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Chapter 8: Transient Analysis of 
Synchronous Machines
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Synchronous Machines

� Steady state modeling
� rotor mmf and stator mmf are stationary with respect to each other
� flux linkage with the rotor are invariant with time
� no voltages are induced on the rotor circuits

� Transient modeling
� flux linkage changes 

with time
� differential equations

have time-varying 
coefficients

� Parks transformation
� dynamic behavior

� sub-transient period, transient period, and steady-state period
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Transient Analysis

� Transient analysis will be applied in the dynamic study of 
generators

� Generators experience dynamic behavior during
� switching load
� faults

� Consider the transient behavior of an RL circuit with a 
switched voltage source
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Transient Analysis

� The voltage source is sinusoidal:
� The KVL equation are:
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Example

� Solve for the time-domain solution of the current
� for a faulted generator having the following characteristics

R = 0.125 Ω L = 10 mH v(t) = 151 sin (377 t + α)

� which will give 
(a) zero dc offset current, 
(b) maximum dc offset current
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Example
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Example

(a) zero dc 
offset current

(b) maximum dc 

offset current
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Transient Analysis

� Synchronous Machines
� Models and analysis were previously developed for steady state 

behaviors
� rotor and stator magnetic fields are stationary with respect to each 

other

� the flux linkage in the rotor circuit are constant in time
� the per phase equivalent circuit becomes a constant generated emf 

in series with a simple impedance

� Under transient conditions (time varying) the above assumptions 
are no longer valid

� changing stator current are reflected in a dynamic flux linkage

� changing flux linkage induces transient currents in the rotor

� transient rotor currents in turn react with the stator and the induced 
voltages
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Synchronous Machine Model

� The synchronous machine consist of:
� three ac stator windings mounted on the stator
� one field winding mounted on the rotor
� two fictitious windings which model short-circuited paths of the 

damper windings

� When modeling, the following are assumed:
� a synchronously rotating reference frame with a speed of ω
� the reference frame is along the axis of phase a at time zero

� For transient analysis of an ideal synchronous machine
� The machine is represented as a group of magnetically coupled 

rotating circuits with inductances which depend on the angular 
position of the rotor
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Synchronous Machine Model
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Synchronous Machine Model
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Synchronous Machine Model
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� The KVL equations for the model
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Synchronous Machine Model

















=





























































=



























FDQ

abc

RRRS

SRSS

FDQ

abc

Q

D

F

c

b

a

QQQDQFQcQbQa

DQDDDFDcDbDa

FQFDFFFcFbFa

cQcDcFcccbca

bQbDbFbcbbba

aQaDaFacabaa

Q

D

F

c

b

a

i

i

i

i

i

i

LLLLLL

LLLLLL

LLLLLL

LLLLLL

LLLLLL

LLLLLL

i

i

LL

LLλ λλ
λ
λ
λ
λ
λ

� The magnetic inductance equations
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Salient Pole Machines

� Rotors have two types of construction
� Cylindrical
� Salient

� The cylindrical rotor has an evenly
spaced air gap and a constant 
self-inductance

� The Salient has a non-uniform air
gap and a self-inductance that varies
periodically
� maximum inductance when the direct axis

coincides with the stator coil magnetic axis
� minimum inductance when the quadrature axis

coincides with the stator coil magnetic axis

Cylindrical

Salient
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Salient Pole Machines
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� The salient pole machine can be represented by cosines 
of second harmonics

� Stator quantities
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Salient Pole Machines

� Rotor quantities - All the rotor self inductances are constant since 
the effects of the stator slots are negligible 
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Salient Pole Machines
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� Mutual inductance between the stator and rotor circuits
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Park Transformation

� Changes the abc frame of reference to the dq0 frame of 
reference

� Voltages and currents on the stator are changed to equivalent 
values based on the rotor’s frame of reference

� The transformation is based on the two-axis theory
� the electrical quantities are projections onto three new axes:

� direct axis - along the direct axis of the rotor field winding
� quadrature axis - tangent to the direct axis of the rotor field winding

� zero axis - a stationary axis
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Park Transformation

� The Park transformation for current

� Similarly applied to all electrical quantities

in matrix notation
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� The Park transformation matix is orthogonal:

� Applying the Park transformation to the generator
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Park Transformation

� Transforming the time-varying inductance to obtain a 
rotor frame of reference
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Park Transformation
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� Resulting inductance matrix
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Park Transformation
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� Applying the transformation to the machine model KVL
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Park Transformation
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Park Transformation
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� Substituting the original terms into the transformation
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Park Transformation

� Observations
� The transformation has constant coefficients provided that the 

speed is assumed to be constant
� The first equation (the zero sequence) is not coupled to the other 

equations, and it can be treated separately
� While the transformation technique is a mathematical process, it

gives insight into the internal phenomena of the rotor and the 
effects of transients


