
Power Systems I

Transient Stability

� The ability of the power system to remain in synchronism 
when subject to large disturbances

� Large power and voltage angle oscillations do not permit 
linearization of the generator swing equations

� Lyapunov energy functions
� simplified energy method: the Equal Area Criterion

� Time-domain methods
� numerical integration of the swing equations
� Runga-Kutta numerical integration techniques



Power Systems I

Equal Area Criterion

� Quickly predicts the stability after a major disturbance
� graphical interpretation of the energy stored in the rotating 

masses
� method only applicable to a few special cases:

� one machine connected to an infinite bus

� two machines connected together

� Method provides physical insight to the dynamic behavior 
of machines

� relates the power angle with the acceleration power
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Equal Area Criterion

� For a synchronous machine connected to an infinite bus

� The energy form of the swing equation is obtained by 
multiplying both sides by the system frequency (shaft 
rotational speed)
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Equal Area Criterion
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� The left hand side can be reworked as the derivative of 
the square of the system frequency (shaft speed)
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Equal Area Criterion
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� Integrating both sides with respect to time,

� The equation gives the relative speed of the machine.
For stability, the speed must go to zero over time
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Equal Area Criterion

� Consider a machine operating at equilibrium
� the power angle, δ = δ0

� the electrical load, Pe0 = Pm0

� Consider a sudden increase in the mechanical power 
input

� Pm1 > Pe0 ; the acceleration power is positive

� excess energy is stored in the rotor and the power frequency 
increases, driving the relative power angle larger over time

( ) 0
1

0
1 >−= ∫

δ

δ
δdPPU emPotential

( ) 0
2

0

0 >−== ∫
δ

δ
δπωδ

dPP
H

f

dt

d
em



Power Systems I

Equal Area Criterion

� with increase in the power angle, δ, the electrical power 
increases

� when δ = δ1, the electrical power equals the mechanical power, 
Pm1

� acceleration power is zero, but the rotor is running above 
synchronous speed, hence the power angle, δ, continues to 
increase

� now Pm1 < Pe; the acceleration power is negative (deceleration), 
causing the rotor to decelerate to synchronous speed at δ = δmax

� an equal amount of energy must be given up by the rotating 
masses
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Equal Area Criterion
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Equal Area Criterion
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� The result is that the rotor swings to a maximum angle
� at which point the acceleration energy area and the deceleration

energy area are equal 

� this is known as the equal area criterion

� the rotor angle will oscillate back and forth between δ and δmax at 
its natural frequency
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Equal Area Criterion - ∆∆∆∆P mechanical
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Equal Area Criterion - ∆∆∆∆P mechanical
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Function is nonlinear in δmax

Solve using Newton-Raphson
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3-Phase Fault

G inf
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Equal Area Criterion - 3 phase fault
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Equal Area Criterion - 3 phase fault
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Critical Clearing Time
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Critical Clearing Time
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3-Phase Fault
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Equal Area Criterion
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Critical Clearing Time
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Critical Clearing Time
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