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Steady State Stability

� The ability of the power system to remain in synchronism
when subject to small disturbances

� Stability is assured if the system returns to its original
operating state (voltage magnitude and angle profile)

� The behavior can be determined with a linear system
model

� Assumption:
� the automatic controls are not active
� the power shift is not large
� the voltage angles changes are small
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� Swing Equation

� Small disturbance modeling
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Steady State Stability

Consider a small deviation
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� Simplification of the swing equation
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Steady State Stability

Substitute the following approximations

Group steady state and transient terms
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� Simplification of the swing equation
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Steady State Stability

Steady state term is equal to zero

Second order equation.
The solution depends on the roots of the
characteristic equation



Power Systems I
   

Stability

� Stability Assessment
� When Ps is negative, one root is in the right-half s-plane, and the

response is exponentially increasing and stability is lost
� When Ps is positive, both roots are on the j� axis, and the motion

is oscillatory and undamped, the natural frequency is:
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Damping Torque
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Characteristic Equation
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complex roots 

the damped frequency of oscillation
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Laplace Transform Analysis
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Laplace Transform Analysis
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Example

� A 60 Hz synchronous generator having inertia constant H =
9.94 MJ/MVA and a transient reactance X�d = 0.3 pu is
connected to an infinite bus through the following network.
The generator is delivering 0.6 pu real power at 0.8 power
factor lagging to the infinite bus at a voltage of 1 pu.
Assume the damping power coefficient is
D = 0.138 pu.  Consider a small disturbance of 10� or 0.1745
radians.  Obtain equations of rotor angle and generator
frequency motion.
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Example

G inf

Xt = 0.2

X'd = 0.3

V = 1.0

X12 = 0.3

X12 = 0.3
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Example
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