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The Power Flow Solution

l Most common and important tool in power system
analysis
u also known as the “Load Flow” solution
u used for planning and controlling a system
u assumptions:  balanced condition and single phase analysis

l Problem:
u determine the voltage magnitude and phase angle at each bus
u determine the active and reactive power flow in each line
u each bus has four state variables:

n voltage magnitude
n voltage phase angle
n real power injection
n reactive power injection
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The Power Flow Solution

u Each bus has two of the four state variables defined or given
l Types of buses:

u Slack bus (swing bus)
n voltage magnitude and angle are specified, reference bus
n solution: active and reactive power injections

u Regulated bus (generator bus, P-V bus)
n models generation-station buses
n real power and voltage magnitude are specified
n solution: reactive power injection and voltage angle

u Load bus (P-Q bus)
n models load-center buses
n active and reactive powers are specified (negative values for loads)
n solution: voltage magnitude and angle
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Newton-Raphson PF Solution

l Quadratic convergence
u mathematically superior to Guass-Seidel method

l More efficient for large networks
u number of iterations required for solution is independent of

system size
l The Newton-Raphson equations are cast in natural power

system form
u solving for voltage magnitude and angle, given real and reactive

power injections
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Newton-Raphson Method

l A method of successive approximation using Taylor’s
expansion
u Consider the function:  f(x) = c, where x is unknown

u Let x[0] be an initial estimate, then ∆x[0] is a small deviation from
the correct solution

u Expand the left-hand side into a Taylor’s series about x[0] yeilds
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Newton-Raphson Method

u Assuming the error, ∆x[0], is small, the higher-order terms are
neglected, resulting in

u where

u rearranging the equations
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Example
l Find the root of the equation: f(x) = x3 - 6x2 + 9x - 4 = 0
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Newton-Raphson Method
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Power Flow Equations

l KCL for current injection

l Real and reactive power injection

l Substituting for Ii yields:
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Power Flow Equations
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l Divide into real and reactive parts
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Newton-Raphson Formation
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l Cast power equations into iterative form

l Matrix function formation of the system of equations
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Newton-Raphson Formation
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l General formation of the equation to find a solution

l The iterative equation

l The Jacobian - the first derivative of a set of functions

a matrix of all combinatorial pairs



Power Systems I
   

The Jacobian Matrix
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Jacobian Terms
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l Real power w.r.t. the voltage angle

l Real power w.r.t. the voltage magnitude



Power Systems I
   

l Reactive power w.r.t. the voltage angle

l Reactive power w.r.t. the voltage magnitude

Jacobian Terms
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Iteration process

l Power mismatch or power residuals
u difference in schedule to calculated power

l New estimates for the voltages
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Bus Type and the Jacobian Formation

l Slack Bus / Swing Bus
u one generator bus must be selected and defined as the voltage

and angular reference
n The voltage and angle are known for this bus
n The angle is arbitrarily selected as zero degrees
n bus is not included in the Jacobian matrix formation

l Generator Bus
n have known terminal voltage and real (actual) power injection
n the bus voltage angle and reactive power injection are computed
n bus is included in the real power parts of the Jacobian matrix

l Load Bus
n have known real and reactive power injections
n bus is fully included in the Jacobian matrix
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Newton-Raphson Steps

1. Set flat start
u For load buses, set voltages equal to the slack bus or 1.0∠0°
u For generator buses, set the angles equal the slack bus or 0°

2. Calculate power mismatch
u For load buses, calculate P and Q injections using the known and

estimated system voltages
u For generator buses, calculate P injections
u Obtain the power mismatches, ∆P and ∆Q

3. Form the Jacobian matrix
u Use the various equations for the partial derivatives w.r.t. the

voltage angles and magnitudes
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Newton-Raphson Steps

4. Find the matrix solution (choose a or b)
u a. inverse the Jacobian matrix and multiply by the mismatch

power
u b. perform gaussian elimination on the Jacobian matrix with the b

vector equal to the mismatch power
compute ∆δ and ∆V

5. Find new estimates for the voltage magnitude and angle
6. Repeat the process until the mismatch (residuals) are

less than the specified accuracy
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Line Flows and Losses

l After solving for bus voltages and angles, power flows
and losses on the network branches are calculated
u Transmission lines and transformers are network branches
u The direction of positive current flow are defined as follows for a

branch element (demonstrated on a medium length line)
u Power flow is defined for each end of the branch

n Example:  the power leaving bus i and flowing to bus j
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Line Flows and Losses

l current and power flows:

l power loss:
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Example

j0.04
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2

138.6 MW 
45.2 MVAR

256.6 MW 
110.2 MVAR

Slack Bus
V1 = 1.05∠0°

j0.02
j0.025

l Using N-R method, find the
phasor voltages at buses 2
and 3

l Find the slack bus real
and reactive power

l Calculate line flows
and line losses
u 100 MVA base


