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Balanced 3-Phase Short Circuit
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� Consider a synchronous generator operating at 60 Hz 
with constant excitation

� Examine the impact on the stator currents when a three-
phase short circuit is applied to the generator terminals

� The initial currents

� The voltage after applying the fault
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Balanced 3-Phase Short Circuit
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� Rearranging the equation and neglecting the zero 
sequence term
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Balanced 3-Phase Short Circuit
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� In matrix form (or state space form) the equation can be 
rewritten

� Using the Laplace transform or integrating the equation results in
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Example

� Consider a 500 MVA, 30 kV generator with no load and a 
constant excitation voltage of 400 V.  A three-phase short 
circuit occurs at the terminals.  Obtain the transient 
waveforms for the current in each phase and the field 
winding
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Example
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Example
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Example
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Example
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Example
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Simplified Machine Model

� For steady-state operation, generators are represented 
with a constant emf behind a synchronous reactance, XS

� For salient-pole rotors, there is a direct axis and quadrature axis 
reactances

� Under transient conditions, the machine reactance 
changes due to the effect of the armature (transformer) 
reaction and eddy currents in the damping circuits

� For analysis it is useful to imagine the synchronous 
reactance as three components

� direct axis sub-transient reactance
� direct axis transient reactance
� direct axis steady-state reactance
� these transient reactances have an associated time-constant
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Simplified Machine Model

� Model visualization
� Consider the field and damper windings as the secondaries of a 

transformer (or the rotor of an induction motor)
� The stator is the primary winding
� For steady state conditions (synchronous speed) there is no 

transformer action, which can be modeled as an open circuit on 
the secondary side of the transformer

� For dynamic conditions, the speed is not synchronous, and the 
field and damper windings look like short-circuited secondaries
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Simplified Machine Model

� The direct axis sub-transient reactance
� circuit model

� equations

time constant
is very small,
around 0.035s
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Simplified Machine Model

� The direct axis transient reactance
� circuit model

� equations

time constant
is in the order
of 1s to 2s
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Simplified Machine Model

� The direct axis steady-state reactance
� circuit model

� equation

� equivalent circuit for the steady state
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Simplified Machine Model

� Similar models are used for the quadrature axis:
� quadrature axis sub-transient reactance, Xq"
� quadrature axis transient reactance, Xq'

� quadrature axis steady-state reactance, Xq

� For an unloaded generator, the stator current following 
the occurrance of a short-circuit on the terminals:
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Simplified Machine Model

� Example
� a three-phase, 60 Hz machine has the stator windings initially 

open-circuited, and the field current adjusted so that the terminal 
voltage is at rated value (i.e., 1.0 pu)

� The machine has the following time constants:
Xd" = 0.15 pu td" = 0.035 sec
Xd' = 0.40 pu td' = 1.0 sec
Xd = 1.20 pu

� Determine the subtransient, transient, and steady state short-
circuit currents
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Simplified Machine Model
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