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Introduction

Short circuits occur in power system due to various reasons like, equipment failure, lightning strikes,
falling of branches or trees on the transmission lines, switching surges, insulation failures and other
electrical or mechanical causes. All these are collectively called faults in power systems.

A fault usually results in high current flowing through the lines and if adequate protection is not taken, may result
in damages in the power apparatus.

In this chapter we shall discuss the effects of symmetrical faults on the system. Here the term
symmetrical fault refers to those conditions in which all three phases of a power system are grounded
at the same point. For this reason the symmetrical faults sometimes are also called three-line-to-ground (3LG)
faults.

Section I: Transients in R-L Circuits

e DC Sourse
e AC Sourse
e Faultin an AC Circuit

Transients in R-L Circuits

In this section we shall consider transients in a circuit that contains a resistor and inductor (R - L
circuit). Consider the circuit shown in Fig. 6.1 that contains an ideal source ( v ), a resistor ( R ), an
inductor (L ) and a switch ( S). It is assumed that the switch is open and is closed at an instant of
time t = 0. This implies that the current i is zero before the closing of the switch. We shall first discuss
the effect of closing the switch on the line current (i ) when the source is dc. Following this we shall
study the effect when the source is ac and will show that the shape of the transient current changes
with the changes in the phase of the source voltage waveform at the instant of closing the switch.
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Fig 6.1 A Simple R - L Circuit
DC Source

Let us assume that the source voltage is dc and is given by vs = V4. . Then the line current is given by
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the differential equation

¥
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The solution of the above equation is written in the form

Since the initial current i (0) = 0 and since vs (T ) = Vg for 0 £t < ¥ , we can rewrite the above
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equation as

where T =L /R is the time constant of the circuit.

Let us assume R = 1Q , L = 10 mH and V4= 100 V. Then the time response of the current is as
shown in Fig. 6.2. It can be seen that the current reaches at steady state value of 100 A. The time



constant of the circuit is 0.01 s. This is defined by the time in which the current i (t) reaches 63.2% of
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its final value and is obtained by substituting t = T. Note that the slope of the curve is given by
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Fig 6.2 Current in the R-L circuit when the source is dc

AC Source

The current response remains unchanged when the voltage source is dc. This however is not the
case when the circuit is excited by an ac source. Let us assume that the source voltage is now given

v, = NEP; sitl [ﬂ.‘-‘ﬁ + .f_x) (6.5)
by

where a is the phase angle of the applied voltage. We shall show that the system response changes
with a change in a .
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The solution of (6.2) for the source voltage given in (6.5) is
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The system response for V ,, = 100 V and a = 45° is shown in Fig. 6.3. In this figure both i, and 7 4
are also shown. It can be seen that i, is the steady state waveform of the circuit, while iy dies out
once the initial transient phase is over. Fig. 6.4 shows the response of the current for different values
of a . Since the current is almost inductive, it can be seen that the transient is minimum when a = 90°,
i.e., the circuit is switched on almost at the zero-crossing of the current. On the other hand, the
transient is maximum when a = 0° , i.e., almost at the peak of the current.
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Fig 6.3 Transient in current and its ac and dc components at the instant of switch closing
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Fig 6.4 Transient in current for different values of a

AC Source

The current response remains unchanged when the voltage source is dc. This however is not the
case when the circuit is excited by an ac source. Let us assume that the source voltage is how given

v, = xﬁﬁ’; sit) (@3t + 2z ) (6.5)
by

where a is the phase angle of the applied voltage. We shall show that the system response changes
with a change in a .
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The solution of (6.2) for the source voltage given in (6.5) is



The system response for V ,, = 100 V and a = 45° is shown in Fig. 6.3. In this figure both i, and 7 4
are also shown. It can be seen that iy is the steady state waveform of the circuit, while iy, dies out
once the initial transient phase is over. Fig. 6.4 shows the response of the current for different values
of a . Since the current is almost inductive, it can be seen that the transient is minimum when a = 90° ,
i.e., the circuit is switched on almost at the zero-crossing of the current. On the other hand, the
transient is maximum when a = 0°, i.e., almost at the peak of the current.
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Fig 6.4 Transient in current for different values of a

AC Source

The current response remains unchanged when the voltage source is dc. This however is not the
case when the circuit is excited by an ac source. Let us assume that the source voltage is how given
by



v, = ﬁf{ﬂ sit) (@3¢ + 22 )

(6.5)

where a is the phase angle of the applied voltage. We shall show that the system response changes

with a change ina .
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The solution of (6.2) for the source voltage given in (6.5) is

(6.6)
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The system response for V ,, = 100 V and a = 45° is shown in Fig. 6.3. In this figure both i, and 17 4
are also shown. It can be seen that i, is the steady state waveform of the circuit, while iy dies out
once the initial transient phase is over. Fig. 6.4 shows the response of the current for different values
of a . Since the current is almost inductive, it can be seen that the transient is minimum when a = 90° ,
i.e., the circuit is switched on almost at the zero-crossing of the current. On the other hand, the

transient is maximum when a = 0° , i.e., almost at the peak of the current.
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The current response remains unchanged when the voltage source is dc. This however is not the
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where a is the phase angle of the applied voltage. We shall show that the system response changes
with a change in a .
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are also shown. It can be seen that iy is the steady state waveform of the circuit, while iy, dies out
once the initial transient phase is over. Fig. 6.4 shows the response of the current for different values
of a . Since the current is almost inductive, it can be seen that the transient is minimum when a = 90° ,
i.e., the circuit is switched on almost at the zero-crossing of the current. On the other hand, the
transient is maximum when a = 0°, i.e., almost at the peak of the current.
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Fig 6.4 Transient in current for different values of a
Fault in an AC Circuit

Now consider the single-phase circuit of Fig. 6.5 where Vg = 240 V (rms), the system frequency is 50
Hz, R=0.864 Q, L =11 mH ( wL = 3.46 Q) and the load is R-L comprising of an 8.64 W resistor and
a 49.5 mH inductor ( wL = 15.55Q ). With the system operating in the steady state, the switch S is
suddenly closed creating a short circuit. The current (i ) waveform is shown in Fig. 6.6. The current
phasor before the short circuit occurs is

I o0 =505-;71010=1128.-63.45°
8504 + j1%.01 A

This means that the pre-fault current has a peak value of 15.97 A.

Fig. 6.5 A single-phase circuit in which a source supplies a load through a source
impedance.
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Fig 6.6 The current waveform of the circuit of Fig 6.5 before and after the closing of the
switch S

Once the fault occurs and the system is allowed to reach the steady state, the current phasor is given
by

240

= =1634- j6536= 67372 -7596°
0664 + j3.46

This current has a peak value of 95.28 A. However it can be seen that the current rises suddenly and
the first peak following the fault is 124 A which is about 30% higher than the post-fault steady-state
value. Also note that the peak value of the current will vary with the instant of the occurrence of the
fault. However the peak value of the current is nearly 8 times the pre-fault current value in this case.
In general, depending on the ratio of source and load impedances, the faulted current may shoot up
anywhere between 10 and 20 times the pre-fault current.

Short Circuit in an Unloaded Synchronous Generator

Fig. 6.7 shows a typical response of the armature current when a three-phase symmetrical short
circuit occurs at the terminals of an unloaded synchronous generator.
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Fig. 6.7 Armature current of a synchronous generator as a short circuit occurs at its
terminals.

It is assumed that there is no dc offset in the armature current. The magnitude of the current
decreases exponentially from a high initial value. The instantaneous expression for the fault current is

iﬁ_——fé'_:ﬁ:"' i{—i E—!;T,‘;_'_L Sﬁl[ﬂjﬁ"‘&_ﬁffzj (69)

i) =2V,

given by

where V; is the magnitude of the terminal voltage, a is its phase angle and

N
Xﬂ’ is the direct axis subtransient reactance
Ay

Ky , .
¢ is the direct axis synchronous reactance

is the direct axis transient reactance

with Ay C A A, . The time constants are

"

4 is the direct axis subtransient time constant

&

¢ js the direct axis transient time constant

In the expression of (6.9) we have neglected the effect of the armature resistance hence a = 1/2. Let

o

¥

ff(0)= Iy = T

us assume that the fault occurs at time t = 0. From (6.9) we get the rms value of the current as

(6.10)

which is called the subtransient fault current. The duration of the subtransient current is dictated by
the time constant T, . As the time progresses and Ty” <t < T4, the first exponential term of (6.9) will
start decaying and will eventually vanish. However since t is still nearly equal to zero, we have the

Y
I =2
d

following rms value of the current

(6.11)



This is called the transient fault current. Now as the time progress further and the second
exponential term also decays, we get the following rms value of the current for the sinusoidal steady

(6.12)

In addition to the ac, the fault currents will also contain the dc offset. Note that a symmetrical fault
occurs when three different phases are in three different locations in the ac cycle. Therefore the dc

= o f2r e
offsets in the three phases are different. The maximum value of the dc offset is given by

Section lll: Symmetrical Fault in a Power System

e Calculation of Fault Current Using Impedance Diagram
e Calculation of Fault Current Using Zy.s Matrix

Calculation of Fault Current Using Impedance Diagram

Let us first illustrate the calculation of the fault current using the impedance diagram with the help of
the following examples.

Example 6.1

Consider the power system of Fig. 6.8 in which a synchronous generator supplies a synchronous
motor. The motor is operating at rated voltage and rated MVA while drawing a load current at a
power factor of 0.9 (lagging) when a three phase symmetrical short circuit occurs at its terminals. We
shall calculate the fault current that flow from both the generator and the motor.

We shall choose a base of 50 MVA, 20 kV in the circuit of the generator. Then the motor
synchronous reactance is given by

xr=02x2 =04

25 per unit

Also the base impedance in the circuit of the transmission line is

662

Zppe = —— = 87.12
50

a5

Q
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Fig. 6.8 A generator supplying a motor load though a transmission line.

Therefore the impedance of the transmission line is

X = j— = 01148
8712 per unit

The impedance diagram for the circuit is shown in Fig. 6.9 in which the switch S indicates the fault.

A1 01148

() I )!

Fig. 6.9 Impedance diagram of the circuit of Fig. 6.8.

The motor draws a load current at rated voltage and rated MVA with 0.9 lagging power factor.
Therefore

i =1£-cos7(0.9)=09-,704359 . o

Then the subtransient voltages of the motor and the generator are

By =1.0-j04xi; =08256- /036 o

B =10+ 705148x4; =1.2244 + j0 4633 0

er unit
Hence the subtransient fault currents fed by the motor and the generator are

En\'

[ =Em _ 09— ;20641
404 per unit
- .
"= "F _-09- ;23784
70,5148

per unit

and the total current flowing to the fault is




N + L.
L=l+ly=-jadas

Note that the base current in the circuit of the motor is

_50x10° L s0sn
Agsg q,|'§><18 . A

Therefore while the load current was 1603.8 A, the fault current is 7124.7 A.

Example 6.2

We shall now solve the above problem differently. The Thevenin impedance at the circuit between
the terminals A and B of the circuit of Fig. 6.9 is the parallel combination of the impedances j 0.4 and
j 0.5148. This is then given as

JPCLLIEIC: PR
04 +05148 per unit

Since voltage at the motor terminals before the fault is 1.0 per unit, the fault current is

=20 aans

j -
2 per unit

If we neglect the pre-fault current flowing through the circuit, then fault current fed by the motor and
the generator can be determined using the current divider principle, i.e.,

f”
If=—f _x;05148=-;25
J0.9148 per unit
= ——L % j0.4=-;19425
El . S Sl
70,9148 per unit

If, on the other hand, the pre-fault current is not neglected, then the fault current supplied by the
motor and the generator are

Iy =dpg =1y = -0.9-j20641 por ooy
= ho+1;=09-7237184 o

Calculation of Fault Current Using Zpys Matrix

Consider the circuit of Fig. 3.3 which is redrawn as shown in Fig. 6.10.



Fig. 6.10 Network depicting a symmetrical fault at bus-4.

We assume that a symmetrical fault has occurred in bus-4 such that it is now connected to the
reference bus. Let us assume that the pre-fault voltage at this bus is V¢ . To denote that bus-4 is short
circuit, we add two voltage sources V¢ and - V; together in series between bus-4 and the reference
bus. Also note that the subtransient fault current 1 flows from bus-4 to the reference bus. This implies
that a current that is equal to - 1" is injected into bus-4. This current, which is due to the source - V;
will flow through the various branches of the network and will cause a change in the bus voltages.
Assuming that the two sources and V; are short circuited. Then - V; is the only source left in the

network that injects a current - 1" into bus-4. The voltages of the different nodes that are caused by
-i‘.i'r’; . 0]
AV P 0
= 6.14
&P; dus |:| ( )
—Vy ~ 4

the voltage - V; and the current - 1" are then given by

where the prefix A indicates the changes in the bus voltages due to the current - I"; .

Ve = Zylp (6.15)
From the fourth row of (6.14) we can write

Combining (6.14) and (6.15) we get



v 2 .
A= —Z—“V , i=123 (6.16)

44

AV, = -Z,

We further assume that the system is unloaded before the fault occurs and that the magnitude and
phase angles of all the generator internal emfs are the same. Then there will be no current circulating
anywhere in the network and the bus voltages of all the nodes before the fault will be same and equal

vo=v, AV = [1- 2y ot (6.17)
=

44
to V¢ . Then the new altered bus voltages due to the fault will be given from (6.16) by

Example 6.3
Section IV: Circuit Breaker Selection

A typical circuit breaker operating time is given in Fig. 6.11. Once the fault occurs, the protective
devices get activated. A certain amount of time elapses before the protective relays determine that
there is overcurrent in the circuit and initiate trip command. This time is called the detection time.
The contacts of the circuit breakers are held together by spring mechanism and, with the trip
command, the spring mechanism releases the contacts. When two current carrying contacts part, a
voltage instantly appears at the contacts and a large voltage gradient appears in the medium between
the two contacts. This voltage gradient ionizes the medium thereby maintaining the flow of current.
This current generates extreme heat and light that is called electric arc. Different mechanisms are
used for elongating the arc such that it can be cooled and extinguished. Therefore the circuit breaker
has to withstand fault current from the instant of initiation of the fault to the time the arc is
extinguished.

Occurrence of
fault Contact parting Arc extinction
Initiation of trip
command

TimMe =

-—r|e
Detection I Iinterrupting time
time

Fig. 6.11 Typical circuit breaker operating time.
Two factors are of utmost importance for the selection of circuit breakers. These are:

e The maximum instantaneous current that a breaker must withstand and
e The total current when the breaker contacts part.

In this chapter we have discussed the calculation of symmetrical subtransient fault current in a
network. However the instantaneous current following a fault will also contain the dc component. In a
high power circuit breaker selection, the subtransient current is multiplied by a factor of 1.6 to
determine the rms value of the current the circuit breaker must withstand. This current is called the


javascript:openpopup('examp_6.3.html')

momentary current . The interrupting current of a circuit breaker is lower than the momentary
current and will depend upon the speed of the circuit breaker. The interrupting current may be
asymmetrical since some dc component may still continue to decay.

Breakers are usually classified by their nominal voltage, continuous current rating, rated maximum
voltage, K -factor which is the voltage range factor, rated short circuit current at maximum voltage and
operating time. The K -factor is the ratio of rated maximum voltage to the lower limit of the range of
the operating voltage. The maximum symmetrical interrupting current of a circuit breaker is given by K
times the rated short circuit current.
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Overview

An unbalanced three-phase system can be resolved into three balanced systems in the sinusoidal
steady state. This method of resolving an unbalanced system into three balanced phasor system
has been proposed by C. L. Fortescue. This method is called resolving symmetrical components
of the original phasors or simply symmetrical components.

In this chapter we shall discuss symmetrical components transformation and then will present how
unbalanced components like Y- or A -connected loads, transformers, generators and transmission
lines can be resolved into symmetrical components. We can then combine all these components
together to form what are called sequence networks .

Section I: Symmetrical Components

¢ Symmetrical Component Transformation
e Real and Reactive Power
e Orthogonal Transformation

Symmetrical Components

A system of three unbalanced phasors can be resolved in the following three symmetrical
components:

e Positive Sequence: A balanced three-phase system with the same phase sequence as the
original sequence.
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e Negative sequence: A balanced three-phase system with the opposite phase sequence as
the original sequence.
e Zero Sequence: Three phasors that are equal in magnitude and phase.

Fig. 7.1 depicts a set of three unbalanced phasors that are resolved into the three sequence
components mentioned above. In this the original set of three phasors are denoted by V, , V, and V.,
while their positive, negative and zero sequence components are denoted by the subscripts 1, 2 and
0 respectively. This implies that the positive, negative and zero sequence components of phase-a are
denoted by V,: , Vi and Vo respectively. Note that just like the voltage phasors given in Fig. 7.1 we
can also resolve three unbalanced current phasors into three symmetrical components.

l,‘ ‘;l l’h.’
Iim "I-U ,'A.
v, Vo v /S
Vi Ve
Vi

(a) (h) (¢) (d)

Fig. 7.1 Representation of (a) an unbalanced network, its (b) positive sequence, (c)
negative sequence and (d) zero sequence.

Symmetrical Component Transformation

Before we discuss the symmetrical component transformation, let us first define the a -operator. This

- 1 e
_gt Y (7.1)
a=¢ 5 J 5

has been given in (1.34) and is reproduced below.

a j:;-m“:_l ‘--"r§ -

a =#

K
P B £ 72)

4 4zt 3600 _ f1a00
a =g’ =g gt =y

§ I 3600 240t 2
a’ =g’ =g/ g =g andzoon

Note that for the above operator the following relations hold



1+a+a’ =1—l+3£—l—j£
2 2 2 2
Also note that we have

=0

My =a'l,

al

and V) =al,

Using the a -operator we can write from Fig. 7.1 (b)

Vg =@l and ¥, = '532'!—";2

Similarly from Fig. 7.1 (c) we get

P;,:,:P;D:P;D

Finally from Fig. 7.1 (d) we get

V= Va.lil_'_agVal_'—aE;ﬂ =V + 1V +V

Ve =V +aly +f32{”;2 =tV +V,

3 [

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)



w111 1,
o=l & e | vy
Vc 1 ct ag ad

Therefore,

v 11 1
N = L o
ol e &\

M 1 1 17w
Va |l= % a o Yy
v, 1 & a|F

The symmetrical component transformation matrix is then given by

Defining the vectors V go12 and V g as

(7.10)

(7.11)

(7.12)



Fan Va
Kmu = {”:11 - Fm = ‘T”;

Vaa v,
'1’::1!]12 = CV@;

we can write (7.4) as

1 1 1
C:ll a a
3 2

1 = a

where C is the symmetrical component transformation matrix and is given by

(7.13)

The original phasor components can be obtained from the inverse symmetrical component

Vm = C_lVaum

transformation, i.e.,

(7.14)

Finally, if we define a set of unbalanced current phasors as I, and their symmetrical components as

fanu = Cf.ze-c

el
Iﬂ-ﬂ'ﬂ - C iTleillz
l.o12 , We can then define

(7.15)



Example 7.1

Example 7.2

Real and Reactive Power

. L) L] L] T -
Paélc-l_u'rQa-!lc:P:zfa-i_P;f& +|prc"'rc =Vﬂbc"'rabcr (7-16)
The three-phase power in the original unbalanced system is given by

; T =T oyl 7
Pm!lc +JQ@; = l1-”:11:112{—-"' C fanu (7.17)
where I* is the complex conjugate of the vector I. Now from (7.10) and (7.15) we get
1 00
cfo™=30 1 0
o0 1
From (7.11) we get
(7.18)

B+l = B(P;Df.:ﬂ +Vain +{”:zzf:2)

Therefore from (7.17) we get
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We then find that the complex power is three times the summation of the complex power of the three
phase sequences.

Example 7.3

Real and Reactive Power

Paélc +J‘Qa-!lc = E};f; + ﬂf; + P:"'r: = Vi;-cf:b:r (7-16)

The three-phase power in the original unbalanced system is given by

Fape T iU, = Pﬁ; 12C_r c™I 2012 (7.17)

where I* is the complex conjugate of the vector I. Now from (7.10) and (7.15) we get

10 0
cfo™=30 1 0
00 1

From (7.11) we get

B+l = B(P;nf:n +me;1+{”;zf;2) (7.18)

Therefore from (7.17) we get
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We then find that the complex power is three times the summation of the complex power of the three
phase sequences.

Example 7.3
Section Il: Sequence Circuits for Loads
In this section we shall construct sequence circuits for both Y and A -connected loads separately.

e Sequence Circuit for a Y-Connected Load
e Sequence Circuit for a A-Connected Load

Sequence Circuit for a Y-Connected Load

Consider the balanced Y-connected load that is shown in Fig. 7.2. The neutral point (n) of the
windings are grounded through an impedance Z, . The load in each phase is denoted by Z, . Let us
consider phase-a of the load. The voltage between line and ground is denoted by V, , the line-to-
neutral voltage is denoted by V,, and voltage between the neutral and ground is denoted by V, . The

fx = fﬂ+fa +f¢
= 35&0 +[fa1+fal+f.:1)+[fﬂ +faz ‘HT;:;): 35&0
neutral current is then

(7.22)

Therefore there will not be any positive or negative sequence current flowing out of the neutral point.

Fig. 7.2 Schematic diagram of a balanced Y-connected load.

Ve = 32,00 (7.23)

The voltage drop between the neutral and ground is
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Vo=V, +¥, =V, +32Z 1, (7.24)

Now

Va | |Var| |V I, 1

Vo 1= Vg || ¥ | = 20| £y |+ 32,40 1 (7.25)
Vel LVad L i 1

We can write similar expression for the other two phases. We can therefore write

Pre-multiplying both sides of the above equation by the matrix C and using (7.8) we get

1

Vanna = Zydanna + 32,0 1 (7.26)
1

Now since



f.zlil ffzIZI

Vao
Va |=Zy| {y | +32,]| 0 (7.27)
Va2 {4 0

We get from (7.26)

We then find that the zero, positive and negative sequence voltages only depend on their respective
sequence component currents. The sequence component equivalent circuits are shown in Fig. 7.3.
While the positive and negative sequence impedances are both equal to Zy , the zero sequence

Z,=Z,+3Z, (7.28)

impedance is equal to

If the neutral is grounded directly (i.e., Z, = 0), then Z, = Zy . On the other hand, if the neutral is kept
floating (i.e., Z, = =), then there will not be any zero sequence current flowing in the circuit at all.

4
3Z,

72 I‘,Ql
Al | 7 ] " - II)_N .| Z ] ’
Va :T J '.,.gT J "NT [D

(a) (b) (c)

Fig. 7.3 Sequence circuits of Y-connected load: (a) positive, (b) negative and (c) zero
sequence

Sequence Circuit for a A -Connected Load

Consider the balanced A -connected load shown in Fig. 7.4 in which the load in each phase is

Var = £ 34
Voe = Zudp, (7.29)
P:ﬂ = Z.I:I.fﬁﬂ

denoted by Z, . The line-to-line voltages are given by



Adding these three voltages we get

Vﬂﬂl + P;c +V¢ﬂ = Zﬂ[fab + fa; + fm) (7-30)

Fig. 7.4 Schematic diagram of a balanced A -connected load.

Denoting the zero sequence component Vg, , Vi and V¢, as Vane and that of Iy, , lpe and les as lapg we

Foa = 244 an (7.31)

can rewrite (7.30) as

Vg + Wy Vg =V, =Wy 4y =V, + ¥, =¥, = 0

[ i a2

Again since

We find from (7.31) Vapo = Iano = 0. Hence a A -connected load with no mutual coupling has not any
zero sequence circulating current. Note that the positive and negative sequence impedance for this
load will be equal to Z, .

Example 7.4
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Section lll: Sequence Circuits for Synchronous Generator

The three-phase equivalent circuit of a synchronous generator is shown in Fig. 1.16. This is redrawn
in Fig. 7.6 with the neutral point grounded through a reactor with impedance Z,, . The neutral current is

L=F +5+1 (7.32)

then given by

Fig. 7.6 Equivalent circuit of a synchronous generator with grounded neutral.

The derivation of Section 1.3 assumes balanced operation which implies I, + I, + I, = 0. As per (7.32)
this assumption is not valid any more. Therefore with respect to this figure we can write for phase-a

Vo=—(R+ j@l )i+ joM (I, +1)+E

_ _ _ (7.33)
=—(R+jml +jwM ) +ioM (I +1,+1 )+ B
voltage as
v I, 11 174, [Z,
Ve |= B+ jool L+ M) 1, |+ o |1 1 1] ], |+| B, (7.34)
v I 11 1|4 |&,

Similar expressions can also be written for the other two phases. We therefore have



-~ i 11 1] [ly] [Ewe
Vo |=—[R+ el +M )] I, |+ioMCl1 1 1|07 1 |+] B (7.35)
-~ Iy 111 L] |[Bwe

Pre-multiplying both sides of (7.34) by the transformation matrix C we get

Since the synchronous generator is operated to supply only balanced voltages we can assume that

o L 30 01, 0
Vo= R+ jeln, + 0 ) 1y |+ieM, |0 0 0|1, |+|E, (7.36)
o 1 0o 0 0|, 0
Eano = Eanz = 0 @nd E,np = Eqy - We can therefore modify (7.35) as
Vﬂi‘!ﬂ = _[R +jﬂj[£'5 - EMJ)]IEU = _Zgﬂj.:zl] (7.37)
Vﬂ?él =_[R+jm[L5+M5:]]fal+Eﬂx= Eﬂx _Zl"'ral (7_38)
Vo= R+ el + M), =-Z2,1, (7.39)

We can separate the terms of (7.36) as



Furthermore we have seen for a Y-connected load that Va1 = V 401, Va2 = Vane Since the neutral
current does not affect these voltages. However Vo = Va0 + V,, . Also we know that V, = - 3Z,I,0 . We

Van = _(Egu +3Z, )!aﬂ =—Zyla (7.40)

can therefore rewrite (7.37) as

The sequence diagrams for a synchronous generator are shown in Fig. 7.7.

(a) (b)

Fig. 7.7 Sequence circuits of synchronous generator: (a) positive, (b) negative and (c) zero
sequence

Section IV: Sequence Circuits for Symmetrical Transmission Line

The schematic diagram of a transmission line is shown in Fig. 7.8. In this diagram the self impedance
of the three phases are denoted by Z,, , Z,, and Z.. while that of the neutral wire is denoted by Z,, .

Eem = E-EI-EI = E:.'ﬂ

Let us assume that the self impedances of the conductors to be the same, i.e.,

Since the transmission line is assumed to be symmetric, we further assume that the mutual
inductances between the conductors are the same and so are the mutual inductances between the

Eﬂx = E-?.l:u = Eﬁ-‘.’!
conductors and the neutral, i.e.,

The directions of the currents flowing through the lines are indicated in Fig. 7.8 and the voltages
between the different conductors are as indicated.



Fig. 7.8 Lumped parameter representation of a symmetrical transmission line.

Vﬂ?! = Vm‘ + 'p:l':u' + 'p;':u = Vm‘ + P:l'?é' - Vm (7.41)

Applying Kirchoff's voltage law we get

Vm‘ =mea+zab[fb+fﬂj+szx (7-42)
Again
'p;x' =ana +Zﬂx|ifa +I-!l +f¢') (7-43)

Vﬂi‘! - P:z'm' = [Em _Zm)ja + [Zﬂ-!' - Eu)[f-!' +f¢)+(z
Substituting (7.42) and (7.43) in (7.41) we get

I ANTA (7.44)

Since the neutral provides a return path for the currents I, , I, and I , we can write



"'IT:M = _I:"'Fa +"'F-!l + ":Tc:l (7-45)

Vﬂ?! - '1;":1':!' = [Zem +En - zzﬂx)fa + I:Zab +E:u:! - zzﬂn)[fb + fr:) (7.46)

Therefore substituting (7.45) in (7.44) we get the following equation for phase-a of the circuit

Z,=Z,+Z —2Z and Z =Z,+Z —2Z

ax

Denoting

Vﬂx_ﬂ'x' =Ejfﬂ+zm [j-?.l +Ic) (7.47)

(7.46) can be rewritten as

Since (7.47) does not explicitly include the neutral conductor we can define the voltage drop across

Vﬂﬂ' = Vm - '1';,:1';!' (7-48)

the phase-a conductor as

V=20 +Z (1, +1]) (7.49)
Combining (7.47) and (7.48) we get



Vm‘ E: Zm Zm f:z
V-;I-BI' = Z:w EJ Z:w f&l (7-50)
V;'f' Zm Z:w Es &

Similar expression can also be written for the other two phases. We therefore get

E: E?ﬂ Z?ﬂ
Va2 =Cl 2w 2, 2y C_lfam (7.51)
En EM ZS

Pre-multiplying both sides of (7.50) by the transformation matrix C we get

Now

Z, Z, Z, Z, Z, Z,J1 1 1

Z, Z, EZ |lct=|Z, Z, Z |1 & «a

zZ, Z, Z, Zp Zn Z, |1 a &
(2, + 22, Z,-Z, Z,-Z,
=|z,+22, &*Z,+(1+a)Z, aZ, +(+a*)Z,
Z,+2Z, aZ, +1+d’)Z, &°Z,+(1+a)Z,



Z, Z, I, 1 1 1z, +22,
clz, Z, Z, c'-l:% 1 a & ||Z,+22,
Z, Z, Z 1 & a|Z, +22,
(32, +62, 0
_1 0 32, - 32,
3
0 0
Hence )
Vool [Z 422, 0
Vo | = Z,-Z, I
Vo Z-Z. |1,

Therefore from (7.51) we get

ZJ _ZM

&2, +(1+a)Z, aZ,+(1+a*)2,
aZ, ++a*)Z, &Z, +(1+a)Z,,

0
0
3Z,-3Z,

ZJ_E?#

(7.52)

The positive, negative and zero sequence equivalent circuits of the transmission line are shown in

Elzzﬂz‘gs—zmzzm—‘g@

Z =2, +2Z, =2, +2Z,+32,, —6Z

an

Fig. 7.9 where the sequence impedances are



/ll

"‘;ZI_G' a—2d 7, a' —— I—u'
‘~ I, ’ T' X ‘,’“"'”T

n n n n n n

(a) (b) (c)

Fig. 7.9 Sequence circuits of symmetrical transmission line: (a) positive, (b) negative and
(c) zero sequence.

Section V: Sequence Circuits for Transformers

e Y-Y Connected Transformer
e A-A Connected Transformer
e Y- A Connected Transformer

In this section we shall discuss the sequence circuits of transformers. As we have seen earlier that
the sequence circuits are different for Y- and A -connected loads, the sequence circuits are also
different for Y and A connected transformers. We shall therefore treat different transformer
connections separately.

-Y Connected Transformer

Fig. 7.10 shows the schematic diagram of a Y-Y connected transformer in which both the neutrals are
grounded. The primary and secondary side quantities are denoted by subscripts in uppercase letters
and lowercase letters respectively. The turns ratio of the transformer is given by a = N; : N, .

L

-

Fig. 7.10 Schematic diagram of a grounded neutral Y-Y connected transformer.

V=V TV =V + 32,5 40

The voltage of phase-a of the primary side is
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Expanding V5 and V,y in terms of their positive, negative and zero sequence components, the above

Vg PV V0 =Fam ¥ un ¥ an 324 4

equation can be rewritten as

(7.53)

Noting that the direction of the neutral current I, is opposite to that of Iy , we can write an equation

'P:ztl +I{11+ '1’::12 = P:le:l +Va.x1+ sz _BExfau

similar to that of (7.53) for the secondary side as

ot Ty Var
N, Frd

Nl =N =1 =a,

Now since the turns ratio of the transformer is a = N; : N, we can write

l[Vm F Vg + Vo) = 32 ad
£r
Substituting in (7.54) we get

P;IZI+P:11+P:12:

oV + VAV ) = Vo + Vg + Vo — 32,851 4

Multiplying both sides of the above equation by a results in

(7.54)

(7.55)



eV +V +V ) =V +¥ +V g _B(ZN+ E:uﬂz]!m

(7.56)
Finally combining (7.53) with (7.55) we get
A
o=l =7
“a oA (7.57)
M
ol , = —IP; =1
N s (7.58)
N,
oy = Fl{{zl] =g — 3[2 + Nﬂ"‘r :IZJ!.I:I (7.59)
2

Separating out the positive, negative and zero sequence components we can write

Im 7 ﬂsZ\ ’([711 lm
— —
® ®
, {0 { ".u(l
.\’;I.\‘.:

Fig. 7.11 Zero sequence equivalent circuit of grounded neutral Y-Y connected transformer



From (7.57) and (7.58) we see that the positive and negative sequence relations are the same as that
we have used for representing transformer circuits given in Fig. 1.18. Hence the positive and negative
sequence impedances are the same as the transformer leakage impedance Z . The zero sequence
equivalent circuit is shown in Fig. 7.11.

Z,=Z+3Z,+3(N /N, Z, (7.60)

The total zero sequence impedance is given by

The zero sequence diagram of the grounded neutral Y-Y connected transformer is shown in Fig. 7.12
(a) in which the impedance Z, is as given in (7.60). If both the neutrals are solidly grounded, i.e., Z, =
Zy =0, then Z, is equal to Z . The single line diagram is still the same as that shown in Fig. 7.12 (a). If
however one of the two neutrals or both neutrals are ungrounded, then we have either Z, = « or Zy =
% or both. The zero sequence diagram is then as shown in Fig. 7.12 (b) where the value of Z, will
depend on which neutral is kept ungrounded.

Zy Zo
—|— —— 3 —

(a) (b)

Fig. 7.12 Zero sequence diagram of (a) grounded neutral and (b) ungrounded neutral Y-Y
connected transformer.

A - A Connected Transformer

The schematic diagram of a A - A connected transformer is shown in Fig. 7.13. Now we have

Vﬂs:Vﬂ_p:e

(7.61)
=VAD+VM+VM_PFBU_VBI_FBE=VABI+FARE



Fig. 7.13 Schematic diagram of a A - A connected transformer.

Therefore from (7.61) we get

Fan = Vg + Voym = etV + V50 ) (7.62)

The sequence components of the line-to-line voltage Vag can be written in terms of the sequence com
ponents of the line-to-neutral voltage as

Vo = N3V g2 30°

(7.63)
Vs = 3V gl — 30° (7.64)
Therefore combining (7.62)-(7.64) we get
B il 30°+ {3 s = 30° = | B £30° {3V, f — 30°) (7.65)
Hence we get
Fan =¥, and Fao = el (7.66)

Thus the positive and negative sequence equivalent circuits are represented by a series impedance
that is equal to the leakage impedance of the transformer. Since the A -connected winding does not
provide any path for the zero sequence current to flow we have



However the zero sequence current can sometimes circulate within the A windings. We can then
draw the zero sequence equivalent circuit as shown in Fig. 7.14.

Zo

Fig. 7.14 Zero sequence diagram of A - A connected transformer.

- A Connected Transformer

The schematic diagram of a Y- A connected transformer is shown in Fig. 7.15. It is assumed that the
Y-connected side is grounded with the impedance Zy . Even though the zero sequence current in the
primary Y-connected side has a path to the ground, the zero sequence current flowing in the A -
connected secondary winding has no path to flow in the line. Hence we have I, = 0. However the
circulating zero sequence current in the A winding magnetically balances the zero sequence current
of the primary winding.

L
=
Iy
e
a
\'3:.\.:
)
(d
L/
) i
>

Fig. 7.15 Schematic diagram of a Y- A connected transformer.

v :%V@ =ai,

2
The voltage in phase-a of both sides of the transformer is related by

Also we know that



VgtV a ¥ =Van VW an TV an 324 0

7.67
= eV + Vo + Vo 1+ 32,0 (7:67)
We therefore have
Vi = 32yl gy = 0y = 0 (7.68)
Separating zero, positive and negative sequence components we can write
V= oy = el 230° (7.69)
Vo = e, = 3ab,,2 - 30° (7.70)

The positive sequence equivalent circuit is shown in Fig. 7.16 (a). The negative sequence circuit is
the same as that of the positive sequence circuit except for the phase shift in the induced emf. This is
shown in Fig. 7.16 (b). The zero sequence equivalent circuit is shown in Fig. 7.16 (c) where Z, = Z +
3Zy . Note that the primary and the secondary sides are not connected and hence there is an open
circuit between them. However since the zero sequence current flows through primary windings, a
return path is provided through the ground. If however, the neutral in the primary side is not grounded,
i.e., Zy = « , then the zero sequence current cannot flow in the primary side as well. The sequence
diagram is then as shown in Fig. 7.16 (d) where Z, =Z .



(c) (d)

Fig. 7.16 Sequence diagram of a Y- A connected transformer: (a) positive sequence, (b)
negative sequence, (c) zero sequence with grounded Y-connection and (d) zero sequence
with ungrounded Y-connection.

Section VI: Sequence Networks

The sequence circuits developed in the previous sections are combined to form the sequence
networks. The sequence networks for the positive, negative and zero sequences are formed
separately by combining the sequence circuits of all the individual elements. Certain assumptions are
made while forming the sequence networks. These are listed below.

1. Apart from synchronous machines, the network is made of static elements.

2. The voltage drop caused by the current in a particular sequence depends only on the
impedance of that part of the network.

3. The positive and negative sequence impedances are equal for all static circuit components,
while the zero sequence component need not be the same as them. Furthermore
subtransient positive and negative sequence impedances of a synchronous machine are
equal.

4. \Voltage sources are connected to the positive sequence circuits of the rotating machines.

5. No positive or negative sequence current flows between neutral and ground.

Example 7.5

Introduction

Single-Line
= o Ground
Fault
Line-to-Line
Fault
Double-Line
u -to-Ground

Fault

Fault

Current

- Computation
using
Sequence
Networks


javascript:openpopup('examp_7.5.html')
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_8/8_1.html
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_8/8_2.html
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_8/8_2.html
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_8/8_2.html
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_8/8_3.html
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_8/8_3.html
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_8/8_4.html
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_8/8_4.html
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_8/8_4.html
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_8/8_5.html
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_8/8_5.html
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_8/8_5.html
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_8/8_5.html
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_8/8_5.html
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_8/8_5.html

Introduction

The sequence circuits and the sequence networks developed in the previous chapter will now be used
for finding out fault current during unsymmetrical faults.

Three Types of Faults

Type of Faults

Single-Line-to-Grownd
(1LG) Fault

= Line-to-Line (LL) Fault

Double-line-to-Ground
= (2LG) Fault

Calculation of fault currents
Let us make the following assumptions:

e The power system is balanced before the fault occurs such that of the three sequence networks
only the positive sequence network is active. Also as the fault occurs, the sequence networks
are connected only through the fault location.

e The fault current is negligible such that the pre-fault positive sequence voltages are same at all
nodes and at the fault location.

¢ All the network resistances and line charging capacitances are negligible.

o All loads are passive except the rotating loads which are represented by synchronous
machines.

Based on the assumptions stated above, the faulted network will be as shown in Fig. 8.1 where the
voltage at the faulted point will be denoted by V; and current in the three faulted phases are I, , I ¢, and
Ig.

We shall now discuss how the three sequence networks are connected when the three types of faults
discussed above occur.

a

Vi
llfll
’.v-'
b —
llﬂl

c 2
Ilh

Fig. 8.1 Representation of a faulted segment.




Single-Line-to-Ground Fault

Let a 1LG fault has occurred at node k of a network. The faulted segment is then as shown in Fig. 8.2
where it is assumed that phase-a has touched the ground through an impedance Z; . Since the

Ip=d,=10 (8.1)

system is unloaded before the occurrence of the fault we have

a

K
% ‘Ltzi—t
k

£

b

Fig. 8.2 Representation of 1LG fault.

Ve =255 (8.2)
Also the phase-a voltage at the fault point is given by

1 11T 1,
1 a & |0 (8.3)
1 & afo0

From (8.1) we can write

! =_
fan1z = 3

jfﬂ
I == la =2 (8.4)

Solving (8.3) we get



This implies that the three sequence currents are in series for the 1LG fault. Let us denote the zero,
positive and negative sequence Thevenin impedance at the faulted point as Z o , Z w1 and Z e
respectively. Also since the Thevenin voltage at the faulted phase is V; we get three sequence circuits

Pran = ~Zgod pan

Va1 = 'I’fr - mejm (8.5)

Viaz = _mem
that are similar to the ones shown in Fig. 7.7. We can then write

(8.6)
= P} - (Em + Zm +Zm)fﬁzn
Then from (8.4) and (8.5) we can write

Via = Zpdp = Z oL+ Tou + 1oy )= 32 110

Again since
; v
= 4
0 ot L + B + 32, (®&.7)

We get from (8.6)

The Thevenin equivalent of the sequence network is shown in Fig. 8.3.
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Fig. 8.3 Thevenin equivalent of a 1LG fault.

Line-to-Line Fault

The faulted segment for an L-L fault is shown in Fig. 8.5 where it is assumed that the fault has
occurred at node k of the network. In this the phases b and ¢ got shorted through the impedance Z; .
Since the system is unloaded before the occurrence of the fault we have

Ip=10 (8.8)

X

a

b k
/,;.‘ Z
!E_HIH
| k

Fig. 8.5 Representation of L-L fault.

Also since phases b and c are shorted we have

In=-1I, (8.9)

Therefore from (8.8) and (8.9) we have



We can then summarize from (8.10)

(8.10)

(8.11)

Therefore no zero sequence current is injected into the network at bus k and hence the zero
sequence remains a dead network for an L-L fault. The positive and negative sequence currents are

negative of each other.

Now from Fig. 8.5 we get the following expression for the voltage at the faulted point

Vo ~Vie =Zpln

Again

Fm _ch = Vm +Vm1 +Vm - chu Vi
= (le - V.&cl) [V Vm)
W

(cz —cx)V +(|:;t e
=(ﬂ2_ )Ii ~Vas)

Moreover since Ity =1 =0and I 1 =- 15, , We can write

2 2
Ly=Im+1g =Ty +aly = e —a)ly

(8.12)

(8.13)

(8.14)



Therefore combining (8.12) - (8.14) we get

Pial = Viaz = Z_ffﬁu (8.15)

Equations (8.12) and (8.15) indicate that the positive and negative sequence networks are in parallel.
The sequence network is then as shown in Fig. 8.6. From this network we get

Ve
= 1
¥ Lt L, (8.16)

fog=—1

fal

I.’I-' | I"q 2

Zwy Z = Zw

+ (S A -
J ./ / ';l.:! T’ -‘-'l?

Fig. 8.6 Thevenin equivalent of an LL fault.

Example 8.2

Double- Line -to Ground Fault

The faulted segment for a 2LG fault is shown in Fig. 8.7 where it is assumed that the fault has
occurred at node k of the network. In this the phases b and ¢ got shorted through the impedance Z to
the ground. Since the system is unloaded before the occurrence of the fault we have the same

1 1
7 =§[fﬁ+fﬁ+fﬁ)=§(fﬁ +fj‘c) (8.17)

= a7 fan = ! aT 'y #
condition as (8.8) for the phase-a current. Therefore
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Fig. 8.7 Representation of 2L G fault.

Vo = Voo = 2,0+ 1) = 32,1

Also voltages of phases b and ¢ are given by

(8.18)
Fa . Ve T 2F5
Vo | | P +la+d IV,
Therefore
We thus get the following two equations from (8.19)

Wan =V TV = Fan T T T2F,

(8.21)



Vial = Vg = ¥ — BEffm (8.22)
Substituting (8.18) and (8.20) in (8.21) and rearranging we get

L+ I+ 1 =0 (8.23)

Also since | ;; = 0 we have

_ v _ i
Zaa + Zyal (20 +32,) , +zm(zm+33f) (8.24)
O Zga + Eyy +32,

The Thevenin equivalent circuit for 2LG fault is shown in Fig. 8.8. From this figure we get

L

f :_f 1 Eﬂﬂ
BT Za + Zygn +32, (8.25)

The zero and negative sequence currents can be obtained using the current divider principle as

Bon 32
Nt ] (8.26)

T =1
fd f“[zm + g + 32,
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Fig. 8.8 Thevenin equivalent of a 2L G fault.

Example 8.3

FAULT CURRENT COMPUTATION USING SEQUENCE NETWORKS

In this section we shall demonstrate the use of sequence networks in the calculation of fault currents
using sequence network through some examples.

Example 8.4

Consider the network shown in Fig. 8.10. The system parameters are given below

enerator G : 50 MVA, 20 kV, X" = X; = X, = 20%, X, = 7.5%
otor M : 40 MVA, 20 kV, X" = X; = X, = 20%, Xo = 10%, X, = 5%
ransformer T, : 50 MVA, 20 kV A /110 kVY, X = 10%

ransformer T, : 50 MVA, 20 kV A /110 kVY, X = 10%

ransmission line: X; =X, =24.2Q, X, =60.5Q

We shall find the fault current for when a (a) 1LG, (b) LL and (c) 2LG fault occurs at bus-2.

®T'<i> CiDTQ@

¢ 3

G &I |3 M
¥ v & bl vy

Fig. 8.10 Radial power system of Example 8.4.

Let us choose a base in the circuit of the generator. Then the per unit impedances of the generator
are:
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o= Xy =02, Xgo=0075

L%

The per unit impedances of the two transformers are

LN

()= Apy =01

The MVA base of the motor is 40, while the base MVA of the total circuit is 50. Therefore the per unit
impedances of the motor are

50 50 50
= Xy = 02x22 =025 X, =01x==0125 X =0.05x>==0.0625
Ml TR 40 0 40 40

k

For the transmission line

V]
amzlm = 2420
a0
Therefore
24 2 &5
g =x — =01 =——=025
AR o0 A 040

Let us neglect the phase shift associated with the Y/ A transformers. Then the positive, negative and
zero sequence networks are as shown in Figs. 8.11-8.13.

@ jO.1 @ j0.1 @> JO.
pin{npin

0.2 70.25

0.1 <?

Fig. 8.11 Positive sequence network of the power system of Fig. 8.10.

10.2

® .. @
.|

@ jO. 1 Qi"j'

70.25

Fig. 8.12 Negative sequence network of the power system of Fig. 8.10.
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[

[

[

[=3

[

'y Lo\ 7% £ a\
(2) ( )
I\’) 0 2 28 \3) 0.1 ‘d/

o/
/ I .2 I /
J0.125
J0.075
JO.1875

-1 10 0 0
, 110 —20 10 0
Busl — };aﬂ =J 0 10 —20 10
0 0 14

Inverting the above matrix we get the following Z,,s matrix

01467 01200 009323 00667
01200 01800 01400 01000
F-!lusl = Zéusﬂ = J
00933 01400 01867 01333
QO0&6ET 01000 01333 01667

Again from Fig. 8.13 we get the following Y,s matrix for the zero sequence

—133333 0 0 0

| 0 -1 4 o
ot =) g 4 -14 0
0 0 0 -32

Inverting the above matrix we get

0075 0 0 0

| 0 0078 00222 O

0 =Yg 00222 00778 O
0 0 0 03125

Hence for a fault in bus-2, we have the following Thevenin impedances
L =2, =018, Z,=0.0773

Alternatively we find from Figs. 8.11 and 8.12 that

7, =2, = 03[ j045= 018

Fig. 8.13 Zero sequence network of the power system of Fig. 8.10.

From Figs. 8.11 and 8.12 we get the following Y,s matrix for both positive and negative sequences




[=3

o o v |

o I

o

= Jj0.1f j0.35= j0.0778

(&) Single-Line-to-Ground Fault : Let a bolted 1LG fault occurs at bus-2 when the system is
unloaded with bus voltages being 1.0 per unit. Then from (8.7) we get

1
o0 TR T 00,184 0.0778)

= —j2.2841
per unit

Also from (8.4) we get

o= =—j68524

Also I =1 =0.From (8.5) we get the sequence components of the voltages as

o= — 007781, =—0.1777
= 1= 018, = 0.5889
L =—j0181,, =-04111

Therefore the voltages at the faulted bus are

b2

o an 0
g [=(0.90612-107.11°

a2l

V.
7 [=C
v aa || 0.9061£107.11°

(b) Line-to-Line Fault : For a bolted LL fault, we can write from (8.16)

1
==l . =2———a= 2 TITE
fal sz T
J2x0.18 per unit

Then the fault currents are

! 0 0
Ip|=C7 I |=|-4.8113
Iy L | | 48113

Finally the sequence components of bus-2 voltages are
200 = U

- :l—jD.IBIﬁﬂ =0.5

= —jD.lem =05

Hence faulted bus voltages are




[

=4 =d =4

Jloo=—"
ol =
j018+Z,,

M a0 1.0
Vo= Py =] - 05
v Poaa| L= 0.5

(c) Double-Line-to-Ground Fault : Let us assumes that a bolted 2L G fault occurs at bus-2. Then

Z :jD.lS"EJD.D?T’S:jD.USM

Hence from (8.24) we get the positive sequence current as

L 4067

per unit

The zero and negative sequence currents are then computed from (8.25) and (8.26) as

7018

=/ = j2.9797
TR 40,18 40.0778) / per unit
J0.0778 .
2 = Lo — = j1.2879
J0.18+0.0778) per unit

Therefore the fault currents flowing in the line are

I I 0
In|=C7 I |=| 66572137 11°

Iy Iy | | 6.697242.89°

Furthermore the sequence components of bus-2 voltages are

o = —J0.0778 L, = 0.2318
= 1— j0.181,, = 0.2318
oa = —j0.187 4 = 0.2318

Therefore voltages at the faulted bus are

v Voo | [0.6934
vy |=C7 Vo [=| O
v, Viaz 0

Example 8.5




Let us now assume that a 2LG fault has occurred in bus-4 instead of the one in bus-2. Therefore
A =4, = 01667, X, = j03125

Also we have
Lo :jD.166?|er.3125: 401087

Hence

1

fo=— 3631
M 01667+,  °

per unit

Also

0.1667 |
=1 _ /12631
S R0 1667 40.3125) ©

per unit

0.3125 |
la=—1 _ 12,3678
= AT 1667 4 0.3125) 7

per unit

Therefore the fault currents flowing in the line are

I L 0
In|=C7 I |=| 552982159 96°
Iy Lo | | 5.5298220.04°

We shall now compute the currents contributed by the generator and the motor to the fault. Let us
denote the current flowing to the fault from the generator side by I, , while that flowing from the motor
by I, . Then from Fig. 8.11 using the current divider principle, the positive sequence currents
contributed by the two buses are

L= L% 2222 - 12103

J0.73 per unit
T = Lg 122 =~ 12 4206

J0.75 per unit

Similarly from Fig. 8.12, the negative sequence currents are given as

j0.25
=1, =222 _ 07893
2 = g T me =

Nhe per unit



i

b

I

]

=7
et T T 075

y J0.5

= i1 5736
per unit

Finally notice from Fig. 8.13 that the zero sequence current flowing from the generator to the fault is 0.
Then we have

gan = U

o = J1.2631 per unit

Therefore the fault currents flowing from the generator side are

I, L] [042102-90°
Ip|= C7| I |=|17445£173.07°
I, L | | 1744526.93°

and those flowing from the motor are

I 0.4210£90°
= 1, |=]3.85122154.07°
Il | 38512225930

wo
wd

MW
It can be easily verified that adding I, and I, we get I; given above.

In the above two examples we have neglected the phase shifts of the Y/ A transformers. However
according to the American standard, the positive sequence components of the high tension side lead
those of the low tension side by 30° , while the negative sequence behavior is reverse of the positive
sequence behavior. Usually the high tension side of a Y/ A transformer is Y-connected. Therefore as
we have seen in Fig. 7.16, the positive sequence component of Y side leads the positive sequence
component of the A side by 30° while the negative sequence component of Y side lags that of the A
side by 30° . We shall now use this principle to compute the fault current for an unsymmetrical fault.

Let us do some more examples

Example 8.6

Example 8.7
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