Steady State Stability

o The ability of the power system to remain in synchronism
when subject to small disturbances

o Stability is assured if the system returns to its original
operating state (voltage magnitude and angle profile)

o The behavior can be determined with a linear system
model

o Assumption:

the automatic controls are not active
the power shift is not large

the voltage angles changes are small
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Steady State Stability

o Swing Equation

H, d*s, .
———+=P —P sino
7 f, dt
o Small disturbance modeling
O0=0,+Ao Consider a small deviation
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Steady State Stability

o Simplification of the swing equation

) 2
H d fo n H d Af =P — max[smé Cos Ao +c0s0, SIHA5]
T f, dt T f, dt

Substitute the following approximations
Ao << O cosAo ~ 1 siInAo = Ao

H d’s, H d’AS

—+ —=P —P,  sino,—P, coso, Ao
wf, dt* mf, dt
Group steady state and transient terms
H d’s, H d°AS
—P +P _sino, =— ——FP,,. €080, Ao
mf, dt’ f, dt
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Steady State Stability

o Simplification of the swing equation

2 . H d*A
# d fO—Pm+Pmaxs1n50:— d 25—Pmaxcos50-A5
7 f, dt 7 f, dt
H d’A
0= d 25 +P coso,-Ao
T f, dt
Steady state term is equal to zero
P :
af.| _ iPmax sino| =P, _coso,=P
do 50 do 50
H d°AS

—+ P -Ad =0 Second order equation.
7 fo dt The solution depends on the roots of the
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Stability

o Stability Assessment

When P, is negative, one root is in the right-half s-plane, and the
response is exponentially increasing and stability is lost

When P, is positive, both roots are on the jw axis, and the motion
is oscillatory and undamped, the natural frequency is:
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Damping Torque

do

P,=D— Damping force 1s due to air-gap interaction

dt

2
H d A25+D—dA5+PSA5:O
T f, dt dt
2
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dt H dt H
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Characteristic Equation

s’ +2lw, s+ =0

D |7 f,

= <1 for normal operation conditions

2\ H P,

\/ 1 — é’ 2 complex roots
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Laplace Transform Analysis

dAS
di

el e )
— , =X =AX
X, -, —20w,||x,

L% = Ax} — sX(s) — x(0) = AX(s)
X(s) = (sI-A) ' x(0)
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Laplace Transform Analysis

AS(s) = (s +2¢w, )AS,
s +2lw s+’
Aar(s) = w>AS,
s’ +2lw s +w;
AO(t) = \/& e ' sin(w,t+0), @=cos"' ¢
1-¢~
Aw(t) = —— A0 e " sin(w,t)

N

5(t) =3, +A8(t), w(t)=w,+Ao(t)
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Example

o A 60 Hz synchronous generator having inertia constant H =
9.94 MJ/MVA and a transient reactance X', = 0.3 pu is
connected to an infinite bus through the following network.
The generator is delivering 0.6 pu real power at 0.8 power
factor lagging to the infinite bus at a voltage of 1 pu.
Assume the damping power coefficient is
D = 0.138 pu. Consider a small disturbance of 10° or 0.1745
radians. Obtain equations of rotor angle and generator
frequency motion.
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Example
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