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Introduction 

Short circuits occur in power system due to various reasons like, equipment failure, lightning strikes, 
falling of branches or trees on the transmission lines, switching surges, insulation failures and other 
electrical or mechanical causes. All these are collectively called faults in power systems.  

A fault usually results in high current flowing through the lines and if adequate protection is not taken, may result 
in damages in the power apparatus.  

In this chapter we shall discuss the effects of symmetrical faults on the system. Here the term 
symmetrical fault refers to those conditions in which all three phases of a power system are grounded 
at the same point. For this reason the symmetrical faults sometimes are also called three-line-to-ground (3LG) 

faults.  
 

Section I: Transients in R-L Circuits 

 DC Sourse  

 AC Sourse  

 Fault in an AC Circuit  

Transients in R-L Circuits 

In this section we shall consider transients in a circuit that contains a resistor and inductor (R - L 
circuit). Consider the circuit shown in Fig. 6.1 that contains an ideal source ( νs ), a resistor ( R ), an 
inductor ( L ) and a switch ( S ). It is assumed that the switch is open and is closed at an instant of 
time t = 0. This implies that the current i is zero before the closing of the switch. We shall first discuss 
the effect of closing the switch on the line current (i ) when the source is dc. Following this we shall 
study the effect when the source is ac and will show that the shape of the transient current changes 
with the changes in the phase of the source voltage waveform at the instant of closing the switch.  
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Fig 6.1 A Simple R - L Circuit  

DC Source 

Let us assume that the source voltage is dc and is given by νs = Vdc . Then the line current is given by 

the differential equation  

  

  

The solution of the above equation is written in the form  

  

  

Since the initial current i (0) = 0 and since νs ( τ ) = Vdc for 0 £ t < ¥ , we can rewrite the above 

equation as  

  

  

where T = L / R is the time constant of the circuit.  

Let us assume R = 1Ω , L = 10 mH and Vdc= 100 V. Then the time response of the current is as 
shown in Fig. 6.2. It can be seen that the current reaches at steady state value of 100 A. The time 

 

(6.1) 

 

(6.2) 

 

(6.3) 



constant of the circuit is 0.01 s. This is defined by the time in which the current i ( t ) reaches 63.2% of 

its final value and is obtained by substituting t = T. Note that the slope of the curve is given by  

  

  

 

Fig 6.2 Current in the R-L circuit when the source is dc  

AC Source 

The current response remains unchanged when the voltage source is dc. This however is not the 
case when the circuit is excited by an ac source. Let us assume that the source voltage is now given 

by  

  

where α is the phase angle of the applied voltage. We shall show that the system response changes 
with a change in α .  

The solution of (6.2) for the source voltage given in (6.5) is  
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The system response for V m = 100 V and α = 45° is shown in Fig. 6.3. In this figure both iac and i dc 
are also shown. It can be seen that iac is the steady state waveform of the circuit, while idc dies out 
once the initial transient phase is over. Fig. 6.4 shows the response of the current for different values 
of a . Since the current is almost inductive, it can be seen that the transient is minimum when α = 90° , 
i.e., the circuit is switched on almost at the zero-crossing of the current. On the other hand, the 
transient is maximum when α = 0° , i.e., almost at the peak of the current.  

 

Fig 6.3 Transient in current and its ac and dc components at the instant of switch closing  
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Fig 6.4 Transient in current for different values of α  

AC Source 
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Fig 6.3 Transient in current and its ac and dc components at the instant of switch closing  

 

Fig 6.4 Transient in current for different values of α  
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Fig 6.3 Transient in current and its ac and dc components at the instant of switch closing  

 

Fig 6.4 Transient in current for different values of α  
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Fig 6.3 Transient in current and its ac and dc components at the instant of switch closing  
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Fig 6.4 Transient in current for different values of α  

Fault in an AC Circuit 

Now consider the single-phase circuit of Fig. 6.5 where Vs = 240 V (rms), the system frequency is 50 
Hz, R = 0.864 Ω,  L = 11 mH ( ωL = 3.46 Ω ) and the load is R-L comprising of an 8.64 W resistor and 
a 49.5 mH inductor ( ωL = 15.55Ω ). With the system operating in the steady state, the switch S is 
suddenly closed creating a short circuit. The current (i ) waveform is shown in Fig. 6.6. The current 
phasor before the short circuit occurs is  

A  

This means that the pre-fault current has a peak value of 15.97 A.  

 

Fig. 6.5 A single-phase circuit in which a source supplies a load through a source 
impedance.  



 

Fig 6.6 The current waveform of the circuit of Fig 6.5 before and after the closing of the 
switch S  

Once the fault occurs and the system is allowed to reach the steady state, the current phasor is given 
by  

 

This current has a peak value of 95.28 A. However it can be seen that the current rises suddenly and 
the first peak following the fault is 124 A which is about 30% higher than the post-fault steady-state 
value. Also note that the peak value of the current will vary with the instant of the occurrence of the 
fault. However the peak value of the current is nearly 8 times the pre-fault current value in this case. 
In general, depending on the ratio of source and load impedances, the faulted current may shoot up 
anywhere between 10 and 20 times the pre-fault current.  

Short Circuit in an Unloaded Synchronous Generator  

Fig. 6.7 shows a typical response of the armature current when a three-phase symmetrical short 
circuit occurs at the terminals of an unloaded synchronous generator.  

 



Fig. 6.7 Armature current of a synchronous generator as a short circuit occurs at its 
terminals.  

It is assumed that there is no dc offset in the armature current. The magnitude of the current 
decreases exponentially from a high initial value. The instantaneous expression for the fault current is 

given by  

  

  

where Vt is the magnitude of the terminal voltage, α is its phase angle and  

is the direct axis subtransient reactance  

 is the direct axis transient reactance  

 is the direct axis synchronous reactance  

with . The time constants are  

is the direct axis subtransient time constant  

 is the direct axis transient time constant  

In the expression of (6.9) we have neglected the effect of the armature resistance hence α = π/2. Let 

us assume that the fault occurs at time t = 0. From (6.9) we get the rms value of the current as  

  

  

which is called the subtransient fault current. The duration of the subtransient current is dictated by 

the time constant Td . As the time progresses and Td < t < Td , the first exponential term of (6.9) will 
start decaying and will eventually vanish. However since t is still nearly equal to zero, we have the 

following rms value of the current  
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This is called the transient fault current. Now as the time progress further and the second 
exponential term also decays, we get the following rms value of the current for the sinusoidal steady 

state  

  

  

In addition to the ac, the fault currents will also contain the dc offset. Note that a symmetrical fault 
occurs when three different phases are in three different locations in the ac cycle. Therefore the dc 

offsets in the three phases are different. The maximum value of the dc offset is given by  

Section III: Symmetrical Fault in a Power System  

 Calculation of Fault Current Using Impedance Diagram  

 Calculation of Fault Current Using Zbus Matrix  

Calculation of Fault Current Using Impedance Diagram 

Let us first illustrate the calculation of the fault current using the impedance diagram with the help of 
the following examples.  

Example 6.1 

Consider the power system of Fig. 6.8 in which a synchronous generator supplies a synchronous 
motor. The motor is operating at rated voltage and rated MVA while drawing a load current at a 
power factor of 0.9 (lagging) when a three phase symmetrical short circuit occurs at its terminals. We 
shall calculate the fault current that flow from both the generator and the motor.  

We shall choose a base of 50 MVA, 20 kV in the circuit of the generator. Then the motor 
synchronous reactance is given by  

  per unit  
  

Also the base impedance in the circuit of the transmission line is  

  Ω 
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Fig. 6.8 A generator supplying a motor load though a transmission line.  

Therefore the impedance of the transmission line is  

  per unit  
  

The impedance diagram for the circuit is shown in Fig. 6.9 in which the switch S indicates the fault.  

 

 

Fig. 6.9 Impedance diagram of the circuit of Fig. 6.8.  

The motor draws a load current at rated voltage and rated MVA with 0.9 lagging power factor. 
Therefore  

  per unit    

Then the subtransient voltages of the motor and the generator are  

  per unit  

 per unit  

  

Hence the subtransient fault currents fed by the motor and the generator are  

  per unit  

 per unit  

  

and the total current flowing to the fault is  



  per unit    

Note that the base current in the circuit of the motor is  

  A 
  

Therefore while the load current was 1603.8 A, the fault current is 7124.7 A.  

  

Example 6.2  

We shall now solve the above problem differently. The Thevenin impedance at the circuit between 
the terminals A and B of the circuit of Fig. 6.9 is the parallel combination of the impedances j 0.4 and 
j 0.5148. This is then given as  

per unit  
  

Since voltage at the motor terminals before the fault is 1.0 per unit, the fault current is  

per unit  
  

If we neglect the pre-fault current flowing through the circuit, then fault current fed by the motor and 
the generator can be determined using the current divider principle, i.e.,  

 per unit  

 per unit  

  

If, on the other hand, the pre-fault current is not neglected, then the fault current supplied by the 
motor and the generator are  

 per unit  

 per unit  
 

Calculation of Fault Current Using Zbus Matrix  

Consider the circuit of Fig. 3.3 which is redrawn as shown in Fig. 6.10.  



 

Fig. 6.10 Network depicting a symmetrical fault at bus-4.  

We assume that a symmetrical fault has occurred in bus-4 such that it is now connected to the 
reference bus. Let us assume that the pre-fault voltage at this bus is Vf . To denote that bus-4 is short 
circuit, we add two voltage sources Vf and - Vf together in series between bus-4 and the reference 

bus. Also note that the subtransient fault current If flows from bus-4 to the reference bus. This implies 

that a current that is equal to - If is injected into bus-4. This current, which is due to the source - Vf 
will flow through the various branches of the network and will cause a change in the bus voltages. 
Assuming that the two sources and Vf are short circuited. Then - Vf is the only source left in the 

network that injects a current - If into bus-4. The voltages of the different nodes that are caused by 

the voltage - Vf  and the current - If are then given by  

  

  

  

where the prefix Δ indicates the changes in the bus voltages due to the current - If .  

From the fourth row of (6.14) we can write  

  

Combining (6.14) and (6.15) we get  
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We further assume that the system is unloaded before the fault occurs and that the magnitude and 
phase angles of all the generator internal emfs are the same. Then there will be no current circulating 
anywhere in the network and the bus voltages of all the nodes before the fault will be same and equal 

to Vf . Then the new altered bus voltages due to the fault will be given from (6.16) by  

  

  

           Example 6.3      

Section IV: Circuit Breaker Selection  

A typical circuit breaker operating time is given in Fig. 6.11. Once the fault occurs, the protective 
devices get activated. A certain amount of time elapses before the protective relays determine that 
there is overcurrent in the circuit and initiate trip command. This time is called the detection time. 
The contacts of the circuit breakers are held together by spring mechanism and, with the trip 
command, the spring mechanism releases the contacts. When two current carrying contacts part, a 
voltage instantly appears at the contacts and a large voltage gradient appears in the medium between 
the two contacts. This voltage gradient ionizes the medium thereby maintaining the flow of current. 
This current generates extreme heat and light that is called electric arc. Different mechanisms are 
used for elongating the arc such that it can be cooled and extinguished. Therefore the circuit breaker 
has to withstand fault current from the instant of initiation of the fault to the time the arc is 
extinguished.  

 

Fig. 6.11 Typical circuit breaker operating time.  

Two factors are of utmost importance for the selection of circuit breakers. These are:  

 The maximum instantaneous current that a breaker must withstand and  

 The total current when the breaker contacts part.  

In this chapter we have discussed the calculation of symmetrical subtransient fault current in a 
network. However the instantaneous current following a fault will also contain the dc component. In a 
high power circuit breaker selection, the subtransient current is multiplied by a factor of 1.6 to 
determine the rms value of the current the circuit breaker must withstand. This current is called the 
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momentary current . The interrupting current of a circuit breaker is lower than the momentary 
current and will depend upon the speed of the circuit breaker. The interrupting current may be 
asymmetrical since some dc component may still continue to decay.  

Breakers are usually classified by their nominal voltage, continuous current rating, rated maximum 
voltage, K -factor which is the voltage range factor, rated short circuit current at maximum voltage and 
operating time. The K -factor is the ratio of rated maximum voltage to the lower limit of the range of 
the operating voltage. The maximum symmetrical interrupting current of a circuit breaker is given by K 
times the rated short circuit current.  
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Overview 

An unbalanced three-phase system can be resolved into three balanced systems in the sinusoidal 
steady state. This method of resolving an unbalanced system into three balanced phasor system 
has been proposed by C. L. Fortescue. This method is called resolving symmetrical components 
of the original phasors or simply symmetrical components.  
 
In this chapter we shall discuss symmetrical components transformation and then will present how 
unbalanced components like Y- or Δ -connected loads, transformers, generators and transmission 
lines can be resolved into symmetrical components. We can then combine all these components 
together to form what are called sequence networks .  

  
 

Section I: Symmetrical Components 

 Symmetrical Component Transformation  

 Real and Reactive Power  

 Orthogonal Transformation  

Symmetrical Components 

A system of three unbalanced phasors can be resolved in the following three symmetrical 
components:  

 Positive Sequence: A balanced three-phase system with the same phase sequence as the 
original sequence.  
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 Negative sequence: A balanced three-phase system with the opposite phase sequence as 
the original sequence.  

 Zero Sequence: Three phasors that are equal in magnitude and phase.  

Fig. 7.1 depicts a set of three unbalanced phasors that are resolved into the three sequence 
components mentioned above. In this the original set of three phasors are denoted by Va , Vb and Vc , 
while their positive, negative and zero sequence components are denoted by the subscripts 1, 2 and 
0 respectively. This implies that the positive, negative and zero sequence components of phase-a are 
denoted by Va1 , Va2 and Va0 respectively. Note that just like the voltage phasors given in Fig. 7.1 we 
can also resolve three unbalanced current phasors into three symmetrical components.  

 

  

Fig. 7.1 Representation of (a) an unbalanced network, its (b) positive sequence, (c) 
negative sequence and (d) zero sequence.  

  

Symmetrical Component Transformation  

Before we discuss the symmetrical component transformation, let us first define the α -operator. This 

has been given in (1.34) and is reproduced below.  

  

  

Note that for the above operator the following relations hold  
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Also note that we have  

  

  

Using the a -operator we can write from Fig. 7.1 (b)  

  

  

Similarly from Fig. 7.1 (c) we get  

  

  

Finally from Fig. 7.1 (d) we get  
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Therefore, 

  

  

  

  

  

  

The symmetrical component transformation matrix is then given by  

  

  

Defining the vectors V a012 and V abc as  
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we can write (7.4) as  

  

  

where C is the symmetrical component transformation matrix and is given by  

  

  

  

The original phasor components can be obtained from the inverse symmetrical component 

transformation, i.e.,  

  

  

Finally, if we define a set of unbalanced current phasors as Iabc and their symmetrical components as 

Ia012 , we can then define  
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Example 7.1  

Example 7.2 

  

Real and Reactive Power  

The three-phase power in the original unbalanced system is given by  

  

  

where I* is the complex conjugate of the vector I . Now from (7.10) and (7.15) we get  

  

  

From (7.11) we get  

  

  

  

Therefore from (7.17) we get  
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  (7.18) 
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We then find that the complex power is three times the summation of the complex power of the three 
phase sequences.  

Example 7.3 

Real and Reactive Power  

The three-phase power in the original unbalanced system is given by  

  

  

where I* is the complex conjugate of the vector I . Now from (7.10) and (7.15) we get  

  

  

From (7.11) we get  

  

  

  

Therefore from (7.17) we get  
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We then find that the complex power is three times the summation of the complex power of the three 
phase sequences.  

Example 7.3 

Section II: Sequence Circuits for Loads 

In this section we shall construct sequence circuits for both Y and Δ -connected loads separately.  

 Sequence Circuit for a Y-Connected Load  

 Sequence Circuit for a Δ-Connected Load  

  

Sequence Circuit for a Y-Connected Load  

Consider the balanced Y-connected load that is shown in Fig. 7.2. The neutral point (n) of the 
windings are grounded through an impedance Zn . The load in each phase is denoted by ZY . Let us 
consider phase-a of the load. The voltage between line and ground is denoted by Va , the line-to-
neutral voltage is denoted by Van and voltage between the neutral and ground is denoted by Vn . The 

neutral current is then  

  

  

Therefore there will not be any positive or negative sequence current flowing out of the neutral point.  

 

  

Fig. 7.2 Schematic diagram of a balanced Y-connected load.  

The voltage drop between the neutral and ground is  

  

 

(7.22) 

 

(7.23) 
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Now  

  

  

We can write similar expression for the other two phases. We can therefore write  

  

  

  

Pre-multiplying both sides of the above equation by the matrix C and using (7.8) we get  

  

Now since  

  

  

  

  

 

(7.24) 

 

(7.25) 

 

(7.26) 

 

  



  

We get from (7.26)  

  

  

  

We then find that the zero, positive and negative sequence voltages only depend on their respective 
sequence component currents. The sequence component equivalent circuits are shown in Fig. 7.3. 
While the positive and negative sequence impedances are both equal to ZY , the zero sequence 

impedance is equal to  

  

  

If the neutral is grounded directly (i.e., Zn = 0), then Z0 = ZY . On the other hand, if the neutral is kept 

floating   (i.e., Zn = ∞ ), then there will not be any zero sequence current flowing in the circuit at all.  

 

  

Fig. 7.3 Sequence circuits of Y-connected load: (a) positive, (b) negative and (c) zero 
sequence 

Sequence Circuit for a Δ -Connected Load  

Consider the balanced Δ -connected load shown in Fig. 7.4 in which the load in each phase is 

denoted by ZΔ . The line-to-line voltages are given by  

  

 

(7.27) 

 

(7.28) 

 

(7.29) 



  

Adding these three voltages we get  

  

Fig. 7.4 Schematic diagram of a balanced Δ -connected load.  

  

  

Denoting the zero sequence component Vab , Vbc and Vca as Vab0 and that of Iab , Ibc and Ica as Iab0 we 

can rewrite (7.30) as  

  

  

Again since  

  

  

We find from (7.31) Vab0 = Iab0 = 0. Hence a Δ -connected load with no mutual coupling has not any 
zero sequence circulating current. Note that the positive and negative sequence impedance for this 
load will be equal to ZΔ .  

  

Example 7.4 

 

(7.30) 

 

(7.31) 
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Section III:  Sequence Circuits for Synchronous Generator 

The three-phase equivalent circuit of a synchronous generator is shown in Fig. 1.16. This is redrawn 
in Fig. 7.6 with the neutral point grounded through a reactor with impedance Zn . The neutral current is 

then given by  

  

  

 

Fig. 7.6 Equivalent circuit of a synchronous generator with grounded neutral.  

The derivation of Section 1.3 assumes balanced operation which implies Ia + Ib + Ic = 0. As per (7.32) 
this assumption is not valid any more. Therefore with respect to this figure we can write for phase-a 

voltage as  

  

  

Similar expressions can also be written for the other two phases. We therefore have  

 

(7.32) 

 

(7.33) 

 

(7.34) 



  

  

  

Pre-multiplying both sides of (7.34) by the transformation matrix C we get  

  

  

  

Since the synchronous generator is operated to supply only balanced voltages we can assume that 

Ean0 = Ean2 = 0 and Ean1 = Ean . We can therefore modify (7.35) as  

  

  

 

We can separate the terms of (7.36) as  

  

  

  

  

 

(7.35) 

 

(7.36) 

 
(7.37) 

 (7.38) 

 

(7.39) 



Furthermore we have seen for a Y-connected load that Va1 = V an1 , Va2 = Van2 since the neutral 
current does not affect these voltages. However Va0 = Van0 + Vn . Also we know that Vn = - 3ZnIa0 . We 

can therefore rewrite (7.37) as  

  

  

The sequence diagrams for a synchronous generator are shown in Fig. 7.7.  

 

  

Fig. 7.7 Sequence circuits of synchronous generator: (a) positive, (b) negative and (c) zero 
sequence 

Section IV:  Sequence Circuits for Symmetrical Transmission Line 

The schematic diagram of a transmission line is shown in Fig. 7.8. In this diagram the self impedance 
of the three phases are denoted by Zaa , Zbb and Zcc while that of the neutral wire is denoted by Znn . 

Let us assume that the self impedances of the conductors to be the same, i.e.,  

  

  

Since the transmission line is assumed to be symmetric, we further assume that the mutual 
inductances between the conductors are the same and so are the mutual inductances between the 

conductors and the neutral, i.e.,  

  

  

The directions of the currents flowing through the lines are indicated in Fig. 7.8 and the voltages 
between the different conductors are as indicated.  

 

(7.40) 

 

  

 

 

  



 

  

Fig. 7.8 Lumped parameter representation of a symmetrical transmission line.  

Applying Kirchoff's voltage law we get  

  

  

Again  

  

  

  

Substituting (7.42) and (7.43) in (7.41) we get  

  

  

Since the neutral provides a return path for the currents Ia , Ib and Ic , we can write  

 

(7.41)  

 

(7.42)  

 

(7.43)  

 

(7.44)  



  

  

Therefore substituting (7.45) in (7.44) we get the following equation for phase-a of the circuit  

  

  

Denoting  

  

  

(7.46) can be rewritten as  

  

  

Since (7.47) does not explicitly include the neutral conductor we can define the voltage drop across 

the phase-a conductor as  

  

  

Combining (7.47) and (7.48) we get  

  

 

(7.45)  

 

(7.46)  

 

  

 

(7.47)  

 

(7.48)  

 

(7.49)  



  

Similar expression can also be written for the other two phases. We therefore get  

  

  

  

Pre-multiplying both sides of (7.50) by the transformation matrix C we get  

  

  

  

Now  

  

  

  

  

  

 

(7.50)  

 

(7.51)  

 

  



  

Hence  

  

  

  

  

  

Therefore from (7.51) we get  

  

  

  

The positive, negative and zero sequence equivalent circuits of the transmission line are shown in 

Fig. 7.9 where the sequence impedances are  

  

  

  

 

 

(7.52)  

 

 

  



 

  

Fig. 7.9 Sequence circuits of symmetrical transmission line: (a) positive, (b) negative and 
(c) zero sequence.  

 

Section V:  Sequence Circuits for Transformers 

 Y-Y Connected Transformer  

 Δ - Δ Connected Transformer  

 Y- Δ Connected Transformer  

In this section we shall discuss the sequence circuits of transformers. As we have seen earlier that 
the sequence circuits are different for Y- and Δ -connected loads, the sequence circuits are also 
different for Y and Δ connected transformers. We shall therefore treat different transformer 
connections separately.  

  

-Y Connected Transformer  

Fig. 7.10 shows the schematic diagram of a Y-Y connected transformer in which both the neutrals are 
grounded. The primary and secondary side quantities are denoted by subscripts in uppercase letters 
and lowercase letters respectively. The turns ratio of the transformer is given by α = N1 : N2 .  

 

  

  

Fig. 7.10 Schematic diagram of a grounded neutral Y-Y connected transformer.  

The voltage of phase-a of the primary side is  
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Expanding VA and VAN in terms of their positive, negative and zero sequence components, the above 

equation can be rewritten as  

  

  

Noting that the direction of the neutral current In is opposite to that of IN , we can write an equation 

similar to that of (7.53) for the secondary side as  

  

  

Now since the turns ratio of the transformer is α = N1 : N2 we can write  

  

  

  

Substituting in (7.54) we get  

  

  

Multiplying both sides of the above equation by a results in  

 

(7.53)  

 

(7.54)  

 

       

  

 

  

 

(7.55)  



  

  

Finally combining (7.53) with (7.55) we get  

  

  

Separating out the positive, negative and zero sequence components we can write  

  

  

  

  

  

  

 

  

Fig. 7.11 Zero sequence equivalent circuit of grounded neutral Y-Y connected transformer.  

 

(7.56)  

 

(7.57)  

 

(7.58) 

 

(7.59) 



From (7.57) and (7.58) we see that the positive and negative sequence relations are the same as that 
we have used for representing transformer circuits given in Fig. 1.18. Hence the positive and negative 
sequence impedances are the same as the transformer leakage impedance Z . The zero sequence 
equivalent circuit is shown in Fig. 7.11.  
 

The total zero sequence impedance is given by  

  

  

The zero sequence diagram of the grounded neutral Y-Y connected transformer is shown in Fig. 7.12 
(a) in which the impedance Z0 is as given in (7.60). If both the neutrals are solidly grounded, i.e., Zn = 
ZN = 0, then Z0 is equal to Z . The single line diagram is still the same as that shown in Fig. 7.12 (a). If 

however one of the two neutrals or both neutrals are ungrounded, then we have either Zn = ∞ or ZN = 

∞ or both. The zero sequence diagram is then as shown in Fig. 7.12 (b) where the value of Z0 will 

depend on which neutral is kept ungrounded.  

 

  

Fig. 7.12 Zero sequence diagram of (a) grounded neutral and (b) ungrounded neutral Y-Y 
connected transformer.  

Δ - Δ Connected Transformer  

The schematic diagram of a Δ - Δ connected transformer is shown in Fig. 7.13. Now we have  

  

  

Again  

  

  

 

(7.61) 

 

  

 

(7.60)  



 

  

Fig. 7.13 Schematic diagram of a Δ - Δ connected transformer.  

Therefore from (7.61) we get  

  

  

The sequence components of the line-to-line voltage VAB can be written in terms of the sequence com 
ponents of the line-to-neutral voltage as  

  

  

  

  

Therefore combining (7.62)-(7.64) we get  

  

  

Hence we get  

  

  

Thus the positive and negative sequence equivalent circuits are represented by a series impedance 
that is equal to the leakage impedance of the transformer. Since the Δ -connected winding does not 
provide any path for the zero sequence current to flow we have  

 

(7.62) 

 

(7.63) 

 

(7.64) 

 

(7.65) 

 

(7.66) 



  

  

However the zero sequence current can sometimes circulate within the Δ windings. We can then 
draw the zero sequence equivalent circuit as shown in Fig. 7.14.  

 

  

Fig. 7.14 Zero sequence diagram of Δ - Δ connected transformer.  

 

  

  

- Δ Connected Transformer  

The schematic diagram of a Y- Δ connected transformer is shown in Fig. 7.15. It is assumed that the 
Y-connected side is grounded with the impedance ZN . Even though the zero sequence current in the 
primary Y-connected side has a path to the ground, the zero sequence current flowing in the Δ -
connected secondary winding has no path to flow in the line. Hence we have Ia0 = 0. However the 
circulating zero sequence current in the Δ winding magnetically balances the zero sequence current 
of the primary winding.  

 

Fig. 7.15 Schematic diagram of a Y- Δ connected transformer.  

The voltage in phase-a of both sides of the transformer is related by 

  

  

Also we know that  

 

  



  

  

We therefore have  

  

  

Separating zero, positive and negative sequence components we can write  

  

  

  

  

  

  

The positive sequence equivalent circuit is shown in Fig. 7.16 (a). The negative sequence circuit is 
the same as that of the positive sequence circuit except for the phase shift in the induced emf. This is 
shown in Fig. 7.16 (b). The zero sequence equivalent circuit is shown in Fig. 7.16 (c) where Z0 = Z + 
3ZN . Note that the primary and the secondary sides are not connected and hence there is an open 
circuit between them. However since the zero sequence current flows through primary windings, a 
return path is provided through the ground. If however, the neutral in the primary side is not grounded, 
i.e., ZN = ∞ , then the zero sequence current cannot flow in the primary side as well. The sequence 
diagram is then as shown in Fig. 7.16 (d) where Z0 = Z .  

 

  

 

(7.67)  

 

(7.68)  

 

(7.69)  

 

(7.70)  



 

Fig. 7.16 Sequence diagram of a Y- Δ connected transformer: (a) positive sequence, (b) 
negative sequence, (c) zero sequence with grounded Y-connection and (d) zero sequence 

with ungrounded Y-connection.  

Section VI: Sequence Networks 

The sequence circuits developed in the previous sections are combined to form the sequence 
networks. The sequence networks for the positive, negative and zero sequences are formed 
separately by combining the sequence circuits of all the individual elements. Certain assumptions are 
made while forming the sequence networks. These are listed below.  

1. Apart from synchronous machines, the network is made of static elements.  
2. The voltage drop caused by the current in a particular sequence depends only on the 

impedance of that part of the network.  
3. The positive and negative sequence impedances are equal for all static circuit components, 

while the zero sequence component need not be the same as them. Furthermore 
subtransient positive and negative sequence impedances of a synchronous machine are 
equal.  

4. Voltage sources are connected to the positive sequence circuits of the rotating machines.  
5. No positive or negative sequence current flows between neutral and ground.  

Example 7.5 
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Introduction 

The sequence circuits and the sequence networks developed in the previous chapter will now be used 
for finding out fault current during unsymmetrical faults.  

Three Types of Faults  

 

Calculation of fault currents 

Let us make the following assumptions:  

 The power system is balanced before the fault occurs such that of the three sequence networks 
only the positive sequence network is active. Also as the fault occurs, the sequence networks 
are connected only through the fault location.  

 The fault current is negligible such that the pre-fault positive sequence voltages are same at all 
nodes and at the fault location.  

 All the network resistances and line charging capacitances are negligible.  

 All loads are passive except the rotating loads which are represented by synchronous 
machines.  

Based on the assumptions stated above, the faulted network will be as shown in Fig. 8.1 where the 
voltage at the faulted point will be denoted by Vf and current in the three faulted phases are Ifa , I fb and 
I fc .  

We shall now discuss how the three sequence networks are connected when the three types of faults 
discussed above occur. 

 

  

Fig. 8.1 Representation of a faulted segment.  

  



Single-Line-to-Ground Fault 

Let a 1LG fault has occurred at node k of a network. The faulted segment is then as shown in Fig. 8.2 
where it is assumed that phase-a has touched the ground through an impedance Zf . Since the 

system is unloaded before the occurrence of the fault we have  

  

  

 

Fig. 8.2 Representation of 1LG fault. 

Also the phase-a voltage at the fault point is given by  

  

From (8.1) we can write  

  

  

  

Solving (8.3) we get  

  

 

(8.1) 

 

(8.2) 

 

(8.3) 

 

(8.4) 



  

This implies that the three sequence currents are in series for the 1LG fault. Let us denote the zero, 

positive and negative sequence Thevenin impedance at the faulted point as Z kk0 , Z kk1 and Z kk2 
respectively. Also since the Thevenin voltage at the faulted phase is Vf we get three sequence circuits 

that are similar to the ones shown in Fig. 7.7. We can then write  

  

  

  

Then from (8.4) and (8.5) we can write  

  

  

Again since  

  

  

We get from (8.6)  

  

  

The Thevenin equivalent of the sequence network is shown in Fig. 8.3.  

 

(8.5) 

 

(8.6) 

 

  

 

(8.7) 



 

Fig. 8.3 Thevenin equivalent of a 1LG fault.  

  

Line-to-Line Fault 

The faulted segment for an L-L fault is shown in Fig. 8.5 where it is assumed that the fault has 
occurred at node k of the network. In this the phases b and c got shorted through the impedance Zf . 
Since the system is unloaded before the occurrence of the fault we have  

  

  

 

Fig. 8.5 Representation of L-L fault.  

Also since phases b and c are shorted we have  

  

  

Therefore from (8.8) and (8.9) we have  

 

(8.8) 

 

(8.9) 



  

  

  

We can then summarize from (8.10)  

  

  

Therefore no zero sequence current is injected into the network at bus k and hence the zero 
sequence remains a dead network for an L-L fault. The positive and negative sequence currents are 
negative of each other.  

Now from Fig. 8.5 we get the following expression for the voltage at the faulted point  

  

  

Again  

  

  

  

  

Moreover since I fa0 = I fb0 = 0 and I fa1 = - I fb2 , we can write  

  

  

 

(8.10) 

 

(8.11) 

 

(8.12) 

 

(8.13) 

 

(8.14) 



Therefore combining (8.12) - (8.14) we get  

  

  

Equations (8.12) and (8.15) indicate that the positive and negative sequence networks are in parallel. 
The sequence network is then as shown in Fig. 8.6. From this network we get  

  

  

 

Fig. 8.6 Thevenin equivalent of an LL fault.  

Example 8.2 

 

(8.15) 

 

(8.16) 

  

Double- Line -to Ground Fault 

The faulted segment for a 2LG fault is shown in Fig. 8.7 where it is assumed that the fault has 
occurred at node k of the network. In this the phases b and c got shorted through the impedance Zf to 
the ground. Since the system is unloaded before the occurrence of the fault we have the same 

condition as (8.8) for the phase-a current. Therefore  

  

  

 

(8.17) 
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Fig. 8.7 Representation of 2LG fault. 

Also voltages of phases b and c are given by  

  

  

Therefore  

  

  

  

We thus get the following two equations from (8.19)  

  

  

 

(8.18) 

 

(8.19) 

 

(8.20)  

 

(8.21) 



  

Substituting (8.18) and (8.20) in (8.21) and rearranging we get  

  

  

Also since I fa = 0 we have  

  

  

The Thevenin equivalent circuit for 2LG fault is shown in Fig. 8.8. From this figure we get  

  

  

  

The zero and negative sequence currents can be obtained using the current divider principle as  

  

  

 

(8.22) 

 

(8.23) 

 

(8.24) 

 

(8.25) 

 

(8.26) 



  

  

 

Fig. 8.8 Thevenin equivalent of a 2LG fault.  

  

Example 8.3 

FAULT CURRENT COMPUTATION USING SEQUENCE NETWORKS  

In this section we shall demonstrate the use of sequence networks in the calculation of fault currents 
using sequence network through some examples.  

Example 8.4  

Consider the network shown in Fig. 8.10. The system parameters are given below 

Generator G : 50 MVA, 20 kV, X" = X1 = X2 = 20%, X0 = 7.5%    

Motor M : 40 MVA, 20 kV, X" = X1 = X2 = 20%, X0 = 10%, Xn = 5%    

Transformer T1 : 50 MVA, 20 kV Δ /110 kVY, X = 10%    

Transformer T2 : 50 MVA, 20 kV Δ /110 kVY, X = 10%    

Transmission line: X1 = X2 = 24.2 Ω , X0 = 60.5 Ω    

We shall find the fault current for when a (a) 1LG, (b) LL and (c) 2LG fault occurs at bus-2.  

 

Fig. 8.10 Radial power system of Example 8.4.  

Let us choose a base in the circuit of the generator. Then the per unit impedances of the generator 
are:  
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The per unit impedances of the two transformers are  

 

  

The MVA base of the motor is 40, while the base MVA of the total circuit is 50. Therefore the per unit 
impedances of the motor are  

 

  

For the transmission line  

 

  

Therefore  

 

  

Let us neglect the phase shift associated with the Y/ Δ transformers. Then the positive, negative and 
zero sequence networks are as shown in Figs. 8.11-8.13.  

 

Fig. 8.11 Positive sequence network of the power system of Fig. 8.10.  

 

Fig. 8.12 Negative sequence network of the power system of Fig. 8.10.  



 

Fig. 8.13 Zero sequence network of the power system of Fig. 8.10.  

From Figs. 8.11 and 8.12 we get the following Ybus matrix for both positive and negative sequences  

 

  

Inverting the above matrix we get the following Zbus matrix  

  

  

Again from Fig. 8.13 we get the following Ybus matrix for the zero sequence  

 

  

Inverting the above matrix we get  

 

  

Hence for a fault in bus-2, we have the following Thevenin impedances  

 

  

Alternatively we find from Figs. 8.11 and 8.12 that  

   



 

 

(a) Single-Line-to-Ground Fault : Let a bolted 1LG fault occurs at bus-2 when the system is 
unloaded with bus voltages being 1.0 per unit. Then from (8.7) we get  

  per unit 
  

Also from (8.4) we get  

  per unit   

Also I fb = I fc = 0. From (8.5) we get the sequence components of the voltages as  

 

  

Therefore the voltages at the faulted bus are  

 

  

(b) Line-to-Line Fault : For a bolted LL fault, we can write from (8.16)  

  per unit 
  

Then the fault currents are  

 

  

Finally the sequence components of bus-2 voltages are  

 

  

Hence faulted bus voltages are  



 

  

(c) Double-Line-to-Ground Fault : Let us assumes that a bolted 2LG fault occurs at bus-2. Then  

 

  

Hence from (8.24) we get the positive sequence current as  

  per unit 
  

The zero and negative sequence currents are then computed from (8.25) and (8.26) as  

  per unit 

  per unit 

  

Therefore the fault currents flowing in the line are  

 

  

Furthermore the sequence components of bus-2 voltages are  

 

  

Therefore voltages at the faulted bus are  

 

  

 

  

Example 8.5  



Let us now assume that a 2LG fault has occurred in bus-4 instead of the one in bus-2. Therefore  

 

  

Also we have  

 

  

Hence  

 per unit 
  

Also  

  per unit 
  

  per unit 
  

Therefore the fault currents flowing in the line are  

 

  

We shall now compute the currents contributed by the generator and the motor to the fault. Let us 
denote the current flowing to the fault from the generator side by Ig , while that flowing from the motor 
by Im . Then from Fig. 8.11 using the current divider principle, the positive sequence currents 
contributed by the two buses are  

  

  per unit  
  

 per unit  
  

Similarly from Fig. 8.12, the negative sequence currents are given as  

 per unit  
  



 per unit  
  

Finally notice from Fig. 8.13 that the zero sequence current flowing from the generator to the fault is 0. 
Then we have  

 

  per unit  

  

Therefore the fault currents flowing from the generator side are  

 

  

and those flowing from the motor are  

 

  

It can be easily verified that adding Ig and Im we get If given above.  

In the above two examples we have neglected the phase shifts of the Y/ Δ transformers. However 
according to the American standard, the positive sequence components of the high tension side lead 
those of the low tension side by 30° , while the negative sequence behavior is reverse of the positive 
sequence behavior. Usually the high tension side of a Y/ Δ transformer is Y-connected. Therefore as 
we have seen in Fig. 7.16, the positive sequence component of Y side leads the positive sequence 
component of the Δ side by 30° while the negative sequence component of Y side lags that of the Δ 
side by 30° . We shall now use this principle to compute the fault current for an unsymmetrical fault.  

Let us do some more examples  

Example 8.6 

Example 8.7 
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