions, and eventually require flexible switching between both conceptions.
For example, in a sum such as 8 + 3 =?, the equal sign prompts the process of
addition and the child perhaps says ‘8 plus 3 makes 11’. But a task like 8 + ?=13
requires a more sophisticated understanding of the equals sign and a concep-
tion of a number sentence recognizing there are relationships between the
numbers. The processing or action needs to be ‘extracted’ from the number
sentence object. Similarly, more difficult number sentences, like 9 +3 =6 +?,
require a conception of equality that appreciates that the outcomes on both
sides of the equals sign must be the same.

Here are three 10-year-old children discussing a number sentence task ‘? x
6 =9 x 4’ called ‘missing numbers’ in conversation with the teacher. They had
earlier written their different answers to the task. Sonia had been correct and
she moves flexibly between object and process in justifying her answer. Gareth
had used a process conception and had answered ‘36, but with support from
the teacher, and because he had listened to Sonia, he was moving towards an
object conception of the number sentence. Robin has also reconsidered his
earlier response and additionally shows mental flexibility with the arithmetic
structure of multiplication facts.

Sonia: 1 did 9 times 4 to get my answer of 36 and then saw there was 6
there so I thought to myself what times 6 equals 36 and then I
thought of my 6 times table in my head and got 6.

Gareth:  Well, to be honest I didn’t know 9 times 4 quickly, so I just
changed it round and took 4 off 40, because 10 times 4 is 40, and
it came out as 36. Then I thought 5 times 6 is 30 so I just added
on a 6 to get 36.

Teacher: So 36 is the answer to what?

Gareth: 9 times 4.

Teacher: 9 times 4, right.

Gareth:  And then I thought 36, and half of 10 times 6 is 30, so 5 times 6,
then I added another 6. 6 times 6.

Teacher: Robin, how did you do this one?

Robin:  I'knew that 8 times 4 was 32. I added another 4 because it’s the 4
times table. If you were changing it around as well, it would be
the 9 times 4 — er, the 9 times table. 9 times 4 is 36. And then
that would be something times 6 would be 36. And I ‘looked’
through my tables and then 6 times 6 equals 36.

Teacher: Soyou've got a different way of getting that 36 from Gareth — he
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went up to the 40 and you started at the 32, you said you knew
the 8 times 4 one. How did you know that one?
Robin:  Erm - just know it.

Process-object linking and understanding of mathematical structure is often
a significant step. We think that if this step is not made confidently many
children resort to formal manipulations or ‘rules without reason’. The con-
sequence may be withdrawal from mathematics that does not make sense to
them and a loss of identity as a competent learner.

The patterns and structure of early arithmetic lay a strong foundation for
algebra in the secondary school. For example, the counting numbers 1, 2, 3,
4...go‘odd, even, odd, even . ..". What can we say about the number after an
odd number? Is it always the case? Are there images which can convince us
that ‘even + odd must be odd’? What about ‘odd x odd’? Can such investiga-
tions of structure develop a ‘feel’ or confidence for number? For example,
confidence in stating that 7 x 5 could not possibly be 32 because the answer
should be an odd number, or being sure that the answer could not be 32
because multiples of 5 end in O or 5, or knowing that since 6 x 5 = 30 the
answer should be 5 more. This is pre-algebraic number pattern awareness and
everyday language is a powerful tool for describing it.

The four categories we have identified above have several features: they
diagnose a learner’s current understanding (tentative diagnosis); they demon-
strate the learner’s natural intelligent engagement with mathematical pro-
cesses and concepts; and they signal a learning opportunity or potential for
further development. Since the existing understanding is based on thoughtful
construction and motivation, it is sensible to design teaching and learning
opportunities that further engage children’s reasoning. We will now discuss
what we call a dialogic pedagogy.

Children reorganizing their thinking through
argument-in-discussion

The test questions we used in our research were crafted as diagnostic questions,
in the sense that they were written to uncover children’s thinking in order to
determine the next steps in their learning. We make a first guess (inference)
about why a child responded in a particular way; but we then have an
opportunity to check that inference by either asking the child to justify their
response or, we think more productively, by setting up peer discussion and
listening to children’s reasoning. In such peer discussions children are asked to
justify their response in order to persuade another child of their view or to
consider changing their own mind. At the heart of our method is the child
reorganizing or strengthening their understanding through articulation or
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through what we call argument-in-discussion. It is intended that persuasion
through reasoning is required (Ryan and Williams 2007: 31-52).

Productive dialogue starts with a shared problem and different points of
view — we call this a problematic. Our diagnostic questions can be a source of
problematics if they provoke different responses from children. A discussion
proceeds when all children have an opportunity to communicate, listen and
consider different points of view. Children also need to have some criteria to
decide what makes a good mathematical argument and some social rules to
foster collaboration and respect. Finally, a reflection step should summarize
or bring the discussion to some conclusion or temporary closure. We think
it is useful to make these four steps explicit as the conventions for class-
room discussion. Children of all ages are capable of reasoned discussion with
appropriate support, but this does require teachers’ attention (see Monaghan,
Chapter 4).

Teachers we have worked with have organized groups for discussion in a
range of different ways (see Ryan and Williams 2007: 45-7). One teacher set up
peer discussion by forming groups of children who had given different answers
to diagnostic test questions (that is, ‘conflict groups’). She gave the children
clear rules about social and mathematical interaction so that thinking and
listening were maintained. Another teacher formed groups of children who
had given the same response to the diagnostic questions. This gave the chil-
dren an opportunity to articulate their positions first. She then regrouped the
children into mixed-response ‘conflict’ groups so they could consider and
argue with different views. Both teachers moved from small-group discussion
to plenary whole-class discussion which reflected on the reasoning that helped
children to change their minds (or not).

Summary

A dialogic pedagogy shifts attention from mathematical content to argumen-
tation and consideration of changing one’s mind. We do not say that this
method should be used all the time or that it is the only way to address errors
and misconceptions, but we suggest that there is much for teachers to learn
from giving voice to children’s errors and misconceptions and from providing
more time for them to reason in order to establish secure understanding.

The teacher has a role to play in not just setting up classroom discussion
but also has an active role in deciding what interventions and directions sus-
tain discussion and move it forward: for example, what questions to ask and
when to ask them; which models to suggest and at what particular stage; when
to be silent; and when to reinforce. These are considerable professional
decisions. A child’s belief in their ability to reason mathematically will grow
from thoughtfully designed opportunities provided in classrooms.
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Note

1  This chapter introduces key ideas from chapters 2 and 3 of Ryan and Williams
(2007), where they are developed in much greater detail and with full refer-
ence to the academic and research literatures on which they are based.
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SECTION 4
Calculation issues

In an attempt to provide a broader definition of the word ‘numeracy’ than that
found in some dictionaries in 1999 — definitions such as ‘Numeracy is the
ability to do arithmetic’ — the National Numeracy Strategy (NNS) settled on the
following definition of the word:

Numeracy is a proficiency, which involves confidence and compe-
tence with numbers and measures. It requires an understanding of the
number system, a repertoire of computational skills and an inclin-
ation and ability to solve number problems in a variety of contexts.
Numeracy also demands practical understanding of the ways in which
information is gathered by counting and measuring, and is presented
in graphs, diagrams, charts and tables.

Despite this broader definition, the key focus of the framework and the major
thrust of the NNS teacher training materials were on the teaching of calcula-
tion: albeit with an emphasis on mental methods and informal written pro-
cedures as well as the standard written algorithms for the basic operations.
This section considers the teaching of mental and written calculation.

In Chapter 12 Ian Thompson provides a brief historical account of the
development of the teaching of mental calculation in school. After consider-
ing the reasons given in the literature for the teaching of mental methods
he explores the range of interpretations of the phrase ‘mental arithmetic’.
A synopsis of the research evidence concerning children’s mental strategies
for addition and subtraction with numbers to 20 is followed by a more detailed
consideration of strategies for dealing with the same operations with two-digit
numbers. A model of mental calculation is offered, and is used as a vehicle for
making suggestions as to how teachers might develop their pupils’ mental
strategies.

In Chapter 13 Meindert Beishuizen begins with a brief history of the
development of the ‘empty number line’ (ENL) in mathematics education in
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the Netherlands, and provides a rationale for its role in the development of
children’s mental calculation strategies. Meindert outlines the knowledge,
skills and understanding that need to be developed by young children learning
to use the empty number line, suggesting practical activities to help teachers
develop these specific skills and concepts in their pupils. Examples are given of
the work of Year 3 children involved in an experimental programme at Leiden
University to illustrate the point that the empty number line is a great help in
making pupils’ solutions clearer for the teacher. Not only does the use of the
ENL facilitate whole-class discussion but also the individual diagnosis of mis-
understandings and errors.

In 2006, the Primary National Strategy produced guidance papers for
different aspects of mathematics teaching: using and applying mathematics;
the use of calculators in the teaching and learning of mathematics; day-to-day
assessment; and calculation. In Chapters 14, 15 and 16 Ian Thompson guides
us through the paper on calculation, scrutinizing and clarifying the detail
of the recommended progression in addition and subtraction (Chapter 14),
multiplication (Chapter 15) and division (Chapter 16). During this ‘guided
tour’ through the guidance paper Ian raises many questions.



12 Getting your head around
mental calculation

lan Thompson

Introduction

By the end of the nineteenth century the psychological theory of mental
discipline had substantially influenced the content, scope and sequence of
the developing mathematics curriculum in the USA and to a lesser extent
in Britain. Advocates of the movement considered mental arithmetic to be
an integral part of mathematics teaching, seeing it as an important form
of exercise to develop the faculties of the mind. In the 1920s there was a
backlash against the movement and the concept of ‘mental discipline’ was
rejected in favour of the more sophisticated theory of ‘transfer’. This led to
a decline in the teaching of mental arithmetic. In the 1940s, however, when
the social usefulness of mathematics was beginning to be recognized, there
was a revival in the emphasis given to teaching the topic in schools. Mental
arithmetic came to have its own separate heading on school reports, and
mathematics textbooks written in England as late as the 1960s had exercises
which perpetuated the ‘mental, mechanical, problems’ structure of earlier
books.

The so-called ‘decline’ of mental arithmetic since the 1950s is often blamed
on a variety of ‘progressive’ innovations, such as the move in the 1970s to
individualized learning which, it is claimed, reduced the opportunity for
teachers to communicate with the class as a whole group. Some argued that
the teaching of modern mathematics, with its broader syllabus and focus
on structure and understanding, placed much less emphasis on arithmetic in
general and instant recall in particular.

A section devoted to mental arithmetic in the Cockcroft Report (Mathema-
tics Counts) (DES 1982: 75) asserted that the topic, which was once a regular
part of the mathematics curriculum, had come to occupy a far less prominent
position by the late 1970s. The report argued for the reinstatement of mental
arithmetic in the curriculum, explaining that the committee ‘believe(s) that
the decline of mental and oral work within mathematics classrooms represents
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a failure to recognise the central place which working “done in the head”
occupies throughout mathematics’.

With the arrival of the National Curriculum in the late 1980s mental
arithmetic - in theory at least — was back on the agenda: the ability to add or
subtract mentally any pair of two-digit numbers was fixed at Level 4 in the very
first version of the National Curriculum (see Brown, Chapter 1). However, in
practice, because of the subject knowledge demands of the curriculum, mental
arithmetic did not receive the emphasis that it deserved. Interestingly, in 1988
Level 4 was deemed to be the standard appropriate for an ‘average’ 11-year-old
pupil. Unfortunately, over the next 20 years this level came to be known as the
‘expected standard’, leading to the extraordinary situation of a government
minister, Lord Andrew Adonis (Curtis 2008: 4), bemoaning the fact that in
2008 only 78 per cent of primary school children had achieved this standard,
that is, this average standard.

England’s poor performance on the number sections of international tests
and surveys in the 1980s was a major contributing factor to the swing back to
mental arithmetic in the 1990s. The Bierhoff Report, a publication from the
right-wing National Institute of Economic and Social Research, was published
in the mid-1990s (Bierhoff 1996). This was ostensibly a comparison of primary
school textbooks in Britain, Germany and Switzerland, and it emphasized,
among other things, the importance that European countries attached to
mental calculation and to the addition and subtraction of two-digit numbers
in particular.

In 1996 the National Numeracy Project was launched. The project’s
approach to the teaching of numeracy was originally based on three key prin-
ciples (later to become four): mathematics lessons every day; direct teaching
and interactive oral work with the whole class and with groups; and an
emphasis on mental calculation. The arrival of the Numeracy Project and
its development into the National Numeracy Strategy succeeded in making
‘mental arithmetic’ the most important mathematics item on many school
agendas.

In 2006 the National Numeracy Strategy became the Primary National
Strategy and produced a revised Primary Framework for Literacy and Mathemat-
ics. The general introduction to the mathematics section of this framework
(DSES 2006: 67) refers the reader to ‘a detailed paper on mental and written
calculation’ available in the electronic version. However, the word ‘detailed’
is somewhat misleading: 14 pages outline a very detailed progression for
teaching written methods, whereas just over half a page is devoted to mental
calculation! It is therefore not surprising that in Mathematics: Understanding the
Score (Ofsted 2008: 21), Ofsted inspectors noted ‘pupils’ reliance on formal
written methods and a reluctance to use informal or mental strategies which
are sometimes more efficient’. Also, the final recommendation of the Independ-
ent Review of Mathematics Teaching in Early Years Settings and Primary Schools
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(the Williams Review) (DCSF 2008: 66) is, ‘This review recommends a renewed
focus by practitioners on oral and mental mathematics’.

Why teach mental arithmetic?

The literature on mental calculation suggests the following reasons for an
emphasis on the teaching of the topic:

1 Most calculations in real life are done in the head rather than on
paper.

2 Mental calculation promotes creative and independent thinking.

It contributes to the development of better problem-solving skills.

4 Itdevelops sound number sense. Maclellan (2001: 148), summarizing
a discussion of the importance of mental calculation states ‘The argu-
ment so far is that mental calculation is important because it promotes
number sense’. Below, I suggest that, however true this statement may
be, the opposite definitely is true: children’s knowledge of number
properties such as commutativity, associativity, distributivity and
what I call ‘partitionability’ (that is, the property that allows numbers
to be partitioned) is essential for the development of flexible mental
calculation strategies.

S Itis a basis for developing estimation skills. Reys (1984: 549) argues
that many of the skills required for successful estimation are developed
when children improve their mental calculation skills.

6 Mental work is important because there is a natural progression
through informal written methods to standard methods. The revised
Primary Framework for Literacy and Mathematics (DfES 2006: 67) argues
that ‘These (mental) methods become more efficient and succinct and
lead to written methods that can be used more generally’. However, I
have argued elsewhere that there is little or no natural progres-
sion from mental to written calculation methods (see Thompson,
Chapters 14, 15 and 16).

w

The language of mental methods

During the late 1990s the media and government ministers talked in terms
of ‘mental arithmetic’ because of its air of respectability and tradition. How-
ever, because this phrase conjured up negative emotions in many adults’
minds, reminding them of stressful times when they were unable to recall a
number bond or tables fact quickly enough to avoid the wrath of their
mathematics teacher, it was decided that the National Numeracy Strategy
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(NNS) would use a different, more positive-sounding phrase. Consequently,
‘mental calculation’, with its suggestion of calculating or working something
out in your head, came to be seen as a more accurate description of 1990s
mental arithmetic. Given that you cannot really calculate unless you have
something to calculate with, the phrase ‘mental calculation’ was seen to
encapsulate the two important aspects of mental work, namely, recall and
strategic methods.

When we compare the language used in England with that used in the
Netherlands we find that, because there is no word equivalent to ‘mental’ in
Dutch, they use the phrases ‘working in the head’ and ‘working with the head’
to distinguish what they see as the two different aspects of mental calculation.
The former covers knowing by heart, or being able to work out very quickly,
specific number bonds or tables facts. The latter is concerned more with the
use of some of these known facts to work out unknown facts such as the sums
of pairs of two-digit numbers. In England we came to use the phrases ‘knowing
facts’ and ‘figuring out’ to describe these two different aspects of mental
calculation.

Both countries had come to a similar view on the importance of know-
ing some facts and using these to work out others, but what made it all the
more interesting was that they had reached this consensus from opposite
ends of the spectrum: England from the facts end, the Netherlands from the
strategies end. In England, even in the 1990s, mental arithmetic was
interpreted by many in a limited way as being solely concerned with the
instant recall of number bonds and tables facts. In 1991 the year of the first
Key Stage 1 National Curriculum tests (formerly SATs) teachers were told to
‘assess each child’s ability to add and subtract by using recall of number
facts, not by counting or computation’, an instruction which flew in the
face of research conducted over the previous 20 years. It was only in the
1995 Dearing version of the National Curriculum that the concept of ‘de-
riving facts’ was formally acknowledged as being an important component
of mental calculation. On the other hand, Beishuizen (1997) explains that
1980s books in the Netherlands ‘emphasised very much a variety of models
and mental strategies at the expense of daily practice in mental recall of
number bonds’.

What does research tell us about mental strategies?

Research since the late 1970s has provided a substantial amount of information
about the mental calculation strategies used by young children, particularly
for the addition and subtraction of one- and two-digit numbers. A brief
description of some of these findings follows.
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Addition and subtraction with numbers to 20

Carpenter and Moser (1984) identified the following levels of addition strat-
egies used by young children when solving simple word problems:

e count all — where a child solving a simple addition problem such
as 2 + 3 first counts out two blocks followed by another three
blocks, and then finds the total by counting the number of blocks
altogether;

e count on from the first number — where a child, finding 2 + 3, begins the
count by repeating the first number and then continues counting
from that number. For example, a child might say: “Two ... three,
four, five. There are five’, keeping a tally of how many number names
have been spoken;

e count on from the larger number — where a child proceeds as in the
previous example, but begins the count from ‘three’, reasoning that
starting from the larger number will mean that less counting is
involved;

e use known addition fact — where children give immediate responses to
those number bonds that they know by heart — usually the simpler
number bonds such as the smaller doubles like 2 + 2 and 3 + 3;

e uysederived fact — where children use a number bond that they know by
heart to calculate one that they do not know. In the initial stages there
is a tendency to use the doubles, so that 6 + 5 might be found by
saying: ‘Five and five is ten and one more makes eleven’, or ‘Six and
six is twelve, but it’s one less, so it must be eleven’.

Thompson (2008: 103-5) has described levels for subtraction, but the develop-
mental sequence is less clearly defined. The subtraction 9 — 3 is used below
to exemplify the strategies:

e count out—where the child counts out nine objects, removes three and
counts the remainder, or raises nine fingers, lowers three, and counts
those remaining;

e count back from — where the child says ‘Nine’ and then counts back
three numbers from nine: ‘Eight, seven, six . . . It's six’;

e count back to — where the child says ‘Nine’ and then counts back to
three, ‘Eight, seven, six, five, four, three’, keeping a tally (probably on
her fingers) of how many number names have been said. This tally
(six fingers) is the answer;

e count up — where the child says ‘Three’ and counts forward to nine,
keeping a finger tally: ‘Four, five, six, seven, eight, nine’. This tally (six
fingers) is the answer. (My own research suggests that this is not
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a ‘matural’ strategy for children in England because of subtraction
normally being interpreted as ‘take away’);
e use known subtraction fact and use derived fact are as for addition.

Addition and subtraction with numbers from 20 to 100

There appear to be four main two-digit mental addition and subtraction
strategies used by children. In England the most common addition strategy is
the split method, so-called because the numbers to be added or subtracted are
split into multiples of ten and ones. This strategy is sometimes called the
partitioning method, and in the Netherlands is known as the 1010 (ten-ten)
procedure (Figure 12.1).

Scott 27 + 28

Two 20s is 40 . . . seven and eight . . . if there’s seven . . . take three off eight which would
be 10 .. . and three took off eight would be five . . . so the answer would be 55

Figure 12.1 Scott uses the split method for two-digit addition.

Scott has split the 27 into 20 and 7; has split the 28 into 20 and 8; has
added the two 20s together; has added the 7 and the 8 together by bridging
through ten; and has added the two subtotals together (40 and 15) to get the
correct answer 55. Less common among children in this country - although
it is the preferred method taught to children in the Netherlands - is the jump
method (see Beishuizen, Chapter 13). The strategy is given the name jump
because it can be easily represented practically or mentally on a number
line, where you start at one number and move closer to the answer by jumping
along the line adding or subtracting conveniently sized chunks of the
second number, as Chris does in Figure 12.2. Alternative descriptors for this
strategy in the literature are sequencing or cumulative methods (N10 in the
Netherlands).

Chris 54 - 27

27 ...1took 20 away from 54 . . . to make 34 . . . and | took four from 34 which made
30 ... and | took another three away to make 27

Figure 12.2  Chris uses the jump method for two-digit subtraction.

Chris has split the 27 into 20 and 7; has subtracted the 20 from 54 to get
34; has split the 7 into 4 and 3; has subtracted the 4 from 34 and the 3 from 30
to get the correct answer 27. Because of the apparent superiority of this
method for subtractions of this type (the split method leads to a potential
problem with 4 — 7) some mathematics educators recommend that the jump
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method should be taught in preference to the split method. However, some
splitters get round the problem by using a combination of the two strategies
known as the split-jump method, the mixed method or, in the Netherlands, the
10S method (Figure 12.3).

Mark 27 + 28

55. Because, you know, | did 20 and 20 is 40 . . . and 48 and another two from the
seven is 50 . . . and I've got five left, so 55

Figure 12.3 Mark adds two numbers using the split-jump method.

In this case Mark has partitioned both numbers: 20 plus 7 and 20 plus 8;
has added the two 20s; has added the 8 (the larger of the two units) to the 40;
has bridged to ten and has then added the remaining 5. A fourth common
strategy for dealing with ‘near multiples of ten’ is the over-jump, compensation
or N10C method used by Nigel (Figure 12.4).

Nigel 19 + 8

27 ... Twenty and eight would be 28 . . . and take away one gives you 27

Figure 12.4 Nigel adds two numbers using the over-jump method.

Nigel has treated ‘adding 19’ as ‘adding 20 and then subtracting one’ — a
useful strategy for the addition and subtraction of ‘near multiples of 10" —
but again, not as common with English children as with those from the
Netherlands.

This research evidence provides a useful knowledge base to inform
teachers’ practice. Awareness of these strategies will help them better under-
stand children’s explanations and provide appropriate support to develop,
where appropriate, more efficient strategies.

A model of mental calculation

The model shown in Figure 12.5 comprises four components which, it is
argued, together contribute towards the development of an individual’s range
of mental calculation strategies. These components are facts, skills, under-
standings and attitudes, and it is conjectured that those who are most suc-
cessful in mental calculation are likely to possess all four of these attributes.
Weaknesses in any one area are likely to have an adverse effect on the devel-
opment of a wide range of efficient mental calculation strategies. However,
research is needed to test this hypothesis.
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Facts Skills

Flexible mental
strategies

Understandings Attitudes

Figure 12.5 A model of mental calculation.

Facts

Included under this heading are: knowledge of specific number bonds, includ-
ing doubles and complements in 10; awareness of addition and subtraction
facts to 20; and knowledge of multiplication tables and division facts. It is
sometimes difficult to tell which facts are known and which are calculated
extremely quickly. For example, I think I know that 7 and 5 make 12, but I'm
not too sure that I know what 17 — 9 is. I definitely know that 7 x 8 = 56, but
[ am sure that I do not know what 48 + 6 is, as [ have to use my multiplication
tables to help me work it out.

Understandings

This heading refers to the many and varied properties of the number system
that we might expect someone possessing good ‘number sense’ to be aware of —
if not explicitly, then at least implicitly. These understandings range from
those exhibited by very young children when they come to appreciate that
they can count on from the larger of the numbers involved in an addition
instead of counting on from the first number on each occasion, to those
shown by Year 6 children when they realize that when you divide a number by
a half it doubles in size.

Included under this heading are the properties of commutativity (3 x 4 =
4 x 3), associativity ((3+4) + 5=3 + (4 + 5)) and distributivity (3 x 24 =3 x 20
+ 3 x 4). Good mental calculators also need to understand the following:

e adding or subtracting zero has no effect (additive identity);
e multiplying or dividing by one makes no difference (multiplicative
identity);
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e subtractions can be solved by using a known addition fact (additive
inverse);

e divisions can be solved by using a known multiplication fact (multi-
plicative inverse);

e addingtogether multiples of ten is similar to adding the corresponding
single-digit numbers;

e  because 3 + 6 makes 9 then 473 + 6 is 479;

e because 3 x4 ends in a 2 then so does 13 x 14;

e anumber ending in zero can be divided exactly by 10;

e to multiply by six you can multiply by three and then double;

e todivide by four you can halve and then halve again.

More sophisticated understandings would include the following:

e if you double one of the numbers in a multiplication and halve the
other then the answer stays the same, so 3 x 18 is equivalent to
6x9;

e tomultiply 23 by 9, you can multiply by 10 and then subtract 23;

e to multiply by 12 you can multiply by four and then by three, or by
three and then double twice.

Skills

To be effective mental calculators children need to have acquired certain
labour-saving skills or techniques, such as counting on as a development of
counting all or subtracting ten from a number without counting back. To com-
plete this section, the mental calculation skills used by Scott (Figure 12.6)
and Chris (Figure 12.7) in their solution strategies discussed above will be
analysed.

Scott 27 + 28

Two 20s is 40 . . . seven and eight . . . if there’s seven . . . take three off eight which would
be 10 ... and three took off eight would be five . . . so the answer would be 55

Partition two-digit numbers 27=20+7
Add multiples of 10 20+20=40
Partition single-digit numbers 8=3+5
Know and use complements in 10 7+3=10
Add 10 to a number 10+5=15
Add multiple of 10 to a number 40 +15=55

Figure 12.6 Skills used by Scott in calculating 27 + 28.
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Chris 54 - 27

27 ...l took 20 away from 54 . .. to make 34 . . . and | took four from 34 which made
30 ... and | took another three away to make 27

Partition two-digit numbers 27=20+7
Subtract M10 from any two-digit number 54-20=134
Partition single-digit numbers 7=4+3
Bridge down through M10 34-4=30
Calculate/know complements in 30 30-3=27

Figure 12.7 Skills used by Chris in calculating 54 — 27.

Attitudes

An important, but neglected, ingredient in mental strategy use is confidence.
Children can have all manner of facts and skills at their fingertips, but if
they do not have the confidence to ‘have a go’ or take risks they are unlikely
to use these facts and skills to generate an appropriate strategy. It is to be
hoped that an emphasis on the teaching of mental calculation will effect a
change in the attitude of children and adults towards mathematics. An ethos
needs to be developed where people no longer have the attitude of ‘I can’t
remember the method so I cannot solve the problem’ — discussed in the
Cockcroft Report (Mathematics Counts) (DES 1982) — but instead adopt
the more positive attitude of ‘I can’t remember how my teacher did it, but
ifI....

Teaching mental calculation

In 1997, a School Curriculum and Assessment Authority discussion paper
(SCAA 1997: 15) wondered whether ‘strategies for mental calculation can
actively be taught to pupils, or whether pupils develop them for themselves as
a result of either maturation or experience’. The fact that most of the research
reported in this chapter was carried out before the NNS was introduced sug-
gests that some young children do develop them for themselves. Later in the
same document we read that the development of mental calculation strategies
‘should not be left to chance’ (SCAA 1997: 29). In a similar vein, the Primary
Framework for Literacy and Mathematics (DfES 2006: 68) states that ‘It is crucial
that mental methods of calculation are taught to children and not confined to
starter activities in lessons’.

Less research has been done into the actual teaching of mental calculation
than into the investigation of children’s mental calculation strategies. Askew
et al. (2001: 9) devised a successful intervention programme to improve the
mental calculation strategies of a group of children operating at or below
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Level 2 according to their SAT results. The intervention significantly improved
the profile of techniques used by the pupils to arrive at correct solutions, and
the researchers concluded that ‘Through carefully targeted teaching, pupils
who have not developed these strategies for themselves can indeed learn
them’. Murphy (2004: 16) interviewed three young children after the direct
instruction of a mental calculation strategy. She argued that ‘mental strategies
can [my italics] be introduced to children through whole class instruction
but . . . their use of the strategies may be reliant on their personal knowledge’.

Ineson (2007) assessed the mental calculation abilities of a whole year
group (n = 70) of Year 6 children in a north London primary school in 1999
(that is, pre-National Numeracy Strategy) and repeated the test in the same
school in 2005 (n = 55). She found that 63 per cent of the second cohort
correctly answered at least 15 of the 20 questions compared with 43 per cent
of the first cohort — results that were significant at the 0.01 level. Using an
equivalent written version of the same test the author found that on 16 of the
questions a greater percentage of the 2005 cohort successfully used informal
methods. These results — albeit for a relatively small opportunity sample —
suggest that the teaching of mental calculation strategies can improve child-
ren’s computational performance as well as their confidence to use informal
rather than formal written methods.

Implications for teaching and learning

To summarize, it has been argued that a minimum requirement for children to
be successful mental calculators is the development of the following:

e asecure knowledge of number facts;

e a good understanding of the number system — how it works, which
operations are permissible and which are not - so that known number
facts can be combined using appropriate operations to work out other

facts;

e the ability to perform accurately the skills underpinned by these
understandings;

e the confidence to use what they know in their own way to find
solutions.

The teacher’s job is to ensure that these aspects form an important part of their
teaching. They need a good knowledge of the common mental strategies that
children use so that they can understand their own children’s methods; so that
they can support them in refining these strategies; and so that they can help
them develop more sophisticated methods if necessary. Teachers also need
to hone their own teaching strategies for developing children’s attitudes to
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calculation, particularly their pupils’ confidence to use methods with which
they feel happy. They need to create a suitable classroom ethos where children
will be prepared to take risks. While working to develop efficient and effective
strategies for mental calculation for all children, teachers need to ensure that
they do not emphasize the efficiency aspect to such an extent that children
reject a method they understand in favour of a more efficient one that they do
not. Research suggests that children make fewer errors when using their own
methods - either mental or written.

One important aim of the National Numeracy Strategy, launched in 1999,
was to ensure that children were confident with and competent at mental
addition and subtraction of any two-digit numbers before they left primary
school. At the time this seemed like a rather lofty aim. However, over 100 years
earlier, Bidder (1856) had declared at an inaugural lecture of the Society
for Civil Engineers: ‘I have for many years entertained a strong conviction that
mental arithmetic can be taught, as easily as, if not with greater facility than,
ordinary arithmetic, and that it may be rendered conducive to more useful
purposes than that of teaching by rule . . .
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13 The empty number line

Meindert Beishuizen (1935-2009)

Prologue

This chapter was published for the first time in 1999. It deals with the teaching
and learning of mental calculation strategies in the number domain up to
100. At that time the so-called ‘realistic approach’ to mathematics education
(RME) was introduced in the Netherlands on a large scale. In this approach,
number sense and mental calculation are considered to be at the heart of
the mathematics curriculum, and a substantial amount of research has been
done to study the learning effects of the new curriculum. A central issue in this
research as far as the number domain up to 100 is concerned, is related to the
question of whether so-called sequential strategies (strategies in which the first
number in a problem is taken as a whole while the second number is par-
titioned) should be preferred to splitting strategies (strategies in which both
numbers are partitioned). In the chapter, first, the international context of the
issue is described. Second, an overview is given of the arguments why sequen-
tial strategies, especially when introduced with the empty number line as a
supporting model, have important advantages over splitting strategies. Third,
a number of experiences are described within a research project at Leiden
University. These experiences relate to an experimental empty number line
programme that was put to the test in a large number of Dutch schools. As
is stated in the chapter, the results of the first part of this programme were
very promising. Ten years after the first publication of the chapter, the model
of the empty number line has become a frequently used model in Dutch
primary school mathematics education. The results that were obtained
with the model (Kraemer et al. 2005), can be seen as a powerful confirmation
of the most important conclusions in the chapter. Thus the relevance of the
chapter has hardly diminished.

Dr Kees Buijs, Curriculum Developer and Researcher in Mathematics Education
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Introduction

The empty number line was introduced in Holland not just as a new idea, but
as a result of evaluation and discussion on how to improve existing practice.
Reasons for this came from the experiences with new ‘realistic’ textbooks
during the 1980s and from the outcomes of the first National Arithmetic Test
in 1987. At the Freudenthal Institute a proposal for a revised early number
curriculum was formulated by Treffers and De Moor (1990). Mental arithmetic
had already been the focus for a long time in Dutch lower grades, given the
realistic view on mathematics education in the Netherlands (Treffers and
Beishuizen 1999) that teaching should begin with children’s informal strat-
egies. More emphasis was being put on the basic computation skills up to
100, and for that purpose the empty number line (ENL) was introduced as a
new model.

In international research there was also the recognition that after a long
period of studying the number domain under 20, mental strategies with larger
numbers should be given more attention. In this area our knowledge of how
children carry out number operations ‘lags far behind’ as Fuson (1992) put it.
In Holland such research was carried out at Leiden University (Beishuizen
1993), which led to a new project with an experimental ENL programme imple-
mented in Dutch 2nd grades (Year 3) in collaboration with the Freudenthal
Institute (Klein et al. 1998). A description of the empty number line in this
chapter is based on this project, which took place in several schools during the
period 1992-96. But first we summarize some background arguments, because
there are interesting similarities with English discussions on how to improve
early number teaching. For instance, some English authors have also argued
for children’s informal strategies instead of the early introduction of standard
vertical algorithms (for a broader discussion see Beishuizen and Anghileri
1998).

Dissatisfaction with existing models was one of the arguments for the
ENL. In the 1960s and 1970s manipulatives like Dienes Multibase Arithmetic
Blocks (MAB) or Unifix cubes were widely used in Dutch schools, but teachers
complained about children hanging on too long to these materials and pas-
sively reading off the answer from the blocks when doing sums (Beishuizen
1993). Apart from this low level of mental activation there was the other draw-
back of a low modelling function. Blocks are helpful for the representation of
abstract number structure, but they are weak in the representation of number
operations when these become more complicated. Such a critique was voiced
by other authors in the 1980s, for instance by Hart (1989) when she analysed a
solution of the number problem 56 — 28. After the removal of three from five
ten-blocks (50 — 30), two unit-blocks are returned (+2) and then the blocks left
on the table are counted for the answer (2 + 20 + 6 = 28). Hart (1989: 142)
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concluded that this manipulation of blocks has very little connection with the
intended (written) algorithm, and ‘that the gap between the two types of
experience is too large’.

In Leiden, such research was done in relation to the mental strategies
involved. The computation procedure described by Hart, where the tens are
‘split off’ in both numbers and are added or subtracted separately (50 — 20 =
30), we have given the acronym 1010. This partitioning or split method (see
Thompson, Chapter 12) proceeds mostly by adding or subtracting the units
(6 — 8) as the next step. In this case that causes a conflict which correctly could
be solved by putting 10 of the 30 with the 6 to make 16, finding 16 — 8 =8 and
adding this to the remaining 20 to give 28. Many children, however, solve this
conflict in the procedure by the wrong ‘smaller from larger’ bug (6 — 8 is
interpreted as ‘6 from 8’, that is, 2, and the answer is 30 + 2 = 32). These
difficulties of the 1010 partitioning method, in particular with subtraction and
regrouping problems, are well known (Plunkett 1979). Nevertheless this 1010
strategy is widely used, because at first sight splitting up numbers in tens and
units seems an easy procedure to children. It follows the decimal (formal)
structure of our hundreds, tens and units (HTU) number system and is also
elicited and reinforced by the use of arithmetic blocks (Beishuizen 1993). The
difficulty of the 1010 strategy is not so much in the decomposition procedure
but more in the correct recomposition of numbers (Beishuizen et al. 1997b). A
less vulnerable and more efficient computation procedure (fewer steps) is the
mental strategy which proceeds in a sequential way (56 — 28 =via 56 — 20 = 36,
36 — 8 =28). We have used the acronym N10 for this strategy because the first
number is not split up but kept intact while the tens are added or subtracted
through counting by tens. The N10 strategy or jump method is less common as
a spontaneous method of children, because it is not elicited by the HTU num-
ber structure and needs some initial support by making the sequential number
patterns (56, 46, 36, and so on) more noticeable.

1010 and N10

There is now a growing body of (international) research underlining the
important role of these two main strategies (and mixed methods in between)
for mental arithmetic with larger numbers up to 100 and beyond. Fuson has
described them as the ‘separate tens’ (1010) and the ‘sequence tens’ (N10)
strategies at an experts’ meeting in Leiden (Beishuizen et al. 1997a). In Holland
both 1010 and N10 are widely used as mental strategies, while in the USA (and
in the UK) 1010 seems more common because of dominance of the HTU (place
value) number structure as well as arithmetic blocks in teaching. In Holland
it has been found (Beishuizen et al. 1997b) that many better pupils prefer the
more efficient strategy N10, while most weaker pupils choose 1010 as the
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‘easier’ procedure at first sight, which, however, may take them into difficulties
(see above). Another conclusion has been that most pupils are rather consist-
ent but rigid in preferring either only 1010 or only N10 as their computation
procedure, with just a minority using both strategies in a flexible way: 1010 for
addition and N10 for subtraction. Outcomes of the National Arithmetic Test
in 1987 confirmed this lack of flexibility, and this became another argument
for the introduction of the ENL: to raise pupils’ level of flexibility in mental
arithmetic (Treffers and De Moor 1990).

Earlier in the 1980s the Dutch dissatisfaction with blocks had led to the
introduction of the hundred square as a richer model for visualizing both
number relations and number operations for mental arithmetic up to 100. The
abacus was introduced for illustrating better the HTU number structure and
the corresponding vertical algorithms. Both models, being more abstract, had
the potential function of eliciting a higher level of mental activation but,
because of this same characteristic, also turned out to be more complicated for
weaker children. The hundred square, when used in its mentally most activat-
ing format with empty boxes (instead of numbers), may confuse children so
that they get lost when drawing arrows or jumps on it. Moreover, the increas-
ing influence of the RME approach in mathematics teaching in our country
ran counter to the pre-structured character of the hundred square, a model
which leaves little room for informal and flexible strategies of children.

Consequently, Treffers and De Moor (1990) came up with the idea of the
old number line in a new format: the empty number line up to 100 as a more
natural and transparent model than the hundred square. The growing research
into mental strategies also played a role as summarized above. First and fore-
most, however, the well-known argument for emphasizing mental arithmetic
in the lower grades should be mentioned (Treffers 1991; Thompson 2008):
dealing with whole numbers supports pupils’ understanding and insight in
number and number operations much more than the early introduction of ver-
tical algorithms dealing with isolated digits. Therefore, columnwise (written)
arithmetic, which was already being introduced later in the Dutch curriculum,
was now postponed even further until Year 4 in the new proposal.

Another argument, already mentioned as central in the Dutch RME
approach as well as in the views of some English authors, is that early math-
ematics teaching should start by building on children’s informal (counting)
strategies instead of imposing formal procedures. A further didactic RME
principle is to level up informal strategies to higher (formal and efficient) pro-
cedures as well as to their flexible use. For that purpose the ENL is very well
suited because, on its sequential model, counting strategies can be accepted
and abbreviated towards counting in jumps of twos, fives and tens, that is,
a gradual transition to the N10 strategy of counting by tens. Treffers and
De Moor (1990) have sketched the development of N10 for a subtraction
problem like 65 — 38 through the following stages: (i) 65 -10-10-10-5-3,
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(ii) 65 — 30 — 8 and (iii) 65 — 40 + 2. After procedural abbreviation on the
first levels we see at the highest level a short-cut adaptation of N10 used as
a compensation strategy (acronym NI0C). Notice that the lowest level of
N10 is long-winded and inefficient, as often happens in the beginning of new
strategies. Is this a reason not to trust these informal strategies and to teach
‘straightforward and efficient standard methods’ as an alternative, as some-
times seems to be the official English viewpoint (SCAA 1996)? In the RME
view it is not, and the early number curriculum should provide opportunities
(learning sequences and tasks) as well as learning time for children to
develop their own strategies through ‘progressive mathematization’ to more
efficient and flexible levels. In Dutch classrooms working with the experi-
mental ENL programme, this happened by having children draw their jumps
on the ENL, by practising their recording of mental strategies on the ENL and
by whole-class discussion of different problem solutions drawn on the
blackboard.

In summary we have given four arguments for the ENL, which are
described more extensively in Klein et al. (1998):

1 ahigher level of mental activation in providing learning support;
a more natural and transparent model for number operations;

3 a model open to informal strategies and also providing support for
children to develop more formal and efficient strategies;

4 a model enhancing the flexibility of mental strategies, in particular
variations of N10.

In addition to the last argument we should add that one of the conclusions of
the research into mental strategies was also (Beishuizen et al. 1997b) that to
enhance flexibility in mental arithmetic Dutch pupils should learn to use both
strategies N10 and 1010. For reasons given above, the didactic sequence in the
experimental ENL programme is first to invite N10-like strategies. Later in the
same programme (three months before the end of the 2nd grade or Year 3)
1010 is introduced, using another (not sequential) grouping model like blocks
or money as learning support. An argument for this order of introduction is
that children will learn the more complicated 1010 procedure more quickly,
and become more proficient, if they have already acquired a conceptual and
procedural knowledge base of two-digit number operations up to 100 through
N10. Further experiences in Holland in 2nd and 3rd grades with revised text-
books like Wis and Reken (Buijs et al. 1996), integrating both N10 on the ENL
and 1010 with blocks, do confirm how children indeed attain such higher
levels of proficiency and flexibility.
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Empty number line model

English discussions and official viewpoints about mental arithmetic are inter-
esting but not always clear. We return to this at the end of this chapter. But
before giving a description of the ENL programme, we have to clear up one
misunderstanding — namely, that children doing mental arithmetic should
not be allowed to use a pencil for making written notes (see Bramald 1998).
This misunderstanding also surfaced at the international experts’ meeting in
Leiden (Beishuizen et al. 1997a), when Fuson from her American perspective
said that ‘students in Holland do not learn mental strategies first, because they
start with a lot of written activities on the empty number line’ (1992: 296). But
written work on the ENL has only a secondary function: supporting or record-
ing the strategies chosen as mental decisions in the first place. One might
object that this is also true for vertical algorithms. So ‘mental’ versus ‘written’
does not seem to be a good contrast (but a commonplace one), because the real
distinctions are between the different types of strategies and procedures as
described above.

Figures 13.1-13.8 give an impression of the development of mental strat-
egies in our experimental ENL programme for the 2nd grade (Year 3). A fuller
description is available in Klein (1998). The sequential model is introduced at a
concrete level through a 10-structured bead string up to 100 (Figure 13.1).
Two-digit numbers are introduced by building on the (quantity) number con-
cept using both an ordinal and cardinal representation. Through positioning,
this knowledge is immediately practised on a corresponding number line. Dur-
ing the first three months a structured empty number line is used (Figures 13.1
and 13.2) before the complete empty line is introduced on which children
position and mark the numbers themselves (Figure 13.3). Number operations
are first practised with addition and subtraction of single-digit numbers in
combination with two-digit numbers up to 100 (Figures 13.2, 13.3 and 13.4).

Draw numbers on
bead string: How many sausages?

288 |
= @ O | 53 g;

Write numbers at marks:
| ]

0 fi’? E!{? S%E' ﬁti‘) szﬁ 5!3} ;'i; EE.'J 96 160

Figure 13.1 Number concept and number positioning.
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Draw the sums on

the number line: 33 4 5= Llﬁ' Ty
o Blour S

Figure 13.2 Crossing-ten on a structured empty number line.

Draw the sums on
the number line:

MUEYA

1 ¥
r{B 505Y
Figure 13.3 Crossing-ten on a completely empty number line.

P

Solve context i - 1,
problems on the = . 3?'

number line: Kees has 9 stamps. ,i ap j?

He gets 28 more.
How many stamps does he have now?

Figure 13.4 Flexible solution of a context problem.

This deliberately builds on arithmetic under 20 in the 1st grade (Year 2),
because counting on, splitting up in complements of ten and using number
facts instead of counting need further practice for most children in order to
reach a level of mental recall. Here we have to add that whole-class oral exer-
cises and games (with speed limits) support this process of further automatiza-
tion. The results of this first part of the ENL programme (from September
until January) were very promising: speed tests showed a substantial increase
in total number of correct answers, whereas interviews with children showed
an almost complete vanishing of counting strategies by January (Klein et al.
1998).

Notice that the mental strategies for crossing-tens are quite different from
the way this is done with vertical algorithms in Britain. In problems like 37 + 5
and 48 + 6 (Figures 13.2 and 13.3) the algorithm would proceed with splitting
off the units and adding them up separately, which means continuing but
limited practice of number bonds like 7 + 5 and 8 + 6 under 20. The sequential
mental strategy involves crossing-tens quite differently by splitting up the
(second) units in complements to (new) decadal tens (37 + 5 =via 37 + 3 = 40,
40+2=42;48 + 6 =via 48 + 2 =350, 50 + 4 = 54). By this latter strategy children
practise not only procedural knowledge but also the extension of number
relations and number sense up to 100.
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Realistic problems

Realistic context problems play an important role in the RME approach, invit-
ing a greater variety of ‘using your head’ problem-solving strategies than
standard number problems which suggest mainly the application of routine
computational procedures. Context problems have been part of Dutch realistic
mathematics teaching for a long time, and so they are also used in our experi-
mental programme. In this respect the (open) ENL model proved to be a good
help for the representation of different problem structures. Context problems,
combined with the ENL model, were used a lot to evoke more variety
and flexibility in children’s solution strategies and computation procedures
(Figures 13.5, 13.6 and 13.7).

In particular, the ‘Leiden on Sea’ problem in Figure 13.7 gives an example
of how children come up with various strategies for solving a new type of
‘difference’ problem. The weaker pupil Wilco sticks very closely to the struc-
ture of the problem by working in small steps and creating several footholds
on the ENL. He does this by using the new strategy of ‘adding-on to tens’, for
which we use the acronym A10 (bridging to ten). The better pupil, Brit, on the

+# b
go—rs DNAS
Make jumps 48 B o ‘}f{

from...to... ~30

fa—>48

Figure 13.5 Sequential N10-jumps in small and large steps.

Try different solutions:

In the bus are 56 people sitting.
At the bus stop 29 people get out.
How many people remain in the bus?

Figure 13.6 Two different solutions: standard N10 (above) and N10C (below) using
compensation.
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Difference problem ‘Leiden on Sea’ in worksheet:

T _—
L
- _HL.__‘:
-d-_

On the beach there are kilometre posts.
Margaret walks from post 9 to post 31.
How many kilometres has she walked?

Brit 19
—— 4y

Figure 13.7 Context problem evoking various solution strategies.

other hand, transforms the problem structure into a subtraction and uses
the compensation strategy N10C for a very efficient and elegant solution
(31 - 10+ 1). The pupil Eddy lies somewhere in between, solving the problem
in his own way and preferring mental steps without the ENL, but his use of the
N10C strategy is still inefficient and incorrect (he added 8 instead of ‘minus 8’).
Later, Eddy gets things right by using N10 and his own version of A10 on the
April test (Figure 13.8), which illustrates his development to a higher level of
understanding and flexibility (beyond the ENL). The weaker pupil Wilco still
uses the support of the ENL a lot in the April test (Figure 13.8) and has
developed a rather rigid preference for the N10C strategy for all kinds of prob-
lems. These examples also illustrate how the recordings on the ENL contain
much information about the sources of errors and about the strategy devel-
opment of children. The teachers in our experiment agreed that providing
diagnostic feedback is another very helpful feature of the ENL.
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Arithmetic Scrap-Paper Test (ASPT): April 1995

5= 93 97

scrap-paper [e)

57 +36= Wilco

answer: 93

Piet has 54 balls. Wilco
He gets 29 more.
How many does he have now?

g’.] 9&” ﬁrtf o 93

answer:

57+36= Eddy | *PPPe ;H- 3o

~$4 131208

Jan has 48 balls. Eddy
He gains 37 more. scrap-paper

How many does he have now?
Y 7 + 3",{ y o 85

answer:

Figure 13.8 Good results at different levels: ENL — support (Wilco) and mental steps (Eddy).

After practice with single-digit addition and subtraction as described
above, the acquisition of number operations with two-digit numbers proceeded
much more quickly than we expected. The introduction of N10 takes place as a
game of jumping by tens on the ENL (November). Because the pupils are now
familiar with all number positions up to 100, making jumps like 15, 25, 35,
and so on (forward) and 82, 72, 62, and so on (backward) goes rather easily.
This game of jumping is continued by presenting new problem types asking
pupils to go from . .. to ... (Figure 13.5). Adding constraints like the instruc-
tion to do this in three jumps or in two jumps enhances the further abbrevi-
ation and automatization of larger steps (+30, —20). These conditions, however,
leave much room for individual variation in levels of abbreviation, as can be
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seen in Figure 13.5. Notice that no sums with two digits are presented in the
beginning, but then between December and April all two-digit problem types
are mastered rather rapidly. The teachers were surprised that the acquisition
of the difficult sums like addition and subtraction with regrouping went
much more smoothly than usual (Figure 13.6). For the pupils these problems
were hardly new because they asked for a combination of N10-jumps and
single-digit operations already practised a lot.

In the April test (Figure 13.8) the results on two-digit context and number
problems reached a high level of procedural competency of about 80 per cent
correct. This also included the more difficult subtraction with regrouping
problems. These good results were confirmed on the test in June as well as on a
National Arithmetic Test for the end of Grade 2 (Year 3). The last three months
between April and June had mainly been used for enhancing the flexibility of
strategy use by presenting many non-standard problems, and by whole-class
discussions of different solutions (cf. Figure 13.7). Also the other strategy 1010
(see above) was introduced. An interesting metacognitive aspect was the
introduction of labels for the strategies in a childlike style (for instance ‘Jump
Further’ for N10C), which the children used with pleasure in their worksheets
and classroom discussions.

Breakthrough of the ENL

More details about the ENL programme, about the flexibility of strategy use,
and about the (good) performance of weaker pupils can be found in Klein
(1998) and in Klein et al. (1998). The best proof of its success was the request of
all experimental schools to continue with the ENL programme, now provided
by a publisher and in use in hundreds of other Dutch schools. The break-
through of the ENL can also be seen in the so-called second generation of
realistic textbooks in Holland, published in the 1990s. For instance, in the
revised textbook Wis and Reken (Buijs et al. 1996) the ENL model is extended
throughout the 3rd grade (Year 4) for number problems up to 1000, followed
by the delayed introduction of vertical algorithms until 4th grade (Year 5).

Looking back we can say that the greatest effort was invested during the
first half of the 2nd grade programme, when the ENL model was introduced
and when single-digit addition and subtraction were practised. In that period
procedural errors due to counting and not splitting up units correctly were
happening a lot but disappeared gradually. So, single-digit practice prepared
the ground for two-digit operations, because they both have a similar sequen-
tial character as mental strategies. In our opinion this curriculum outline, as
well as the curriculum condition of a continuous programme with only small
interruptions for other subjects, contributed much to the positive transfer
of learning.



THE EMPTY NUMBER LINE 185

Returning to English discussions we see a growing awareness of the role of
mental arithmetic. Many authors offer suggestions for everyday mental activ-
ities in the expectation that children will improve by practising them. This
enthusiasm is heart-warming, but in another publication (Beishuizen and
Anghileri 1998) we have argued that combining new and old ideas is not
going far enough. We agree with Straker (1996) that given the great variety of
mental strategies it is important to decide on ‘exactly which methods should
be taught and in what order’. And the introduction of the ENL in Holland is an
example of not only a new model but also a curriculum change for an
improved approach to the development of mental strategies. Priority for the
sequential argument (counting, crossing-ten, N10-jumping) and postpone-
ment of the partitioning (1010) strategy and the standard algorithm played an
important role (cf. above).

Because of these strong sequential characteristics, we are afraid that the
ENL model does not fit in with current English teaching practice on early
number. For instance, in a small experiment with the ENL in an English
mixed-age Year 3/Year 4 class (see Rousham 1997), pupils easily adopted
sequential strategies like N10 and A10 and improved on problem solutions.
But two months later many pupils had reverted to the standard algorithms,
which illustrates that it is of little help to keep up two different systems.
The latter situation is comparable to what happened in Holland in the
1970s and 1980s, when mental arithmetic was already emphasized but not
adequately supported, resulting in children using a mixture of N10 and
1010 strategies with many of them being unclear and half-correct with dif-
ficult subtraction problems (Beishuizen 1993). Attempts to clear up this
situation with two-digit number operations up to 100 became the focus
(cf. above), not only in the Dutch RME viewpoint (Treffers and De Moor
1990) but also in the growing international research (Fuson 1992; Beishuizen
etal. 1997a).

In Holland we struggled and still struggle in the same way towards more
consistent reasoning and more balanced teaching in the early number curric-
ulum (see the latest revision in the so-called TAL project 1998, under the
authority of the Ministry of Education; TAL-team 1998). We hope that this
chapter on the empty number line has illustrated not only the ENL model
but also the background to the wider discussion and research on mental
arithmetic that is taking place in our country.
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14 Written calculation: addition
and subtraction

lan Thompson

Introduction

For many years now, criticisms have been made of mathematics teaching that
focuses on the acquisition of memorized procedures at the expense of the
development of understanding and of children’s own methods. Office for
Standards in Education (Ofsted) reports are often critical of the overemphasis
on written calculation and the underuse of mental methods: ‘Other factors
include gaps in earlier learning, as well as pupils’ reliance on formal written
methods and a reluctance to use informal or mental strategies which are some-
times more efficient’ (Ofsted 2008: 21). A small-scale investigation, focusing
on pupils who were at risk of not converting a Level 2 in mathematics at Key
Stage 1 into a Level 4 at the end of Key Stage 2, found that these pupils pre-
ferred to use formal written methods in preference to mental methods as they
believed the former were better (DfES 2007: 15).

The aim of this chapter is to look critically, and in some detail, at the
‘official’ approach to written calculation - specifically addition and subtraction
— as set out in the Guidance Paper: Calculation (DCSF 2006). The underlying
principle of this chapter’s approach is that children should use mental
methods whenever they are appropriate, whereas for calculations that they
cannot do in their heads they should use an efficient written method with
accuracy and with confidence.

It is interesting to note that in an earlier version of this document ‘effi-
cient written methods’ were described as ‘standard methods’. There is no
doubt that the change in terminology in the final version was partially due to
the mathematics education community’s response — forcefully expressed in a
Times Educational Supplement (TES) article entitled ‘Outrage at return to “dark
ages”’ (Mansell 2006: 12) which discussed the extent to which some senior
academics, numeracy consultants and practising teachers had become angry
about the government’s proposals that all children should be using traditional
standard methods of calculation for the four basic operations by the time they
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left primary school. The article concluded with a response from Tim Coulson,
the then director of the mathematics section of the Primary National Strategy
(PNS), in which he stated categorically that his team would be addressing
the concerns expressed. However, all that actually happened was that the ter-
minology used to describe the recommended algorithms was changed from
‘standard’ to ‘compact’, ‘efficient’ or ‘column’. No modifications whatsoever
were made to the actual written methods: they were still the standard algo-
rithms but with a different name (see Thompson 2007).

The Guidance Paper - Calculation approach to addition

This approach is divided into four stages: the empty number line; parti-
tioning; expanded methods in columns; and column methods (originally
called ‘standard methods’). This progression matches the original National
Numeracy Strategy (NNS) approach of counting — mental — jottings —
expanded written — compact written, but unfortunately, like the NNS
approach, shows a misunderstanding of the purpose of the empty number line
(ENL). The Dutch, who developed the ENL, never envisaged it as a link
between mental and written strategies, but rather as a tool to support mental
calculation. Initially it constitutes a physical model for calculation which
often later becomes a mental model (see Beishuizen, Chapter 13).

Stage 1: The empty number line

In the example below, taken from the Guidance (Figure 14.1), notice that only
one of the two numbers to be added has been partitioned (known in Holland
as the N10 strategy) (see Rousham 2003). If both numbers are partitioned (the
1010 strategy), you cannot make use of an empty number line (try it!).

48 + 36 =84

+30 +2 +4
T~

48 78 80 84

Figure 14.1

So, to use the ENL to support mental addition one has to keep one number
fixed (usually the larger) and partition the other. Written methods, on the other
hand - both expanded and compact — involve treating the ones separately
from the multiples of ten (see Figures 14.7, 14.8 and 14.9 later in this chapter),
which in turn means that both numbers have to be partitioned. This suggests
that there is actually no logical progression from ENL use to expanded or
contracted written methods, as they are based on conceptually different pro-
cedures. The Dutch are well aware of this, and so, after children are considered
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competent at mental calculation using the N10 strategy on the ENL, teachers
spend some time on giving the children practice at using ‘double partitioning’
(the 1010 strategy) in a range of contexts, such as with money or base-ten
materials, before introducing written algorithms that employ such a strategy.

Stage 2: Partitioning

At this stage children are expected to record their mental strategies horizon-
tally using both single (N10) and double (1010) partitioning (see Figure 14.2).

47 +76=47+70+6=117+6=123
47+76=40+70+7+6=110+13=123

Figure 14.2 Recommended horizontal layout.

Researchers often describe the two different strategies illustrated here as
‘sequencing’ and ‘partitioning’ respectively, whereas the Guidance describes
them both by the latter name!

In a small-scale research project looking at the written calculation
methods of 117 young children (Thompson 1994) it was found that 71 per cent
set out their work horizontally. However, they did not generally write down the
original numbers they were working with, preferring instead to record just their
calculation. Rashid’s calculation (Figure 14.3) illustrates the second strategy.

lo- = 4o+ To= &0

Lr24+2 -6
Figure 14.3 Rashid finding 72 + 72 + 72.

If we compare the Guidance layout with Rashid’s, we find that there are
subtle but important differences between them. One motive the authors of the
Guidance appear to have had for recommending the format illustrated in
Figure 14.2 is to try to ensure that children do not make ‘incorrect’ statements
in their working out, even though they may have actually calculated correctly
and produced the right answer. In Rashid’s case (Figure 14.3) both his working
out and his answer are correct, but the statement 70 + 70 = 140 + 70 is actually
mathematically unsound.

Also, the layout in Figure 14.2 appears to be suggesting that children
should set out their plan of attack before they execute it. The mathematical
notation for the second example is really shorthand for the following: ‘The
problem I have to solve is 47 + 76 .. .1 have partitioned both the numbers
into multiples of ten and ones, and reorganized them so that I can more easily
add the tens together before adding the ones...40 + 70 is 110 and 7 + 6 is
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13...110 and 13 is 123.” Whereas, Rashid’s written marks are almost a
running commentary on his thinking and calculation procedure as they
happen in real time. Later discussion with Rashid suggested that his approach
was more on the lines of: ‘Take the 70 out of the 72... Double 70 is 140
(write down 70 + 70 = 140) . . . add another 70. . . that makes 210 (write down
+70=210)... now 2 + 2 + 2 = 6 (write this down)’. The partitioning step,
where we would rewrite 72 as 70 + 2, is treated differently by many young
children, who just ‘take out’ the tens, operate on them and then retrieve the
ones later. This strategy accounts for the major difference between the layout
of the children involved in the research project and that recommended in the
document.

The next recommended step in this stage involves writing the partitioned
numbers under one another (Figure 14.4).

47 = 40+ 7

+76 70+ 6
110+ 13 =123

Figure 14.4

However, there is no acknowledgement of the fact that this written
method (jotting?) actually builds on the 1010 (double partitioning) strategy,
and that none of the written strategies that follow involves the sequencing
(N10) strategy that the children were developing while utilizing the empty
number line in Stage 1!

Stage 3: Expanded method in columns

This stage builds on the example in Figure 14.4. We are informed that children
should initially ‘add the tens first’ (Figure 14.5).

+
N A
[o) W]

—_
Y
w O

—_
N
w

Figure 14.5

Then, as they gain confidence, they should ‘add the ones first’ (Figure 14.6).

47
+76
1
110
23

w

—_

Figure 14.6
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A question that comes immediately to mind at this stage is: ‘Why add the
ones first, when all the research on mental calculation suggests that, left to
their own devices, children will start from the left and add the multiples of ten
first?’ There is no doubt that the answer is that it is to prepare the children for
right-to-left addition that is crucial for using the column method - that is, the
standard algorithm.

A section linking Stages 3 and 4 in the Guidance Paper (DCSF 2006: 7) states
that ‘The expanded method leads children to the more compact method
so that they understand its structure and efficiency’. My own research
(Thompson and Bramald 2002) suggests that the aspect of place value under-
pinning mental calculation methods and informal written procedures is
different from that which underpins the standard (or ‘column’) written algo-
rithms: the former methods involve ‘quantity value’ (where 56 is interpreted
as fifty plus six), whereas the latter procedures involve ‘column value’ (where 56
is interpreted as five in the tens column and six in the ones column). This research
would appear to raise questions about the accuracy of the quotation above.

Stage 4: The column method

This stage introduces ‘carrying’ (Figure 14.7).

47
+76
123
1

Figure 14.7

The document states that ‘Carry digits are recorded below the line, using
the words “carry ten” or “carry one hundred”, not “carry one”’ (DCSF 2006:
7). This suggests that, as in earlier National Strategy recommendations, chil-
dren are expected to refer to the actual value of the digits when performing
this calculation: they should say forty plus seventy equals one hundred and ten.
This is perhaps feasible when adding two-digit numbers, but becomes much
more cumbersome with the addition of three-digit numbers. Figure 14.8
involves two ‘carries’.

366
+458

824

11

Figure 14.8
Trying to refer to the actual value of the digits makes it much more dif-

ficult with numbers of this size. After saying 6 add 8 equals 14, put down the 4
and carry the 10. We write 1 (that is, not a 10) under the 6 and the 5. The next
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step is to say 60 add 50 equals 110, and 10 more makes 120 — but there is the
possibility of an error at this point, as the 10 to be added has been written as a
1 - albeit in the tens column. However, assuming that we perform the calcula-
tion correctly and get 120, the next problem is ‘where do we write the three
separate digits?’ The official answer has to be: put the 20 as a 2 next to the 4 in our
answer (or ‘in the tens column’); ignore the zero and put the 100 as a 1 under the 3
and the 4 while saying ‘carry one hundred’. No doubt the reader will find this
procedure somewhat confusing. This is because, in terms of the discussion of
place value above, we are shifting backwards and forwards between ‘quantity
value’ and the more conceptually difficult ‘column value’.

I would argue that column methods - being extremely compact —
inevitably conceal much of what is actually going on in the calculation. They
summarize several steps involving commutativity, associativity and distribu-
tivity, whereas, because they contain more detail, non-standard methods
record the successive stages of the calculation, thereby allowing children to
keep track of where they are and enabling them to ascertain more easily where
they have gone wrong if the answer is incorrect. I would therefore question the
wisdom of attempting to teach the column method to all primary children
given that the expanded ‘front-end’ method of addition (Figure 14.5) is more
easily understood because it builds on the ‘double partitioning’ (1010) method
used by the majority of young children for mental calculation. Like the more
difficult standard algorithm, it is also generalizable to the addition of larger
numbers and decimals.

The Guidance Paper - Calculation approach to subtraction

The approach to subtraction is divided into three stages: using the empty
number line; partitioning; and expanded layout leading to column methods.

Stage 1 Using the empty number line

The recommendations in this stage parallel those outlined for addition, and
four examples - including the following — are provided (Figure 14.9).

I'would argue that the counting back descriptor in Figure 14.9 is a misnomer.
Most of the literature on early calculation methods suggests that counting
back involves reciting backwards as many number names as the number you
are subtracting (the subtrahend), and then giving the last number that you

-3 4 -20
P e

47 50 54 74

Figure 14.9 74 — 27 =47 worked by counting back.
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said as your answer to the subtraction. An example from the original frame-
work (DfEE 1999) supports this interpretation: ‘We made six mince pies. We ate
two of them. How many pies are left? (Count back two from six: 5, 4. Say together “6
take away 2 is 4”)’ (Section 4: 17).

The strategy illustrated in Figure 14.9 actually involves the following
procedures:

e partitioning the subtrahend;

e subtracting the multiple of ten (74 — 20 = 54);

e partitioning the ones in such a way that 50 will be reached after the
next subtraction, thatis, 7=4 + 3;

e subtracting the requisite number of ones to reach 50 (54 — 4);

e subtracting the remaining ones (50 — 3 =47).

No counting back is involved whatsoever!

Also included in Stage 1 is a sub-section entitled ‘The counting-up
method’ (see Thompson 2009). The strength of this procedure is that it
involves adding appropriate chunks to the smaller number until you reach the
larger one. The calculation can be recorded on an empty number line or in
columns. This procedure allows the number of steps to be reduced as the
children’s mental strategies improve. In Figure 14.10 the calculation is solved
in five steps. This can develop into a more compact form of recording as the
children’s mental calculation skills and confidence improve (see Figure 14.11
for a two-step solution). It is also possible to complete the calculation in either
three or four steps.

326

-178
2 (>180
w2 120 M9 50 6 2 E 6200;

/\A

e e 100 (-300)
178 180 200 300 320 326 20 (320)
_ 6 (>326)

148

Figure 14.10

326

+22 +126 -178
T 22 (—>200)
178 200 326 126 = (326

148

Figure 14.11
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It is interesting that in the original framework (DfEE 1999) children were
expected to:

Understand subtraction as:

e taking away
¢ finding the difference between
e complementary addition.
(Section 5: 29)

However, in the new version, only the first two bullet points are mentioned;
complementary addition has been dropped as a named aspect of subtraction.
This is odd, given that this is precisely the strategy recommended for the count-
ing up method.

Stage 2 Partition

This section seems to be a needless and irrelevant backward step. The final
example in Stage 1 used the counting up method to solve a quite difficult calcu-
lation: 22.4 — 17.8, whereas now in Stage 2 the document is recommending
using basic partitioning to calculate 74 — 27, even though we have just seen it
used several times in the six ‘counting up’ examples provided in Stage 1. Also,
the empty number line example used to illustrate the calculation is exactly the
same as that in Stage 1 (see Figure 14.9). The real purpose behind this section
is, unfortunately, to emphasize that decomposition — the method covered in the
following section - is the favoured strategy. This is confirmed by the fact that
counting up, the only other written method mentioned, is consigned to Stage
1, accompanied by a note saying: ‘The counting up method can be a useful
alternative for children whose progress is slow’ (DCSF 2006: 8).

To illustrate yet again the document’s obsession with ultra-formal record-
ing I leave you to ponder on the feasibility of teaching young children to
record their subtractions in the manner represented in Figure 14.12.

74-27=70+4-20-7=60+14-20-7=40+7

Figure 14.12

Stage 3 Expanded layout leading to column method

As was mentioned earlier, in order to appease the ‘anti-standard-algorithms’
group that responded vociferously to the consultation document, the Primary
National Strategy simply substituted the word ‘column’ for ‘standard’, without
changing any of the actual algorithms. The main subtraction goal in this
document is to have children progress inexorably towards the standard
compact decomposition method. The procedure is introduced via the
‘expanded method’, initially using an example that requires no ‘exchanging’
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or ‘borrowing’. We are taken through a progressive sequence that begins with
563 — 241 (Figure 14.13).

500 + 60 + 3 563

-200 +40 + 1 -241

300 +20+2 leadingto 322
Figure 14.13

This sequence then progresses to 563 — 278 (Figure 14.14).

150

400 56 13 41513
500+60+3 or 400+150+13 or 500 +60+3 leadingto 563
-200+70+8 -200+ 70+ 8 -200+70+8 -278
200+ 80+ 5 200+80+5 285

Figure 14.14

To someone who can already perform written subtraction, this progres-
sion no doubt appears perfectly logical. However, we know from research and
from the combined experience of many teachers that children have great dif-
ficulty with the decomposition algorithm. Hart (1989) found that children
struggled to make the anticipated connections between the manipulation of
practical apparatus and their pencil and paper calculations when learning the
decomposition algorithm.

One particular weakness of the recommended layout can lead to a particu-
lar type of error where children add rather than subtract one or more of the
partitioned elements. For example, see Figure 14.15.

500 + 60 + 3 500 + 60 + 3
-200 + 40 + 1 -200 + 30 + 1
300 + 20 + 2 can be erroneously calculated as: 300 + 90 + 4

Figure 14.15

This type of error is, of course, a function of the recommended layout,
which incorporates addition symbols between the separate partitions in a con-
text where children are expected to subtract. This could be avoided by relating
the layout to place value cards, where 563 looks like 500 60 3 when the three
components are separated. The resulting calculation would be written as in
Figure 14.16.

500 60 3 500 60 3
-200 40 1 -200 40 -1
300 20 2 leadingto 300 20 2

Figure 14.16



WRITTEN CALCULATION 197

Another problem with this algorithm is that children are expected to be
able to make non-standard partitions, such as 73 = 60 + 13 or 563 = 400 +
150 + 13. Ross (1989) has shown that children generally find this quite
difficult.

Given that a stated aim of the Guidance Paper (DCSF 2006) is to develop
written procedures that build on children’s mental strategies, it is important to
point out that in the extensive literature on children’s idiosyncratic mental
calculation strategies there is, to my knowledge, no example of any child ever
inventing decomposition. This would appear to provide important evidence
that might help explain why children find decomposition so difficult. On the
other hand, counting up (or complementary addition) is the only subtraction
procedure with a built-in natural progression from basic mental strategy
through a range of levels of jottings and informal notation to a more formal
written notation.

One reason for teaching the complementary addition procedure rather
than decomposition is its widespread use in real-life situations, such as giving
change (hence its alternative descriptor, shopkeeper arithmetic); finding the dif-
ference between two given measurements; calculating elapsed time; and so on.
For example, most people would solve time problems using this method: ‘It’s
9.40 now and my train is at 11.25. So how much time have I got? 20 minutes
plus an hour plus 25 minutes...so that’s an hour and three quarters.’
Another reason is the fact that children can choose the size of the chunks
that they decide to add on and the number of steps they take to complete the
task. This can range from the five steps of Figure 14.10 to the two steps of
Figure 14.11 (see Thompson 2010).

Conclusion'

The Guidance Paper — Calculation document needs to be interpreted with care. It
is a great pity that in the early stages of its development the National Numer-
acy Strategy did not set up a research project to attempt to ascertain which of
the wide range of written algorithms incorporated into the framework were
the most ‘child-friendly’.

Note

1 A more comprehensive Conclusion, covering all four basic operations can be
found at the end of Chapter 16.
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15 Progression in the teaching
of multiplication

lan Thompson

Introduction

Take a close look at some of 9-year-old John's answers to a page of multiplica-
tions from his school maths book. See if you can work out what he is doing
wrong before reading on (Figure 15.1).

2 25 15 /7
G2 3 Oele X3
o0 945 WO 2L

Figure 15.1 John’s multiplications.

Notice that John is actually carrying out all of the correct steps in-
volved in the execution of the standard algorithm for multiplication: it is
just unfortunate that he has reversed the order of two fairly crucial steps.
In each example John successfully multiplies the units digits and ‘carries’ the
appropriate tens digit, correctly placing it under the other tens. However, in
the second calculation, for example, instead of saying “Two times three is six,
plus one more makes seven’, he says “Two plus one is three and three times
three is nine’, which unfortunately gives him a totally erroneous solution.

John'’s work provides us with an excellent illustrative example of what
some researchers into children’s errors have found, namely, that the mistakes
that children make in written calculations are generally not random, but are
more often than not the result of consistently following an incorrect or faulty
procedure (known in US literature as a ‘bug’). (For an alternative view of child-
ren’s errors see Ryan and Williams, Chapter 11.) John did not question the
accuracy of any of his answers; so far as he was concerned he was correctly
following the method that his teacher had taught him, and so was quite con-
fident that his answers were correct. If John were using his own method rather
than his teacher’s he might well be getting the right answers.
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Early stages

The expectations for the acquisition of mental multiplication facts set out
in the Primary Framework for Literacy and Mathematics (DfES 2006) progress
through the following stages:

e counting aloud at the Foundation Stage in 2s, 5s and 10s, and count-
ing repeated groups of the same size;

e deriving multiples of 2, 5 and 10, and recalling doubles of numbers
from one to ten in Year 1;

e recalling multiplication facts for the 2, 5 and 10 times tables in Year 2;

e recalling multiplication facts for the 2 to 6 and the 10 times tables
in Year 3;

e recalling all the facts up to 10 x 10 in Year 4;

e recalling all of these facts quickly in Year 5.

Of course, there is more to multiplication than learning tables facts. The
following examples illustrate how children can combine their increasing
acquisition of multiplication facts with previously learned skills and know-
ledge in order to solve suitably targeted problems. The examples are taken
from those used by 59 children from Year 2 (6- to 7-year-olds) and 44 from
Year 3 who were involved in a small-scale research project primarily investigat-
ing addition and subtraction mental calculation strategies. The children had
very little experience of work on multiplication. However, there were some
children whose grasp of number seemed sufficiently developed to warrant
asking them a few basic multiplication questions. Consequently, the range
of strategies was quite restricted and, as might be expected, counting was
very much in evidence. For example, to find, say, three lots of four, several
children inevitably interpreted the problem as an addition, and counted out
all three sets on their fingers, however, other children used more interesting
strategies.
Kevin used doubling in an interesting way to calculate 6 x 6:

Something like 36 . . . six and six makes twelve ... 24 ... 36.
Melissa’s used doubling plus counting on to find 3 lots of 4:
8§...9...10...11...12.

Rebecca extended this strategy when she worked out 6 x 6 by first doubling
six then doubling twelve and finally counting on in ones from 24 to 36.
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One or two children found 4 x 5 by counting in fives. Some researchers
call this ‘step-counting’. Charlotte’s response to 4 x 6 used step-counting
combined with counting-on:

6...12...18...19...20...21...22...23...24.

Other children used a known fact combined with some form of counting. For
example, Camilla used a sophisticated procedure, but made an unfortunate
mistake in the process. Her solution to 6 x 9, a hard calculation reserved for the
more able Year 3 children, went as follows:

Fifty-one . . . six tens are sixty and then I counted down nine.

Her error came from counting down ‘nine’ rather than ‘six’, but her method of
calculation — compensation — was quite ingenious, given that she had never
been taught such a procedure.

One of the most creative examples from the whole project came from
Andrew, an obviously able 7-year-old. Asked to work out four lots of eight he
explained his correct answer in the following way (you may have to read his
answer more than once!):

Three sevens are 21 ... add on all the next ones to get eight. .. you
have three more units, so you get 24. Add on eight and you get . . . 24,
25, 26, 27,28, 29, 30, 31, 32.

Ben used step-counting combined with addition to calculate 13 + 15:
33 ... I counted in fives after fifteen and added three on.

Ben had actually counted on one five too many using this method. It is inter-
esting to note that children appear to make errors very rarely when using their
own personal heuristics. However, an analysis of the thinking involved in
Ben’s solution suggests a potential source of error. He first had to recognize
that fifteen was an element in his five times table and that thirteen comprised
two (or perhaps just ‘some’) fives and a three. Once he started step-counting
from fifteen in fives he also had to keep track of the number of fives he was
counting. One possible reason for his error is that he was distracted by the fact
that the number he had begun counting from (that is, fifteen) contained three
fives, and so this made him count on three rather than two fives. The fact that
several children used this strategy suggests that ‘step-counting’ and the more
difficult ‘step-counting from different starting points’ are useful activities for
teachers to use in interactive whole-class or small-group mental calculation
sessions.
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A deeper understanding of multiplication

In parallel with the learning of multiplication table facts and ways of using
them to solve problems, children need to acquire a deeper knowledge of
multiplication that will help them develop an awareness of modifications
that they can make to the numbers in a calculation that will still give the
same answer as the original numbers: what the Dutch call ‘clever calculating’.
This ‘awareness’ relates to the section entitled ‘Understandings’ in the model
described in Chapter 12, and includes becoming aware that:

e if they know that 4 sevens are 28, then 8 sevens will be twice as
many (56);

e they can find 8 sevens by doubling 7 three times (14, 28, 56)

e if they know that 6 sixes are 36, then they know that 7 sixes are

6 more (42);

e knowing how to multiply by 10 allows them to multiply easily by
20,30,40.. ;

e they can find 14 x 4 by halving 14 and doubling 4, provided that they
know 7 x 8 is 56;

e tomultiply by 25 they can multiply by 100 and then divide by four;

e they can find 14 x 12 by multiplying 14 by 3, then by 2, and then by
2 again because 12 is 3 x 2 x 2 (168);

e they can find 19 sevens by finding 20 sevens and then subtracting
one seven (133);

e they can find 15 thirteens by adding 10 thirteens to 5 (half of 10)
thirteens (195).

With reference to multiplication by 10 mentioned above, official policy, and
that of probably every teacher (plus 99 per cent of mathematics educators) is to
ensure that children do not learn to say that ‘To multiply by ten you just
add a nought (or zero)’ as this can lead to bad habits where children will
extrapolate from this and say that 4.5 multiplied by 10 is 4.50. However, for an
iconoclastic perspective on this issue see Thompson (2003).

The Guidance Paper - Calculation approach to teaching
multiplication

The recommended progression is presented as comprising six stages: mental
multiplication using partitioning; the grid method; expanded short multi-
plication; short multiplication (by Year 4); two-digit by two-digit products
(by Year 5); and three-digit by two-digit products (by Year 6).
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Stage 1 Mental multiplication using partitioning

The document recommends various types of ‘informal recording’ for mental
multiplications. (There seems to be something not quite right about ‘recom-
mended’ informal recording; to me, ‘informal recording’ implies that children
jot down anything that helps them keep track of their calculation or that offers
them support during the calculation process.) However, it is suggested that
children might record a mental calculation such as 14 x 3 in the way illustrated
in Figure 15.2.

14x3=(10+4)x3
=(10x3)+(4x3)=30+12=42

Figure 15.2 Recommended recording of 14 x 3.

I would argue that this procedure is far too formal. Typically, this approach
considers the calculation from a mathematician’s perspective, observing that
the strategy makes use of the distributive law: a ‘law’ that many of us did not
encounter formally until we met algebra in secondary school when we were
taught to ‘expand brackets’ to show that a(b + ¢) = ab + ac. However, the
‘tecommended recording’ totally ignores what we know about how children
think and work. Children’s jottings to support their mental calculation often,
as one might expect, result in written marks that are almost a running com-
mentary on their thinking and ‘working out’ as they happen in real time
(see Thompson 2004). It is a fact that some children in Years 3 and 4 have
an implicit understanding that multiplication is distributive over addition.
For example, Thompson (1993) describes 13 young children’s different
informal written methods for tackling a problem that could be solved either by
adding four 144s or calculating 144 x 4. The four children who solved
the problem using multiplication all showed an implicit understanding of
distributivity (see Andrew’s solution in Figure 15.3).

K bosleo UXlho= I
Y=L ook 1o ML =57

Figure 15.3 Andrew calculating 144 x 4.

However, I doubt whether any of the children would have been able to
express their respective calculations as:

144x4=(100+40+4)x4=(100x4)+ (40x4) + (4 x4) ...
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Just as young children develop an implicit awareness that addition is commu-
tative (that is what is involved in the ‘put the larger number first’ strategy)
without being able to articulate this verbally or on paper, older children simi-
larly become aware of the distributivity of multiplication over addition.
Expressing these laws of arithmetic formally in words or in writing is too dif-
ficult for most young children, and is a particularly redundant exercise in
Stage 1, given that this section is entitled ‘Mental multiplication using
partitioning’.

Stage 2 The grid method

The recommended layout for using the ‘grid’ method - described as a ‘staging
post’ — for the calculation 38 x 7 is illustrated in Figure 15.4.

x 7
30 210
8 56
266

Figure 15.4

I have never been particularly impressed by the National Strategy’s nota-
tion for the grid method, given that different publications draw the grids in
different and sometimes non-user-friendly formats. For example, this notation
is different from that illustrated in the Five Day Course — Course Handbook (DfEE
2001: 87) (Figure 15.5).

« | 30 8 |
7 | 210 s6 | 266

Figure 15.5

The Guidance Paper (DCSF 2006: 13) advises us to ‘place the number with
the most digits in the left-hand column so that it is easier to add the partial
products’, as in Figure 15.4. However, what this advice really means to say is
that ‘this is preparing you for future work on column (standard) multiplication
methods’.

An alternative to the ‘grid’ model is the ‘area’ model. However, although
these two words are often used as synonyms, the recommended layouts in this
section show that the two models are quite different. The grid here is just a
structure built around the numbers in the calculation; it has no contextual
meaning. On the other hand, the area method does. Personally, I prefer
to start with squared paper — working to scale — where (in this case) the
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calculation would involve finding the number of squares in a 38 by 7 rect-
angle. The 38 could be partitioned in various ways: 10+ 10+10+8,20+10+8
or 30 + 8, thereby allowing children some control over the size of the smaller
internal rectangles they would be working with. As the children gain con-
fidence with the concepts underlying the procedure, they can progress to
abbreviating by sketching rectangles that are no longer to scale (Figure 15.6).
These sketches retain the partitioning and distributive aspects of the calcula-
tion, and can provide a useful mental model for more formal methods intro-
duced at a later stage (see Thompson 1996).

30 8
7 210 56
Figure 15.6

Stage 3 Expanded short multiplication

The next stage (if we ignore the two unnecessary intermediate procedures that
the document describes) is shown in Figure 15.7.

38
x 7
210
“s6
266

Figure 15.7

This is described as ‘expanded short multiplication’. It involves operating
with quantities by treating the 3 in 38 as ‘thirty’ and working from left
to right by finding the solution to 30 x 7 first. This written strategy develops
quite naturally from mental multiplication methods and from the area model
(see Figures 15.6 and 15.10) — though less obviously from the recommended
grid models. It partitions 38 into 30 + 8 and multiplies both parts by 7, starting
with the larger partition, following the natural left-to-right way of proceeding
in mental calculation (see Thompson, Chapter 12).

In order to make the arguments in the following sections a little more
easy to follow, I need to provide a brief discussion of place value. It has been
argued elsewhere, with detailed examples (Thompson and Bramald 2002), that
the aspect of place value underpinning mental calculation methods and
informal written procedures is different from that which underpins the stand-
ard (or ‘column’) written algorithms: the former methods involve ‘quantity
value’ (where 56 is interpreted as fifty plus six), whereas the latter procedures
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involve ‘column value’ (where 56 is interpreted as five in the tens column and six
in the ones column). Unfortunately, the Guidance Paper — Calculation fails to
acknowledge that such a difference exists.

Stage 4 Short multiplication

Here ‘The recording is reduced further, with carry digits recorded below the
line’” (DCSF 2006: 13). We are given the impression that there is a smooth
transition between the algorithms illustrated in Figures 15.7 and 15.8.

3

X

2

5

&

(o)}

Figure 15.8

The following argument may appear a little abstruse, but nonetheless it is
quite important from the perspective of the learner. In order to correctly per-
form the algorithm in Figure 15.7 we are informed that the first step in calcu-
lating 38 x 7 is ‘thirty multiplied by seven’, not ‘three times seven’, that is,
working from left to right with quantities. However, for the algorithm in
Figure 15.8 we are told ‘The step here involves adding 210 and 50 mentally
with only the 5 in the 50 recorded’ (DCSF 2006: 13). What puzzles me is
whether or not I am still supposed to be working from left to right. If this is the
case, then surely, having mentally worked out the 210, followed by the 56, I
would want to write down the 6 so that I do not forget it while I'm in the
process of adding the 50 to the 210 as recommended. There seems to be little
point in writing down the 5 (except that we have always done this with the
standard algorithm!).

On the other hand, if I am actually calculating from right to left, then
I need to work out the 8 x 7 first. In this case, would it not be more sensible to
record the 50 somewhere while I am writing the 6 in the ones column and
working out 30 x 7? Doing this will help me remember that I have to add 50
to the answer to 30 x 7. If I write down 5 as suggested, am I not likely to just
add S rather than 50 to my 210? You have to remember that up to this point in
the development of this approach to multiplication, no mention has been
made of working with numbers in columns. All the algorithms covered so far
(plus those to be found in stages 5 and 6) involve working with quantities, not
digits with specific column values.

Given the user-friendliness of the procedure in Figure 15.7 and its close
relation to mental multiplication and the area method, why do we need to
introduce the potentially confusing algorithm for ‘short multiplication’ at all?
Yet again, it would appear to be a throwback to the past: we have always taught
children ‘short multiplication’ before progressing to ‘long multiplication’.
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Stages 5 and 6: two-digit by two-digit products and three-digit by
three-digit products

As Stage 6 merely extends the recommendations in Stage 5 to more challeng-
ing calculations, I shall confine my discussion to the latter.
Here, the grid method is extended to calculations like 56 x 27 (Figure 15.9).

x 20 7
50 | 1000 | 350 | 1350
6| 120 | 42| 162
1512

Figure 15.9

At this stage the grid layout bears some resemblance to the area method
layout (Figure 15.10), but this resemblance soon disappears when the next
stage is introduced (Figure 15.11).

50 6
20 1000 120 1120
7 350 42 392

1512

Figure 15.10 Area method layout (not to scale).

50 6
x 20 7
1000 | 350 | 1350

120 | 42 162
1512

Figure 15.11

In my opinion this layout has now lost any real relationship to what
educators normally refer to as the grid or area method. For example, what
connection do the diagonal moves to find 6 x 20 and 50 x 7 have with the grid
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structure? Obviously, the aim is to prepare children for the final two algo-
rithms in this stage (Figures 15.12 and 15.13).

56
x_27
1000 50 x 20 =1000
120 6x20= 120
350 50x 7= 350
42 6x7= 42
1512
1
Figure 15.12
56
x 27

0 56 x 20
392 56x 7
2

Figure 15.13

The algorithm in Figure 15.12 retains the partial products calculated
in the grid method shown in Figure 15.11. However, no advice is given as
to how to calculate the two separate products (56 x 20 and 56 x 7) shown
in Figure 15.13. I am fairly sure that the vast majority of Year 5 children
would have great difficulty in working out 56 x 7 mentally. As mentioned
above, Stage 6 deals with the multiplication of three-digit by two-digit num-
bers. The reader might like to ascertain the level of difficulty of the recom-
mended algorithm by using this method to calculate 286 x 29 — the calculation
illustrated in ‘Stage 6 Three-digit by two-digit products’ and aimed at Year
6 children.

In Chapter 14 I mentioned the brouhaha created when an earlier ver-
sion of the Guidance Paper proposed that all children should be using trad-
itional standard methods of calculation for the four basic operations by the
time they left primary school. Interestingly, the original document (and the
following one, given that the changes were only to the language and not
the content) does not actually recommend what most people would recog-
nize as the standard algorithm for long multiplication. For example, ‘stand-
ard algorithm language’ for the calculation 56 x 27 would be something
like ‘6 x 7 is 42. Put down the 2 and carry the 4. Next put down a zero. 5 x 7
is 35 .... As can be seen in Chapter 16, exactly the same applies to the
standard long division algorithm. Perhaps some of the negative publicity
could have been avoided if the document’s authors had acknowledged this in
the first place!
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Conclusion

A general conclusion covering all four basic arithmetical operations is included
in Chapter 16, ‘Progression in the teaching of division’.
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16 Progression in the teaching
of division

lan Thompson

Introduction

There is a delightful sequence in an old Horizon TV programme entitled
‘Twice five plus the wings of a bird’ where pre-school Tom is baking a dozen
cakes supervised by his mother. Just as he is about to put the cakes in the
oven his mother reminds him who is coming to dinner and asks how many
cakes each person will be able to have. Tom says that there are 12 cakes and
six people for dinner. When pushed to say how many there will be for each
person he counts the cakes, saying ‘You can have 1, 2, 3, 4...Ican have 1, 2,
3, 4...Auntie can have 1, 2, 3, 4'. His mother then asks what dad, Brondy
and Simon are going to say. Tom'’s instant reply is ‘They can have nothing!’
During the brief excerpt we see Tom make the discovery that ‘Six and six
makes 12’; he has clearly learned something about addition. However, he
has some way to go yet before we can say that he has learned something
about division!

Early stages

The build-up to written division in the Primary Framework for Literacy and
Mathematics (DfES 2006) is fairly gradual (although not gradual enough for
Anghileri and Beishuizen 1998). The first reference to activities that are div-
ision related appears in the 40-60+ months section of the Practice Guidance for
the Early Years Foundation Stage (DfES 2007: 69) where we are informed that
children need to ‘Share objects into equal groups and count how many in each
group’. The Framework (DfES 2006: 94) informs us that most children in Year 1
will learn to ‘Solve practical problems that involve...sharing into equal
groups’. Having also learned the doubles of numbers 1 to 10 in Year 1 children
are expected to learn the corresponding halves in Year 2 and be able to ‘derive
and recall . . . division facts’ for the 2, 5 and 10 times tables. They will also
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‘represent sharing and repeated subtraction (grouping) as division’ and will
learn to deal with calculations involving remainders.

A deeper understanding of division

Over time children need to come to appreciate the following: that sharing
situations can be represented by division (how many bricks does each child get
if there are 12 bricks and 4 children?); that grouping (repeated subtraction)
situations can also be represented by division (how many children can get
4 bricks if there are 12 bricks?); and that division and multiplication are
inverse operations (3 x4=12s012 + 4=3).

Also, in addition to knowing all the basic division facts and the knowledge
described above, children need to develop a sufficient level of confidence with
division so that they become aware that:

e they can find 36 + 4 (a quarter of 36) by halving and then halving
again;

e if12+3is4,then12+4is3;

e if12+3is4, then 24 + 3 is twice as many and 6 + 3 is half as many;

e if 12 + 3is 4, then 24 + 6 will be the same, as will 48 + 12;

e 96 +4isthesame as 80 + 4 added to 16 + 4;

e knowing how to divide by 10 allows them to divide easily by 20,
30,40...

The Guidance Paper - Calculation approach to teaching
written division

In the introductory section to division on page 16 of the Guidance Paper —
Calculation (DCSF 2006) we are informed that: ‘These notes show the stages
in building up to long division through Years 4 to 6 — first long division TU + U,
extending to HTU + U, then HTU =+ TU, and then short division HTU + U.
This progression seems to me to be somewhat ‘logically challenged’: why
cover long division before short division? Surely, if children can successfully
carry out a long division calculation using a procedure that produces a correct
answer, then they can use that same procedure for short division — which
is likely to involve an easier calculation. However, the actual five-part sequence
of stages set out on subsequent pages is slightly more logical (although still
questionable): mental division using partition; short division of TU + U;
expanded method for HTU + U; short division of HTU + U; and then long
division.
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Stage 1 Mental division using partition

It is recommended that children record mental division as illustrated in
Figure 16.1.

87 +3 =(60+27) +3
= (60 +3)+(27 + 3)
=20+9
=29

Figure 16.1

I see several conceptual difficulties with this suggestion, over and above
the inappropriate formality of the notation, which is, after all, supposed to be
the recommended recording for a mental calculation. The Guidance Paper
(DCSF 2006: 17) informs us that ‘Many children can partition and multiply
with confidence. But this is not the case for division’. A reason given is that the
correspondence to mental multiplication methods has not been sufficiently
stressed. For me, the main problem concerns the limited distributivity of div-
ision. Multiplication is both left and right distributive over addition (and sub-
traction), whereas division is only right distributive. This means that, because
12=4+8, then 7 x 12 can be calculated as (7 x 4) + (7 x 8), and, because 7 =3 +
4, then 7 x 12 can be calculated as (3 x 12) + (4 x 12), that is, either number can
be partitioned. However, although 84 + 7 is equivalent to (70 + 7) + (14 + 7), it
is not equivalent to (84 + 4) + (84 + 3). This situation suggests many opportun-
ities for children to make inappropriate partitions: they need to remember that
only the dividend (the number being divided) and not the divisor can be
partitioned. Much work will need to be done to explore this aspect of division.

The second problem with this algorithm is that children are expected to
be able to make non-standard partitions, such as 73 = 60 + 13 or 563 = 400 +
150 + 13. Ross (1989) has shown that children generally find this difficult (this
is also discussed in Chapter 14 in the context of subtraction). Also, if the wrong
partition is made, the result can be somewhat ‘messy’ (see Figure 16.2) even
though (in theory) you should still get the correct answer.

87+3=(50+37)+3
=(50+3)+(37+3)
=167+ 12V
=29

Figure 16.2

Anghileri (2001) shows the workings of a child calculating 1256 + 6 by
finding, separately, 1000 + 6, 200 + 6, 50 + 6 and 6 + 6. These work out,
respectively, to 106 R2, 21 R2, 8 R2 and 1, and are then added to give 136 R6.

This requirement for a formal approach to mental calculation is found
in the official recommendations for each of the four basic operations. I have



PROGRESSION IN THE TEACHING OF DIVISION 213

argued in other chapters that this demands that children make a ‘statement
ofintent’ and ignores the fact that research suggests that children’s jottings are —
inevitably — more like a ‘running commentary’ (see Thompson, Chapters 14
and 15). I would also argue that the level of ability of a child able to correctly
partition 81 into two parts each of which is exactly divisible by three is such
that they would not need to write anything down, as they would be able to
complete the calculation completely in their head. A more typical approach
would be to:

e scrutinize the 81 (or even 82, 83, 84 . . .) and recognize that there is a
60 in there;

e divide the 60 by 3;

e jotdown 20;

e take 60 from 81 (or 82, 83,84 .. .);

e divide 21 (or 22, 23,24 ...) by 3;

e jotdown 7 (or 7 remainder 1, 7 remainder 2, § . . .);

e add the two jotted numbers (20and 7 . . .).

Stage 2 Short division of TU + U

I have written elsewhere (Thompson 2003) about different interpretations of
short division — both as a concept and as an algorithm. This Guidance Paper
(DCSF 2006: 18) states that for the calculation 81 + 3 the short division
method is to be recorded as in Figures 16.3 and 16.4.

20+ 7
3)60 + 21

Figure 16.3

This is then to be shortened to:

27
387

Figure 16.4

We are informed that ‘The carry digit “2” represents the 2 tens that have been
exchanged for 20 ones’ (p. 18).

Interestingly, this is the first time that the concept of ‘exchanging’ has
been mentioned in the entire document, despite the fact that there is a
detailed section on subtraction (see Thompson, Chapter 14). Written subtrac-
tion algorithms are often based on a model that involves base-ten materials
and the exchange of ‘flats’ for ‘longs’ (hundreds for tens) and ‘longs’ for ‘ones’.
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In the 1970s the language of ‘exchanging’ in subtraction superseded that of
‘borrowing’ (although mathematics educators in the USA still use the latter).
The subtraction method recommended in this document, however, is based
on the concept of ‘re-partitioning’ (although the word is never actually used).
Consequently, the progression from the notation in Figure 16.3 to that in
Figure 16.4 involves an unacknowledged conceptual shift from partitioning to
exchanging. Given the difficulties that children experience with exchanging
in subtraction, even when preparatory work has been done with base-ten
materials (Hart 1989), it is difficult to believe that the recommended progres-
sion in division will be any more successful.

This progression also involves a shift from the quantity value aspect of
place value (80 and 1) to the column value aspect (8 tens and 1 one) discussed
in more detail in Chapter 14 by Thompson. However, this particular shift is
slightly more complicated, in that children have to be able to partition 81 into
60 + 21, as illustrated in Figure 16.3, and then switch to interpreting 81 as
6 tens and 21 ones. Also, as discussed above, the partition has to be such that
both parts are known to be exactly divisible by three (70 + 11 or 50 + 31 would
not be particularly helpful). Given the research mentioned above (Ross 1989)
that children have great difficulty making non-standard partitions such as
81 =60+ 21, it would also be useful to know whether children find the idea of
81 being equivalent to 6 tens and 21 ones difficult.

Stage 3 ‘Expanded’ method for HTU + U

The recommended method here is the one we have come to know as ‘chunk-
ing’ (or ‘chunking down’), where multiples of the divisor are subtracted from
the number to be divided, that is, the dividend) (see Figure 16.5).

6196
- 60 6x10
136
- 60 6x10
76
- 60 6x10
16
~12 6x 2
4 32
Answer: 32R4
Figure 16.5

Having done some preliminary work on the development of estimation
strategies, children are expected to progress to the following, more succinct
notation:
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6196
- 180 6x30
16
-12 6x 2
4 32
Answer: 32 R4
Figure 16.6

The way in which the procedure is presented in the document gives the
impression that it comes in just two forms: you either repeatedly subtract
the smallest multiple of ten of the divisor or you subtract the largest. In fact, the
strength of the chunking algorithm lies in its great potential for differentiation:
it allows for a range of levels of sophistication in children’s confidence and
understanding, in that the less confident can remove small chunks; the more
confident can take away larger chunks; and the most confident can subtract
the maximum-sized chunks.

Stage 4 Short division of HTU + U

In addition to the issues raised above concerning the introduction of short
division in Stage 2, the following question is offered: why do we need to teach
a conceptually difficult strategy for dividing a three-digit number by a single-
digit number when the chunking method introduced in Stage 3 for solving
three-digit by two-digit divisions is much easier to understand, allows for
differentiation and is probably more effective?

Stage 5 Long division

For most children long division will be introduced in Year 6. The recom-
mended method involves estimating to find the maximum amount to sub-
tract initially, as in Stage 3, and then continuing with the standard chunking
procedure (see Figure 16.7).

24 [560

20-480 24 x 20
80

3 72 24x 3
8

Answer: 23 R8

Figure 16.7

One reason offered for the rather strange positioning of the 20 and the 3
down the left-hand side is to keep the links with ‘chunking’ — although I would
have thought that the notation down the right-hand side, and the calculation
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procedure itself might already be doing that! A second reason given is that it
reduces the errors that tend to occur with the positioning of the first digit of
the quotient. Because the first digit of the quotient is 2 — written as 20 on both
the right- and the left-hand side in Figure 16.7 — I have difficulty in under-
standing what this talk of ‘positioning’ is all about. Also, as the answer is to
be written at the bottom of the procedure, the extra inclusion of the 20 and
the 3 down the left-hand side seems to be adding another level of potential
confusion.

23

24J560

- 480

80

-72

8
Answer: 23 R8

Figure 16.8

The document then argues that the notation illustrated in Figure 16.8 is,
in effect, the standard long division method. However, the language and
thinking associated with the chunking method runs something like: I need to
find out how many 24s there are in 560. I know that there are ten of them in 240 and
so there are twenty of them in 480. If I take this from 560 I get 80. Two 24s are 48, so
four 24s are 96 — but this is too big. 48 plus 24 is 72, and 72 from 80 leaves 8. So, the
answer is 20 and 3, that’s 23, remainder 8. On the other hand, the procedure
involved when using the standard long division algorithm demands a very
different way of thinking and reasoning. It utilizes a different vocabulary and
a different aspect of place value: it involves a shift from quantity value to
column value.

The patter associated with the standard algorithm goes something like:
24 into 5 doesn’t go. 24 into 56 goes twice. Two 24s are 48, so write 48 under the
56 and subtract to leave 8. Write the 2 on the top line above the 6 of 560, and
bring down the zero of 560 to make 80. Three 24s are 72. Write the 72 under the
80 and the 3 on the top line above the zero of 560. Subtracting 72 from 80 leaves 8,
so the answer is 23 remainder 8. 1 would agree that the resulting written work
looks almost exactly like that in Figure 16.8 (except that there would be no
zero after 48). However, the reasoning, the place value interpretation, the con-
cepts underpinning the procedures and the accompanying patter are very dif-
ferent indeed. This suggests that there is not a particularly smooth transition
from the language and reasoning associated with chunking to the language of
the standard algorithm.
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‘Chunking down’ or ‘chunking up’?

The educational reasons given for the teaching of this algorithm (chunking
down) appear to be sound: the method does not demand that children follow
a prescribed set of steps in a specific order; the least able children can find the
answer by subtracting small chunks, whereas the more confident can subtract
larger chunks; because the children are in control of the size of the chunk
they choose to subtract, the procedure provides a level of differentiation that is
not possible with the standard algorithm. The examples shown in Figure 16.9 —
which progress from the least to the most compact - illustrate a range of
approaches to the calculation 977 + 36 using chunking.

977 977 977 977 977 977
=36 1 _-72 2 -360 10  -360 10  -720 20  -720 20
941 905 617 617 257 257
36 1 _-72 2 -360 10  -360 10 180 5 252 7
905 833 257 257 77 5
36 1 72 2 36 1 180 5 72 2 27Rs
869 761 221 77 5
-36 1 =72 2 =36 1 =72 2 27 R5
833 689 185 5
...27R5 ...27R5 ...27R5 27 R5

Figure 16.9

The more sophisticated the strategy (that is, the larger the chunks) the
fewer subtractions are needed. However, a particular problem with the argu-
ment that one of the strengths of the procedure lies in the fact that children
can remove chunks of any size that they choose is that the least confident
children, when subtracting small chunks, as in the first example above, actu-
ally make 27 subtractions. This, of course, provides 27 opportunities for mak-
ing a subtraction error, whereas the more confident children only make two,
three or four subtractions. It is also likely to be the case that those children
performing many subtractions are the very children who have difficulties with
that particular operation.

Given that subtraction is more difficult than addition, it would seem sens-
ible to try to develop an algorithm for division that depends on addition and
multiplication; this method is called ‘chunking up’ or ‘complementary multi-
plication’. Two different ways of introducing this procedure can be found in
Thompson (2005). Inevitably, some preparatory work needs to be done to
develop the prerequisite skills for this procedure and to build up children’s
confidence and competence with calculations involving smaller numbers.
These prerequisite skills are doubling, halving, multiplying by 10, accurate
addition and a good sense of the relative size of numbers.
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Borthwick and Harcourt-Heath (2007) analysed the answers of 995 chil-
dren on four Year 5 Qualifications and Curriculum Authority test questions.
They repeated the analysis two years later using the same questions with a
cohort of 1068 children. On the second occasion 28 per cent of the children
achieved the correct answer on the division question — an increase of 7 per cent
over the previous cohort. Interestingly, the number of successful children
using the ‘chunking up’ strategy was greater by almost 50 per cent than the
number of successful children using any other strategy.

Conclusion

An Ofsted report on the teaching of calculation in primary schools (Ofsted
2002: 3) states the following: ‘However, at Key Stage 2 they [teachers] often
overlook the importance of linking pupils’ mental strategies to the introduc-
tion of expanded and compact written method.” This belief in a natural pro-
gression from mental methods to compact (standard) algorithms permeates
many National Numeracy Strategy (NNS), Primary National Strategy (PNS),
Qualifications and Curriculum Development Agency (QCDA) and Her Maj-
esty’s Inspectorate (HMI) publications. However, the arguments presented in
this chapter and Chapters 14 and 15 suggest that this progression is not as
natural as it first appears to be, and that more thought needs to be given to —
and more research carried out about — the ‘seamless links’ suggested in the
Guidance Paper and elsewhere.

Moreover, there is too much emphasis in the document on advancing
children to compact methods for all four basic operations as quickly as pos-
sible. For the vast majority of children it would be more useful to focus particu-
larly on algorithms that, unlike compact algorithms, have in-built variability
that allows for the important principle of differentiation. The following
algorithms fit neatly into this category: front-end addition, subtraction by
complementary addition, multiplication by the grid method and division by
chunking (‘up’ or ‘down’) (see Thompson 1996).

Another important aspect of the discussion is that often what appears
to be logically or mathematically sound is not necessarily always pedagogically
sound. Many of the recommendations in the Guidance Paper are made from
the perspective of the experienced, mathematically literate adult, without
taking into account the available research findings about how children
develop calculation strategies and learn written procedures. This situation
obtains particularly with reference to the final step in the recommendations
for each of the four basic arithmetical operations, when children have to com-
plete the progression to the compact (that is, standard) method. In each case
this step involves a major shift in the way the digits in the numbers are inter-
preted: a shift from treating them as quantities to treating them as digits in
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columns. Work needs to be done on ways of helping children to make this
important step.

In a seminal article written more than 30 years ago, Plunkett (1979: 4)
argued that the reasons for teaching standard algorithms were out of date
then, and that their use led to frustration, unhappiness and a deteriorating attitude
to mathematics.

Plus ¢a change, plus c’est la méme chose!
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SECTION S5
Special needs issues

The final section of this edited collection comprises two chapters that address
issues at both ends of the attainment spectrum: one is written by members of
the Every Child Counts team and focuses on intervention; the other examines
a range of issues pertaining to that group of children identified as the ‘gifted
and talented’.

In 2008, the Williams Review recommended that a new Wave 3 numeracy
intervention be developed to provide one-to-one, teacher-led support for
those children in Key Stage 1 who had the greatest difficulties with mathe-
matics. The outcome of this recommendation was Numbers Count, a new
numeracy intervention that was launched at the start of the school year
2008-09. Chapter 17 is written by Sylvia Dunn, Louise Matthews and Nick
Dowrick, members of the Every Child Counts team that developed this inter-
vention. The authors describe the background to and development of the
Numbers Count intervention explaining how it makes use of diagnostic
assessment and multi-sensory resources, and involves close liaison with the
children’s parents and class teachers. The results of the first cohort are dis-
cussed, and the authors argue that their findings have implications that are
relevant to all classroom teachers as well as those working in one-to-one
interventions.

In the final chapter, John Threlfall addresses a few questions about the
concept of the ‘gifted and talented’, by attempting to identify the nature of the
issue, and by asking who the gifted and talented children actually are, how
those identified in this way appear to learn, what their specific needs might be
and how we might cater for these needs. Several pages are devoted to the
important issue of ‘acceleration or enrichment’.






17 Numbers Count: developing
a national approach to
early intervention

Sylvia Dunn, Louise Matthews and
Nick Dowrick

Introduction

Every year since the National Numeracy Strategy was launched in England in
1999, about 6 per cent of children have achieved below National Curriculum
Level 3 in mathematics when they leave primary school; this means that about
35,000 11-year-olds have been at least four years behind national expectations
every year (DCSF 2008). If children’s difficulties in mathematics become
entrenched, they generally persist through secondary school and into adult-
hood and have a serious impact on life chances. Adults with the lowest level of
numeracy skills are the most likely to be unemployed or to have low incomes,
to have long-term health problems including depression, and to be in prison
(Gross 2009); their own children are also likely to struggle with numeracy so
that problems pass from one generation to another (Moser 1999). Most of
these problems are more strongly associated with low numeracy than with low
literacy. So it is important that children who fall behind in mathematics are
supported to ‘get back on track’ early in their school careers and that they
develop the skills that will enable them to continue to learn mathematics
effectively thereafter.

There has been growing international interest since the 1990s in the use
of intensive intervention programmes to help children who have difficulties
with mathematics. Dowker (2004: v) examined a variety of interventions and
concluded that: ‘Children’s arithmetical difficulties are highly susceptible to
intervention. Individualized work with children who are falling behind in
arithmetic has a significant impact on their performance.’ She recommended
that interventions are best carried out at a very early stage in a child’s math-
ematics education, both to correct any misconceptions that the child may
have acquired and to avoid the child developing an anxiety that could impede
further learning.
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In England, the Primary National Strategy (DfES 2005) introduced the
‘waves’ model of teaching to suggest how interventions might be organized in
school. This can be summarized as:

Wave 1 ‘Quality first teaching’ in a daily mathematics lesson for all
children;

Wave 2 Targeted small-group interventions for children who are
expected to be able to catch up with their peers;

Wave 3 More intensive, individualized or specialized support for
children for whom Waves 1 and 2 are insufficient.

A variety of Wave 3 mathematics intervention programmes were used in
schools throughout the country in the early 2000s (reviewed in Dowker 2004;
DCSF 2008), without any one scheme predominating. In literacy, on the other
hand, the Every Child a Reader initiative began to achieve remarkable success
on a national scale from 2005 in tackling underachievement through the use
of the Reading Recovery intervention.

In 2008, the Independent Review of Mathematics Teaching in Early Years Set-
tings and Primary Schools (the Williams Review) (DCSF 2008) recommended
that a new Wave 3 numeracy intervention should be developed in England to
provide one-to-one, teacher-led support for children in Key Stage 1 who had
the greatest difficulties with mathematics, based on the model of Every Child a
Reader. Unlike Every Child a Reader, however, which was built around the
long-established Reading Recovery intervention originally developed in New
Zealand (Clay 2005), Williams advised that the new Every Child Counts initia-
tive should not adopt an existing numeracy or mathematics intervention
because he did not feel that any one scheme exhibited all the features essential
for success. He recommended that the new intervention should make use of
diagnostic assessment and multi-sensory resources, and involve full liaison
with children’s parents and class teachers.

The Every Child Counts team researched a large number of existing inter-
ventions, including three that were particularly commended by Williams:

e Mathematics Recovery (Wright 2008) was first developed in Australia
in the 1990s, drawing on original research into mathematics learn-
ing in the USA. It was particularly successful in the north-west of
England.

e Numeracy Recovery (Hackney Learning Trust, unpublished) began
in London in 2002 by adapting the principles and practices of
Reading Recovery to mathematics. It successfully spread to a number
of authorities in the south east.

e Multi-Sensory Mathematics (Education Leeds, unpublished), was
started in Leeds in 2006 as a collaboration with the publishers of
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Numicon materials. Its approaches were successfully adapted in a
number of other authorities.

The outcome of the Every Child Counts team’s research and Williams’s
recommendations was Numbers Count, a new numeracy intervention that
was launched at the start of the school year 2008-09. Its diagnostic assessment
drew upon the Numeracy Recovery approach of a wide-ranging, confidence-
building exploration of what a child already knew, and was informed by
Mathematics Recovery’s identification of key aspects of early number know-
ledge that should be assessed. A problem-based approach to teaching and
learning rooted in a constructivist model of learning (Wright 2000) was
adopted, as in Mathematics Recovery, and was influenced by Numeracy
Recovery’s emphasis on creativity and stimulus and by the Multi-Sensory
Mathematics lesson structure and use of multi-sensory resources to develop
children’s concepts of number. Strategies for regular liaison and communica-
tion between Numbers Count teachers and children’s parents and teachers,
including invitations to observe Numbers Count lessons, were developed after
learning from the experiences of both Mathematics Recovery and Numeracy
Recovery teachers.

‘Numbers Count’ in action
Children as learners

The Numbers Count programme is underpinned by a belief in a social con-
structivist model of learning. Children are seen as active learners who seek to
make sense of their world and who try to build on what they know and believe
already when presented with new mathematical experiences. Reasons for
adopting a social constructivist model of learning include:

e Mathematics is based on logico-mathematical reasoning. This reason-
ing cannot be transmitted from one person to another but has to be
developed by each individual in their own mind; the importance of
developing logico-mathematical reasoning is often overlooked when
teaching children with difficulties. Nufies et al. (2007) carried out a
small-scale project with low-attaining Year 1 pupils which showed
that teaching aimed at helping children develop these understand-
ings can have lasting benefits on the attainment of the children
involved.

e Successful learners are autonomous and can take responsibility for
their own learning; children with difficulties in mathematics may
have become accustomed to a passive role in learning and to reliance
on the teacher or teaching assistant.
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e Children’s understanding develops when they can exchange view-
points and think critically about their own ideas in relation to other
people’s views. Although Numbers Count is a one-to-one interven-
tion, the teacher engages the child in dialogue which encourages
them to critically examine their own beliefs about mathematics. One
outcome of the intervention is that children are seen to participate
more readily in discussions within the classroom.

A key principle of Numbers Count is that children learn mathematics through
solving problems. This does not mean that they should be constantly complet-
ing mathematics puzzles or word problems but that they are given tasks that
are, for them, challenging and require them to think in reaching a solution.
Activities should be pitched just beyond what the child can already do com-
fortably. This principle also underpins other successful intervention initiatives
such as Mathematics Recovery and Reading Recovery.

Diagnostic assessment

The key to the success of Numbers Count is the personalized teaching pro-
gramme, delivered by a highly skilled teacher. No two children have the same
skills, strengths, needs and ways of seeing the mathematical world. In order to
meet the unique needs of each child, the individualized teaching programme
can only be designed after a detailed assessment of each child’s mathematics
learning. Diagnostic assessment to inform teaching is a critical ingredient of
the intervention. Wright (2008) argues that a detailed assessment of children’s
current knowledge and strategies is an essential first step in the development
of a successful early mathematics intervention programme. The Numbers
Count entry assessment phase includes a comprehensive diagnostic assessment
that lasts for approximately seven days. It has two purposes:

1 To help the teacher to find out more about the children: to enable the
teacher to find out more about what the children can do and how they
do it; to find out which aspects of mathematics they are competent
with; to find out which aspects of mathematics they are confident
with and willing to ‘have a go’ with; to find out about what helps
them to learn and what equipment, models and images they are
familiar and competent with; to listen to the mathematical lan-
guage they use, and how they explain their thinking and the reasons
for choices made; and to find out more about their attitudes to
mathematics.

2 To help the children to make a positive start to the intervention: to
provide immediate success for them; to help the children to ‘know
what they know’, so that they can be helped to build on this know-
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ledge and understanding; to establish good relationships and expect-
ations and a safe learning environment where the children are con-
fident to take risks with learning; to settle the children into the
programme, familiarizing them with the environment, the teacher
and the resources; and to establish that the sessions will be enjoyable
and fun.

The diagnostic assessment is designed to enable teachers to develop an in-depth
analysis of the child’s mathematical understanding. It provides opportunities
for exploration of how the children make sense of the mathematical world and
how they have constructed mathematical meaning. During this series of les-
sons the teacher deliberately avoids teaching any new skills or concepts and
stays with what the child already knows how to do. This is similar to the
Reading Recovery intervention, in which ‘Roaming around the known'’ is used
by the teacher to establish what the child can do well and how the child
responds to different tasks. As Clay (2005: 33) argues: ‘The most important
reason for “Roaming around the known” is that it requires the teacher to stop
teaching from her preconceived ideas. She has to work in ways that will suit
each child, working with what he is able to do.’

The teacher has to learn to listen carefully to the child, to suppress the
need to start teaching when misconceptions are displayed and above all, not
to jump in when the child is thinking - even if, like many teachers, she is a
‘compulsive silence breaker’! The teacher has to begin the diagnostic phase
with the underlying belief that the child is trying to make sense of the world
and to create meaning from experiences. If you begin with the assumption
that the child does not construct knowledge but simply absorbs (or fails to
absorb) it from others, then you are unlikely to realize that what seems
deficient and possibly bizarre, nevertheless serves some useful function for the
child, and may even result from sensible thought (Ginsburg 1997). For
example, when one child was using toy cars to make pairs of numbers with a
total of four, he partitioned the four cars into two sets, one containing one car
and one containing three cars. When asked how many cars he had altogether
he said ‘thirteen’. One may conclude from this that the child knew nothing
about addition or was guessing. Further investigation revealed that the child
was trying to apply a sensible strategy from a previous encounter with
partitioning where a 1 and a 3 came together to make 13.

It is important during the diagnostic phase to investigate children’s
answers to problems and ways of thinking in order to see how the problem
makes sense to the child. Otherwise, according to Ginsburg (1997: 118), you
will ‘miss what is of value in what the child says and the child is unlikely to say
much of value’. One strategy that has proved extremely successful for diag-
nostic assessment is the use of the puppet as a ‘third person in the room’.
This seems to enable the child to reveal more about their thinking and the
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strategies they are using. One child had already demonstrated that he could
orally count back accurately from 15 to 1, but when asked to count back from
20 he consistently responded with 20, 90, 80, 70, 60, 50, 40, 30, 12, 11, 10, 9, 8,
7,6,5,4,3,2,1. Apuppet was used to make some counting errors for the child
to identify and correct. To establish that the child understood the task a simple
sequence was used initially.

Puppet: I'm going to count forwards in ones from 3.
Child: OK.

Puppet: 3,4,5,6,8,9...

Child: STOP you did it wrong! (Interrupting confidently)
Puppet: What did I do?

Child: You missed out seven!

Puppet: Can you show me how to do it?

Child: 3,4,5,6,7,8,9,10

Puppet: I'm going to count backwards from fifty in tens.
Child: That will be too hard for you.

Puppet: 50, 40, 30, 12, 11, 10, 9

Child: Stop (Interrupting hesitantly)

Puppet: Why did you make me stop?

Child: Because he went from 30 to 20 to 19, err. .. 9.
Teacher: What should come after 30?

Child: 40.
Teacher: When you're going backwards.
Child: 12.

Teacher: 127

Child: No, 20.

Teacher: You do it for him then.

Child: 50, 40, 30, 20, 10,0

Puppet: You are really good at counting.

Child: You mix up 20 and 12 and I sometimes do that.

Puppet: Can you count backwards in ones from 20?

Child: Yes 20, 90, 80, 70, 60, 50, 40, 30, 12, 11, 10,9, 8,7,6,5,4, 3,2, 1.
I think that’s right or I might have done it again.

By drawing attention to the errors of the puppet, the child had the oppor-
tunity to think about his own counting errors and to verbalize them with-
out having his own errors highlighted by the teacher. The teacher could
still ask questions to probe the child’s understanding and was able to find
out more about the child’s knowledge and understanding of counting. The
child could correct the puppet when it was a counting sequence that he was
confident with, but he was more hesitant in the counting back in tens
from 50.
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Multi-sensory teaching

Numbers Count is an intervention in which the adult and the child establish a
‘co-construction’ of meanings through scaffolding children’s learning, using
carefully planned interaction and appropriate resources. The Numbers Count
teacher establishes which types of resources would most effectively support
each individual child in constructing knowledge and understanding of math-
ematics and then considers the types of structured adult interaction that
would accelerate development. Children in the programme almost invariably
need to develop a concept of number. It is actually quite difficult to define a
concept for ‘five’ and it is (mercifully) not necessary that we define ‘five’ in
order for children to develop a useful understanding of what adults refer to
when they use the word (Wing 2006). For example:

e we can count to five;

e we can give a child five sweets;

e we can point to a pattern on a domino;

e we can introduce a structured image for five;
e we can tell a child he is five;

e we can sing about five speckled frogs.

We can also talk about and show ‘one less than six’ and ‘one more than four’
and 2 + 3. In these and infinitely more varied ways we can keep offering chil-
dren experiences that will link with each other in their mind.

Through common language and through increasingly powerful numerical
insights children will construct a concept image of ‘five’. The concept image is
something non-verbal associated in our mind with concept name. It can be
a visual representation or a collection of impressions or experiences and will
vary between individuals (Vinner 1992). Numbers Count uses structured
imagery including Numicon to develop concept images. Numicon is a form of
apparatus that lends itself to multi-sensory teaching, integrating the auditory,
visual and kinaesthetic modalities. The shapes represent numbers in a series of
structured patterns.

This resource enables children to see relationships between numbers and
to see numbers as objects, not just the end of a count. If a child only experi-
ences numbers through counting, then he knows that the last number word
used tells him how many things he has counted, that is, he sees numbers as
adjectives (describing the set) but not as nouns. Gray (2008) explores this
further by referring to numbers as processes and concepts and by developing
the notion of the ‘procept’. He states that children who are stuck on count-all
strategies for addition are stuck on seeing the process embedded in each sym-
bol but that children who count-on are treating the first number as an object
(or concept) and the second number as a process, that is, seeing numbers as
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procepts. Children cannot begin to develop counting-on strategies until they
develop secure number concepts and this development can be enhanced
through the use of structured imagery, which helps children to develop con-
cept images.

Thompson (2008: 99) also explores the complexity of counting-on by
describing it as the cardinal/ordinal switch followed by the ordinal/cardinal
switch: ‘the cardinal number 5 in 5 + 6 is transformed into an ordinal num-
ber so that the count can be continued to 11, then the ordinal number 11
is converted back to a cardinal quantity to give the answer’. It appears that
a child, who can only see numbers as ordinal, cannot be expected to mas-
ter the complex strategy of counting-on until he can see numbers as cardinal.
The use of structured apparatus can support children in developing cardinality
as they develop concept images of the numbers and start to see them as
wholes.

As in all teaching, the success depends on how resources are used not just
on the resources themselves. Coltman et al. (2002) used the notion of scaffold-
ing and working within the child’s ‘zone of proximal development’ in a study
that showed how structured adult intervention increased the effectiveness of
learning and the development of secure and transferable concepts. Even
though they acknowledged the importance of free play, they stated that chil-
dren alone cannot discover all the important knowledge through manipula-
tion of resources; they learned more effectively through carefully structured
joint activity with experienced others. The Numbers Count teacher’s role
in developing understanding of mathematics is to plan these activities to
help the child to build up connections between new experiences and pre-
vious learning. Learning without making connections can be referred to
as rote learning or learning without understanding. Children need to build
up a complex network of connections between language, symbols, concrete
materials and pictures (Haylock and Cockburn 2008) in order to understand a
mathematical concept (see Delaney, Chapter 5).

Partnership with parents and carers

Developing a partnership with the child’s parents and carers is essential in
enabling the child to make progress while they are on the Numbers Count
programme and in helping them to continue to learn in the future. This can,
however, be difficult for teachers to achieve as the parents and carers of these
children include many seen by the schools involved as hard to reach. Parents
are welcomed into Numbers Count lessons and home-school books are
used to encourage dialogue between the parent and the teacher (see Winter,
Chapter 9). Children are given games and other activities to take home to play
with their parents and siblings. The purpose of these is to encourage parents to
talk to their children about what they are doing in mathematics and to enable



NUMBERS COUNT 231

them to enjoy sharing games with them, not to turn parents into teachers. The
activities sent home are personalized both to the child and to the family so
that they are more likely to be used at home. One Numbers Count teacher
found that the child’s mother only really had time to play with the child when
she was bathing her. She devised a waterproof game to practise number bonds
that was sent home and used successfully with the child.

Outcomes in the first year of Numbers Count

In its first year (2008-09), 2621 Year 2 children took part in Numbers Count,
supported by 207 teachers in 27 local authorities across England. They were
chosen by their schools because they had the lowest mathematical achieve-
ment in their class: their number ages were an average of 11 months behind
their chronological ages when they began Numbers Count (see Table 17.1).

This means that in only their second year of formal schooling they had
already fallen about a year behind their classmates. Their teachers predicted
that, without specialist help, the children would soon fall even further behind
and none of them would meet the national target of National Curriculum
Level 2 in mathematics at the end of Key Stage 1.

The children received an average of 40 individual, half-hour Numbers
Count lessons in a term, including their initial diagnostic assessments. They
took standardized numeracy tests on entry and exit to the programme, and
follow-up tests three months and six months later. Table 17.1 indicates that
their number ages had caught up with their chronological ages by the time
they exited from the programme. In other words, 20 hours of one-to-one sup-
port in one term not only stopped the lowest-achieving children from falling
further behind but also enabled them to make 14 months of progress and to
catch up with their classmates. Not only this, but they also continued to make
good progress through their normal class lessons in the months after exiting
Numbers Count, so that in their follow-up tests their number ages had moved

Table 17.1 Number ages and chronological ages

Programme Programme 3-month 6-month
entry exit follow-up follow-up
Number age 70.0 83.5 86.4 87.9
Chronological age 80.6 83.5 85.3 86.7
Number age -
chronological age -10.6 0 +1.1 +1.2

All ages shown in months.
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over a month ahead of their chronological ages. This progress was reflected in
the Key Stage 1 assessments at the end of Year 2: 72 per cent of the children
who had completed a Numbers Count programme were assessed as achieving
National Curriculum Level 2 in mathematics, despite having been originally
predicted to achieve no more than Level 1.

Children’s confidence and attitudes towards mathematics also improved
significantly. In an attitude survey specifically designed for Numbers Count,
89 per cent of the children were judged by their teachers and parents to have
grown more confident in mathematics by the end of the programme, with the
biggest gain coming in children’s willingness to take part in whole-class les-
sons and to put their hands up to answer questions. The changes are best
described by the children, their parents and teachers themselves:

They’ll probably be easy for me.
(A, who hardly dared speak to her Numbers Count teacher at first)

Let’s do maths for two hours.
(B, who had said he hated mathematics
when he entered Numbers Count)

I can’t believe how much C has developed. She really enjoys school
now. She never seemed to talk before and now she is so excited when
she talks about her day in school.

(C’s mother)

D has developed in his confidence. He used to be very shy and is now
expressing himself clearly. He is alert and can say how much money I
give him for his pocket money (I can’t cheat him out of that any
more!). His concentration has improved vastly. He used to sit at the
back of his class and didn’t want to join in and now he wants to put
his hand up and be the first. His younger brother is working with him
and is learning from him.

(D’s father)

E used to physically hide behind other children so she wouldn’t have
to answer questions in class. Now she puts her hand up.
(E’s teacher)

F’s mam used to have to bring her to school in her pyjamas. But since
Numbers Count she gets out of bed to go to school happily.
(F’s head teacher)
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Implications and conclusions

The experiences of those working in the Numbers Count programme in its first
year have confirmed Dowker’s finding that numerical difficulties are ‘highly
susceptible to intervention’ (Dowker 2004), and have shown that children can
make dramatic progress in both attainment and attitude in a short time with
appropriate intervention. The programme also has implications that are
relevant to classroom teachers as well as those working in one-to-one interven-
tion. The first of these is that time spent on assessing children’s ways of think-
ing and working in mathematics is vital in enabling the teacher to scaffold
children’s learning most effectively. A teacher working with a class of up to
30 children will clearly not be able to spend lengthy periods of time working
one to one assessing all the children in depth, and this level of assessment is
probably unnecessary for the majority of children. What teachers can do,
however, is encourage children to talk to them about mathematics, and to
listen to them, not in order to identify ‘wrong’ answers and put them right, but
to enter more fully into the children’s minds so that they can build on the
children’s strengths (see Ryan and Williams, Chapter 11).

A second issue for teachers is to consider the extent to which children
who are perceived as successful at mathematics may be learning procedures
without developing matching mathematical understanding. This can lead to
children experiencing difficulties in mathematics later as each procedure has
to be memorized individually because they cannot make conceptual links
with what they have learned already. Before they begin a Numbers Count
programme, children have often learned some facts and procedures but are
not able to use these as they lack a real understanding. For example, one child
was able to identify odd and even numbers accurately as long as he could see
the number line used in every classroom in the school. On this even numbers
were red and odd numbers were blue; he could not identify any numbers as
odd or even when this was out of sight. Another child identified odd numbers
as ‘the ones you whisper’. In both cases the child had no concept of why
numbers were odd or even but had simply learned a strategy for giving correct
answers. Using resources which enable children to construct an image of
what makes a number odd or even rather than focusing on ways of helping
children remember them simply as a sequence would have helped these chil-
dren to develop understanding as well as a limited strategy for responding to
questions.

Lessons from Numbers Count should not be seen as relevant only to
teachers and teaching assistants working with very low attaining children.
Feedback from Numbers Count teachers and head teachers is that it is relevant
to all children.
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18 The ‘gifted and talented’

John Threlfall

Introduction

In this chapter I address five questions about children who are ‘gifted and
talented’ mathematically: the nature of the issue; who these gifted and tal-
ented children actually are; how those identified in this way appear to learn;
what their specific needs might be; and how we might cater for these needs.

1 What is the issue?

All primary teachers will be able to think of at least one example of a child
who has stood out as mathematically ‘gifted’ — the 4-year-old who is found
rummaging in a basket of nursery ‘wellies’, looking at the sizes on their soles to
find a matching pair that will fit them; the 7-year-old who spontaneously
extends an activity to find ‘numbers that add to 10’ into mixed numbers
that involve fractions; the 11-year-old who toys with ideas of infinity when
dividing using a calculator; and so on.

It is often asserted that the needs of such children are not well met by the
usual provision for mathematics in the classroom (Koshy et al. 2009). Anec-
dotally, many primary teachers in the formal stages following the Foundation
Stage admit from time to time to feeling guilty about children in their class
who they feel have not been ‘stretched’ as much as they should have been.
For example, they may feel that they tend to give just occupying activities
to the children who finish work early, rather than activities that form part of a
properly structured provision shaped to their individual needs.

In policy terms, as well as the invocation to meet all students’ needs, there
is often reference to the importance to the future of the country of a good
supply of creative scientists, engineers and mathematicians (Koshy et al. 2009)
and the value to the school of having the best students meet their potential
in terms of achievements. In the English context, the policy overtones are
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evident in the gifted and talented section of the Department for Children,
Schools and Families standards site (DCSF 2009). However, in this chapter
I focus on the classroom issue — what is the best way to meet the needs of the
children who are most talented in mathematics?

This is partly an organizational issue — is it better to identify a group of
children and give them extra provision in withdrawal groups, where the iden-
tified children are taken out of their classes, or is it better to deal with them in
the whole class context, through ‘differentiation’? It is easier in some ways to
deal with a small group of children taken out of their class, and this may boost
their self-esteem, but if they feel singled out and isolated from their friends,
then otherwise excellent activities will not lead to the hoped-for benefits.

The alternative, differentiation in the whole-class context, can sometimes
be achieved by giving the same mathematics starting point to everyone, and,
through differentiated responses to it, meet the needs of all (see Ollerton,
Chapter 6). Piggott (2004: 9) claims that many of the resources on the NRICH
website (www.nrich.maths.org), which is one of the most extensive sources
of activities for gifted mathematics students, can be used in this way, as they
have ‘something to offer pupils of nearly all abilities’. She calls them ‘low
threshold-high ceiling’ tasks.

More often, however, differentiation for the gifted is achieved by giving
them different activities to do that are felt to be more suited to their needs.
A particular approach related to this is ‘compacting’ — in which the gifted
spend less time on basic curriculum coverage in order to have time to do
additional, more challenging, activities.

The other aspect of the issue of how to meet the needs of the most able in
mathematics concerns what kind of mathematical provision to offer. Is it bet-
ter to keep gifted and talented children working on the standard mathematics
curriculum, and allow them to move ahead of their peers to do the work that is
normally done by older students (usually called ‘acceleration’) or is it better to
give them challenging activities that remain related to the curriculum for that
age group, for example, more problem solving, or exploration of relationships
to deepen understanding (usually called ‘enrichment’)?

2 Who are the gifted and talented?

Students who are gifted and talented in mathematics are fairly readily identifi-
able in the abstract, but it is not so easy to identify exactly who should be
included in such a group in any particular class. What criteria should be used?
Should it be about performance or potential? Should test scores be used, for
example, NFER tests, national assessment (SATs) results, and so on, or should
children be selected because of a perceived insightfulness, skill in mathemat-
ical problem solving or feel for mathematical pattern? Koshy (2003) suggests
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that teachers might use a fluid and iterative approach based on observing
children’s mathematical behaviour, using indicators such as speed of reason-
ing, flexibility of thinking, ability to generalize, ability to work with abstract
ideas and to recognize and use the mathematical structure of problems.

There are different possible criteria, and this poses an issue for selection.
There may be some obvious candidates who score well on all points, but
there will be others who seem by some considerations to be appropriate, but
be excluded by others. As Koshy et al. (2009) report, primary teachers are
reluctant to use the label ‘gifted’ for children who do not perform well in tests,
but doing well in tests may just reflect reasonable levels of ability supported by
hard work and focused teaching (after all, that is how standards are expected to
continue to rise, not by creating a greater number of gifted children).

There is some evidence for the validity of selecting on the basis of poten-
tial rather than looking always at achievement. For example, in a project
reported in Koshy et al. (2009) teachers selected students based on criteria
developed from the qualities identified by Krutetskii (1976) as typical of stu-
dents who are very able in mathematics. And although it was found that many
of these students were not among those who had performed well in formal
tests, and were not initially as fast or fluent with numbers as many people
would expect able students to be, they then justified their selection (and the
criteria) by becoming fluent quickly within the project.

However, the procedure of identifying children first, and looking second
for suitable provision for them is not necessarily the best one, as it may be
difficult to find criteria that will identify a sufficiently homogenous group to
make a particular kind of special provision appropriate to meeting their needs.
An alternative approach is to decide first what additional provision will be
made, and then select children who would benefit from it. Very different
groups might be formed, depending, for example, on whether an ‘acceler-
ation’ or ‘enrichment’ approach is to be used. An extension of this approach is
to offer the additional provision to a wide range of children and see who
responds well to it.

Whatever procedures are used, though, the process is inevitably based
on a number of assumptions, and so it is sensible to keep under review
both the different provision being offered and the membership of the group
receiving it.

3 What are the students who are ‘gifted and talented’
like, as learners?

From the comparative studies of children reviewed in Steiner and Carr (2003)
and the work of Shore and Kanevsky (1993), it seems that gifted learners - in
any subject — differ from their peers by:
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e having a broader and more interconnected knowledge base;

e being quicker at solving problems, while spending more time
planning;

e being more efficient at representing and categorizing problems;

e having more elaborated procedural knowledge;

e Dbeing more flexible in their use of strategies;

e preferring complex, challenging problems;

e being more sophisticated in their meta-cognition, including self
regulation.

In mathematics in particular, Krutetskii (1976: 332-40) identified a number of
elements of advanced mathematical thinking, through an extensive study of
students of different abilities in Soviet Russia. Only some of these are said to be
identifiable among primary age children, chiefly:

e the inclination to look for relationships between elements of a
problem;

e atendency to generalize from the particular case to a general rule;

e a willingness to be flexible in adopting different ways to approach
problems.

Krutetskii (1976: 331) characterizes these traits as the ‘embryonic forms’ of
more advanced abilities — leading later to the ability to curtail reasoning,
to having a ‘mathematical memory’ of generalized forms, and striving for
economy and rationality in solutions. He also believes that what is shown
at this age ‘largely depends on the conditions of instruction’. However, this is
not to say that the qualities are created by instruction, more that there are
lines of development, progress through which is significantly affected by
instruction. This is a perspective on what Shore and Kanevsky (1993: 134) call
the ‘developmental controversy’ — whether the abilities of the most able are
‘merely precocity’ or ‘reflect fundamental differences in thinking processes’.
Freeman (1998) observes that how the gifted are taught should be profoundly
affected by the answer to this question.

The students who are characterized as gifted and talented in mathematics
are often successful in mathematical tasks that are usually seen as more
appropriate for older students. The question is whether that is essentially all
they are doing - acting mathematically ahead of their age. There are different
views about this, but evidence is hard to come by. In a rare example, Threlfall
and Hargreaves (2008) report a study in which the same problems were given
to 9-year-old children identified by their teachers as gifted in mathematics and
to average ability (middle set) 13-year-old students, and found that the same
methods and approaches were used by each sample.

According to Ericsson et al. (2007), there is no evidence for innate differ-
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ences, and all actual differences in achievement can be accounted for by
greater practice, and so should be called ‘expertise’ rather than ‘giftedness’.
Each of the observed differences between the ‘gifted’ and the ‘average’ — as
highlighted in the bullet point lists above — can also be said to be character-
istics of expertise. For example, making more reference to what they already
know when solving problems, rather than just using what is presented as
information, is symptomatic of those who are thought of as experts (Ericsson
et al. 2007) as well as those described as gifted. If this is correct, the gifted are
different from their peers not because of a special internal ‘giftedness’ quality
but because they are precocious.

That is not to say that innate elements have no part to play, because, as
Koshy et al. (2009) observe, there may be inborn characteristics that are
favourable to the development of mathematical abilities, propensities which,
for example, might be manifested in primary age children as an interest in
numbers and a pleasure in playing with shapes, which in effect make them
want to practise more. This then could lead to a relatively spontaneous or easy
acquisition of mathematics that for other students is a hard-won product of
instruction (and which some never learn).

Another way in which the gifted seem to be fundamentally different
from their peers is in attitudes, since they tend to be more persistent, curious,
precise, motivated, rigorous and interested in mathematics than other chil-
dren, who are, by and large, relatively passive in classroom mathematics.
However, the passivity of the majority can be thought to arise from their
experience of mathematics lessons in which children are only expected to
understand what is explained to them, or through practice to master a reason-
able number of the skills that have been demonstrated to them. When the
classroom is changed, with different kinds of activities and different expect-
ations from the teachers, many more children become active and enthusiastic
(Fielker 1997; Piggott 2004) — suggesting that attitudes are not reliable signs
of giftedness. Indeed, as Watson (2001) has shown, with the appropriate
teaching, even children of supposed lower ability can be found to look for
relationships, generalize and show flexibility in thinking - that is, can mani-
fest the qualities and skills associated with giftedness. The difference may be
that the gifted show these qualities despite teaching and, critically, show them
in relation to more advanced mathematical ideas.

4 What are their needs?

Needs are most poignant (and most easily specified) when there are observable
consequences of not meeting them, and to that extent the need not to be
bored can seem to be a paramount need that the gifted and talented have —
and it is common for provision for the gifted and talented to be a kind of



240 JOHN THRELFALL

entertainment, in which a succession of novel tasks and activities are pro-
vided that seem designed to ensure that they are never bored again. Even when
provision has other purposes, however, the gifted do need a stimulating
environment, where there is always more to turn to. When needs are less
demonstrative, they are harder to specify, and it is often left at the general level
of gifted children needing more stretch and challenge, or needing a broad
mathematical provision that helps in realizing their potential.

One way to become more specific about needs is to talk in terms of
opportunities to develop those aspects of experience that are characteristic of
giftedness. For example, there is extensive reference to problem solving in
how the gifted are described, so more opportunity for problem solving would
seem a candidate to be a specific need. Similarly, one can recognize in gifted
children the ability to handle mathematics that is advanced for their age, so it
can be argued that there is a need for the most able to be exposed to more
advanced mathematics.

One can also refer to the different mathematical processes that gifted
children manifest — which can be listed for example by elaborating on the basis
of professional experience the traits identified by Krutetskii (1976). Gifted
primary age children are, relatively speaking, noticeably more:

e systematic;

e conceptually clear;

e inclined to explore and investigate rather than just accept what
is given;

e able to connect different areas of mathematics (not just deal with
mathematics in compartments);

e able to relate mathematics to reality (and vice versa);

e able to tolerate uncertainty;

e strong in their mathematical reasoning;

e aware of their own thinking (meta-cognition);

e able to explain or justify their thinking;

e autonomous in their decision making;

e insightful about underlying mathematical structures;

e able to create an approach to fit the circumstances;

e fluent in mathematical skills (such as calculation);

e persistent in carrying through to completion;

e flexible in approach;

e able to generalize from given examples and make conjectures about
relationships.

It can then be argued that children who are gifted in mathematics need to be
given opportunities to practise and develop each of these aspects of mathemat-
ical experience: to be given tasks in which they can be (or have to be) system-
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atic; to be given more advanced explanations, so that they can further develop
their conceptual clarity; to be allowed to explore and investigate rather than
just expected to complete closed exercises; and so on.

5 How do we cater for their needs?

Whether the teaching provision to meet their needs is attempted in a with-
drawal group or through in-class work, the mathematics experience offered
to the children who are gifted in mathematics is very varied, the sharpest
difference being between ‘acceleration’ and ‘enrichment’.

Acceleration and enrichment

The issue of acceleration versus enrichment is a key one to the question of how
to meet the needs of the children who are gifted in mathematics. Acceleration
means moving the identified children on to the next set of work, as they learn
what is provided, in effect giving them (progressively) work that is usually
given to older pupils. Acceleration challenges children in a direct way, by
giving them mathematics to learn that is usually considered too advanced
for children of that age. Through acceleration it is not unknown for gifted
children at the primary school to be doing GCSE mathematics — but more
often it is just work that is a few years ‘ahead’.

Enrichment challenges gifted children in another way, by giving them
work that has more ‘depth’ or ‘breadth’ than usual provision, perhaps using
more demanding examples, setting problems, representing familiar math-
ematics in an unusual way, doing mathematics that crosses different areas
of familiar content, or exploring corners of mathematics that there is usually
not time for (see Ollerton, Chapter 6). Enrichment is focused more on real-
izing the potential of gifted children to be advanced for their age in terms
of mathematical processes. In terms of mathematical content, enrichment
activities are usually at the same level as those activities being completed by
other children of that age.

Acceleration or enrichment - which is better?

Any review of mathematics educators’ views, whether taken from their writings
or in person, would find an overwhelming majority supporting enrichment
over acceleration. Fielker (1997: 9) for example writes: “They do not learn
more about mathematics this way. What they do is merely learn the same
mathematics sooner.” Yet, acceleration remains the preferred approach in
many schools, and some of the primary teachers in the study of Koshy et al.
(2009) are reported to have adopted that approach. What are the apparent
advantages and disadvantages of each?
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The benefits of acceleration

Children are readily stretched — you can always find material that is at
the leading edge of what they can do.

Resources are readily available (for example, the texts used by older
students).

Children can have a good sense of progress.

Children enhance their self-esteem through success and being ahead.

In terms of meeting the needs of children who are gifted in mathematics,
acceleration does give a form of stretch and challenge and can be said to
help in realizing children’s potential (especially if that is viewed in terms of
measured achievements). Acceleration also certainly exposes children to more
advanced mathematics, as well as getting some opportunities for concepts to
be clarified and to practise and develop fluency.

The risks of acceleration

If the textbooks for older students are used (which is the most conveni-
ent way to accelerate) the work can be too formal for the children,
but creating more suitable material is very time consuming.

If students just learn the new mathematics in the way in which it
is taught to older students, which is mostly through learning pro-
cedures and practising, a narrow understanding of mathematics is
allowed to persevere.

If students are always moving on to the next thing, they remain
dependent on teaching, and may lose interest in mathematics.

Being good at mathematics becomes what mathematics means. In so
far as mathematics contributes to children’s sense of identity, it tends
to be only in terms of success.

The higher-level mathematics can be unfamiliar to the teacher, who
either has to learn it or pass responsibility for teaching over to a book.
Once acceleration has been started, students will have done next
year’s syllabus before they get to it, reducing the options for the next
teacher.

Responding to different degrees of giftedness by different amounts
of acceleration would lead to an individualized programme for every
child who is ahead, which is not sustainable, but flattening out the
acceleration could lead to unfulfilled potential.

In terms of needs, acceleration seems to be limited in its capacity to be broad
and stimulating, or to offer opportunities for genuine problem solving, includ-
ing the chance to operate systematically, apply reasoning, be autonomous,
generalize, and so on.
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The risks of enrichment

e Because it is broadening and deepening the content of the ordinary
curriculum, gifted children in an enrichment programme may not
acquire a sense of progress in mathematics, or a feeling for the
cumulative nature of the subject.

e If the enrichment programme is interesting, students may lose the
ability to learn through practice, undermining their fluency in ‘basic’
skills.

e Enrichment activities can also challenge the teacher’s own math-
ematical understanding, and the source books rarely give adequate
support.

e Children may not show what they are capable of in the national
assessments.

In terms of needs, enrichment seems to threaten the realization of potential
(viewed as achievement), and limit children’s exposure to more advanced
mathematics.

The benefits of enrichment

e The activities are interesting.

e The deeper understanding of mathematics that results is a better
foundation for subsequent learning.

e Children develop a realistic sense of self in mathematics, related to
interest as much as success.

e Children engage with and enjoy mathematics as a subject in which
reasoning is important.

In terms of needs, enrichment can offer a stimulating environment with plenty
of stretch and challenge, and can help in realizing children’s potential when
that is viewed in terms of mathematical process. Enrichment also gives oppor-
tunities for children to be systematic, to receive conceptual explanations, to
explore and investigate, and so on.

Koshy et al. (2009: 222) report that in their study of primary aged chil-
dren, in which both acceleration and enrichment approaches were used, the
enrichment activities were preferable: ‘pupils responded, in most cases, to
open-ended investigational tasks with greater motivation than they did to
mathematical exercises and tasks selected from mathematics text books
designed for older age groups’. And yet there are benefits to acceleration that
are not replicated by enrichment. Is it possible to have both?

Acceleration through enrichment - how to have both
When acceleration is done through the commonly shallow activities of text-
books, it can be too fast, in the sense of moving children on to higher and
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higher levels where all that is learned is what to do, creating dependency
on exposition by others. This risks replicating the potentially alienating
experience that exists for many students in the normal progression of the
curriculum.

An alternative is to address more advanced mathematics in the con-
text of enrichment activities. Often children make choices in tasks that extend
them into new curriculum areas (for example ‘numbers that add to 10’ into
fractions). This can be encouraged by the use of open-ended enrichment tasks,
since: ‘if motivated by an investigative task, children tended to seek know-
ledge and skills required from higher levels on the mathematics curriculum
without being prompted to do so’ (Koshy et al. 2009: 222).

By exploiting this, enrichment tasks can involve a kind of acceleration
as well. As Koshy (2003) reports, when students are involved in complex
in-depth exploratory mathematical activity, they often learn more advanced
mathematical concepts from a higher level in the curriculum, either because
the higher-level concepts are implicit in the students’ own structuring of
the mathematical objects in the activity, or because they find they need
higher-level mathematics to do what they are attempting to do.

Can enrichment activities be used to meet specific needs?

Gifted children benefit from enrichment activities as opportunities to develop
mathematics process skills. Considering such tasks in relation to the processes
they require is also outlining the opportunities they contain, and therefore the
needs they might meet. For example, the following task can be an opportunity
to be systematic (in trying out different options if the first attempt is not
successful) and in persistence.

Add brackets to this number sentence to make it correct.
5+5x5+5+5+5-5=5

Similarly, the next short activity involves meta-cognition, flexibility and the
ability to explain or justify one’s thinking.

Explain in words how to decide what two numbers are, if you know
both their highest common factor and their lowest common multiple.

These connections make it possible to design a programme for gifted children
that can address their specific needs in terms of mathematical process skills, by
offering enrichment activities selected because they contain the appropriate
opportunities.

Making these connections is not difficult to do, and almost all published
enrichment activities can serve these process-oriented specific needs of chil-
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dren who are gifted in mathematics, because they all involve processes that
are relatively advanced for children of that age. Extension activity ideas suit-
able for the primary school can be found in books (Fielker 1997; QCA 2005)
and on the Internet (for example, http://nrich.maths.org/public/; http://
www.shodor.org/interactivate/activities/) (both accessed March 2010). They
can also be invented fairly readily by the teacher, since, as Fielker (1997)
shows, enrichment activities can be close to everyday activities — for example:

e inverting a familiar problem - if a cuboid has a volume of 60 cubic
units, what might its dimensions be;

e asking not for a single solution, but how many solutions there are —
how many different parallelograms can be made from the seven tan-
gram pieces (Fielker 1997);

e asking ‘what if’ — the diagonals of a regular hexagon divide the shape
into six triangles, but what if the hexagon is not regular;

e asking for an explanation or justification of a familiar fact — why is the
sum of two odd numbers always an even number, but the product of
two odd numbers always an odd number?

e using one fact to find others — what follows from the fact that 24 x 11
=2647? (for example, 24 x 22 = 528).

Conclusion - the challenge to the teacher

There are no easy answers to the question of the best way to meet the needs of
the children in the primary school who are gifted and talented in mathemat-
ics. Identification of the group, characterizing their needs, deciding whether to
operate wholly within the class or to have some withdrawal group activity,
deciding whether to take an acceleration or an enrichment approach, are all
complex and controversial matters, with little consensus about them in the
profession.

There is, therefore, little doubt that catering for the needs of the gifted and
talented in mathematics is not easy for primary teachers, and it is particularly
challenging for those teachers who are not comfortable with mathematics. For
example, teachers can sometimes find themselves stretched by the demands
of the enrichment approach, which requires flexibility in their own math-
ematical thinking and reasoning in order to keep up with what the children
are doing. Handling the emotions of children who are facing mathematical
challenges they cannot easily solve is also demanding, especially when the
teacher is having to deal with their own feelings about the challenge of the
problem. As a result, less confident teachers may be tempted to approach
the issue by using the acceleration approach, just because there is a textbook to
use that takes over some of the teaching. However, the awkward questions are
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still asked by children, who still look to the teacher to be an authority. Because
of this, teaching mathematics to the gifted and talented often requires teachers
to develop their own mathematics subject knowledge, and to cultivate their
enthusiasm for mathematics.

On the other hand, working with the gifted does have the benefit that
they can and do work independently for a good deal of the time; are often
pleased to be asked to work something out for themselves rather than always
turning to the teacher for an answer (especially helpful when the teacher is not
sure of what the answer is); and respond well to discussion contexts to com-
pare different solutions to a problem and discuss which one is best. As a result,
the gifted and talented generate a lot of new knowledge themselves, with the
teacher looking on (and often learning from it). And the enthusiasm of these
children for mathematics is infectious.
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