
Introduction 

The first electric power system was a dc system built by Edison in 1882. The subsequent power 
systems that were constructed in the late 19

th
 century were all dc systems. However despite the initial 

popularity of dc systems by the turn of the 20
th
 century ac systems started to outnumber them. The ac 

systems were though to be superior as ac machines were cheaper than their dc counterparts and 
more importantly ac voltages are easily transformable from one level to other using transformers. The 
early stability problems of ac systems were experienced in 1920 when insufficient damping caused 
spontaneous oscillations or hunting. These problems were solved using generator damper winding 
and the use of turbine-type prime movers.  

The stability of a system refers to the ability of a system to return back to its steady state when 
subjected to a disturbance. As mentioned before, power is generated by synchronous generators that 
operate in synchronism with the rest of the system. A generator is synchronized with a bus when both 
of them have same frequency, voltage and phase sequence. We can thus define the power system 
stability as the ability of the power system to return to steady state without losing synchronism. 
Usually power system stability is categorized into Steady State, Transient and Dynamic Stability.  

 

  

Steady State Stability studies are restricted to small and gradual changes in the system operating 
conditions. In this we basically concentrate on restricting the bus voltages close to their nominal 
values. We also ensure that phase angles between two buses are not too large and check for the 
overloading of the power equipment and transmission lines. These checks are usually done using 
power flow studies.  

Transient Stability involves the study of the power system following a major disturbance. Following a 
large disturbance the synchronous alternator the machine power (load) angle changes due to sudden 
acceleration of the rotor shaft. The objective of the transient stability study is to ascertain whether the 
load angle returns to a steady value following the clearance of the disturbance.  

The ability of a power system to maintain stability under continuous small disturbances is investigated 
under the name of Dynamic Stability (also known as small-signal stability). These small disturbances 
occur due random fluctuations in loads and generation levels. In an interconnected power system, 
these random variations can lead catastrophic failure as this may force the rotor angle to increase 
steadily.  

In this chapter we shall discuss the transient stability aspect of a power system.  
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more importantly ac voltages are easily transformable from one level to other using transformers. The 
early stability problems of ac systems were experienced in 1920 when insufficient damping caused 
spontaneous oscillations or hunting. These problems were solved using generator damper winding 
and the use of turbine-type prime movers.  

The stability of a system refers to the ability of a system to return back to its steady state when 
subjected to a disturbance. As mentioned before, power is generated by synchronous generators that 
operate in synchronism with the rest of the system. A generator is synchronized with a bus when both 
of them have same frequency, voltage and phase sequence. We can thus define the power system 
stability as the ability of the power system to return to steady state without losing synchronism. 
Usually power system stability is categorized into Steady State, Transient and Dynamic Stability.  

 

  

Steady State Stability studies are restricted to small and gradual changes in the system operating 
conditions. In this we basically concentrate on restricting the bus voltages close to their nominal 
values. We also ensure that phase angles between two buses are not too large and check for the 
overloading of the power equipment and transmission lines. These checks are usually done using 
power flow studies.  

Transient Stability involves the study of the power system following a major disturbance. Following a 
large disturbance the synchronous alternator the machine power (load) angle changes due to sudden 
acceleration of the rotor shaft. The objective of the transient stability study is to ascertain whether the 
load angle returns to a steady value following the clearance of the disturbance.  

The ability of a power system to maintain stability under continuous small disturbances is investigated 
under the name of Dynamic Stability (also known as small-signal stability). These small disturbances 
occur due random fluctuations in loads and generation levels. In an interconnected power system, 
these random variations can lead catastrophic failure as this may force the rotor angle to increase 
steadily.  

In this chapter we shall discuss the transient stability aspect of a power system.  

Section I: Power-Angle Relationship 

The power-angle relationship has been discussed in Section 2.4.3. In this section we shall consider 
this relation for a lumped parameter lossless transmission line. Consider the single-machine-infinite-
bus (SMIB) system shown in Fig. 9.1. In this the reactance X includes the reactance of the 
transmission line and the synchronous reactance or the transient reactance of the generator. The 
sending end voltage is then the internal emf of the generator. Let the sending and receiving end 
voltages be given by  
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Fig. 9.1 An SMIB system.  

We then have  

  

  

The sending end real power and reactive power are then given by  

  

  

This is simplified to  

  

  

Since the line is loss less, the real power dispatched from the sending end is equal to the real power 

received at the receiving end. We can therefore write  
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where Pmax = V1 V2 / X is the maximum power that can be transmitted over the transmission line. The 
power-angle curve is shown in Fig. 9.2. From this figure we can see that for a given power P0 . There 

are two possible values of the angle    δ - δ0 and δmax . The angles are given by  

  

  

  

Example 9.1 

Section II: Swing Equation 

Let us consider a three-phase synchronous alternator that is driven by a prime mover. The equation 
of motion of the machine rotor is given by  

  

  

where  

   J is the total moment of inertia of the rotor mass in kgm
2
  

  Tm is the mechanical torque supplied by the prime mover in N-m  

  Te is the electrical torque output of the alternator in N-m  

  θ is the angular position of the rotor in rad  

Neglecting the losses, the difference between the mechanical and electrical torque gives the net 
accelerating torque Ta . In the steady state, the electrical torque is equal to the mechanical torque, 
and hence the accelerating power will be zero. During this period the rotor will move at synchronous 
speed ωs in rad/s.  

The angular position θ is measured with a stationary reference frame. To represent it with respect to 
the synchronously rotating frame, we define  

  

  

where δ is the angular position in rad with respect to the synchronously rotating reference frame. 

 

(9.6)  
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Taking the time derivative of the above equation we get  

  

  

Defining the angular speed of the rotor as  

we can write (9.8) as  

  

  

  

  

We can therefore conclude that the rotor angular speed is equal to the synchronous speed only when 
dδ / dt is equal to zero. We can therefore term dδ / dt as the error in speed. Taking derivative of (9.8), 
we can then rewrite (9.6) as  

  

  

Multiplying both side of (9.11) by ωm we get  

  

  

where Pm , Pe and Pa respectively are the mechanical, electrical and accelerating power in MW.  

We now define a normalized inertia constant as  

  

  

 

(9.8)  

 

  

 

(9.9)  

 

(9.10)  

 

(9.11)  

 

(9.12)  



Substituting (9.12) in (9.10) we get  

  

  

In steady state, the machine angular speed is equal to the synchronous speed and hence we can 
replace ωr in the above equation by ωs. Note that in (9.13) Pm , Pe and Pa are given in MW. Therefore 
dividing them by the generator MVA rating Srated we can get these quantities in per unit. Hence 
dividing both sides of (9.13) by Srated we get  

  

  

Equation (7.14) describes the behaviour of the rotor dynamics and hence is known as the swing 
equation. The angle δ is the angle of the internal emf of the generator and it dictates the amount of 
power that can be transferred. This angle is therefore called the load angle .  

Example 9.2 

 

(9.13)  

  per unit 

(9.14)  

  

Section III: Equal Area Criterion 

The real power transmitted over a lossless line is given by (9.4). Now consider the situation in which 
the synchronous machine is operating in steady state delivering a power Pe equal to Pm when there is 
a fault occurs in the system. Opening up of the circuit breakers in the faulted section subsequently 
clears the fault. The circuit breakers take about 5/6 cycles to open and the subsequent post-fault 
transient last for another few cycles. The input power, on the other hand, is supplied by a prime mover 
that is usually driven by a steam turbine. The time constant of the turbine mass system is of the order 
of few seconds, while the electrical system time constant is in milliseconds. Therefore, for all practical 
purpose, the mechanical power is remains constant during this period when the electrical transients 
occur. The transient stability study therefore concentrates on the ability of the power system to 
recover from the fault and deliver the constant power Pm with a possible new load angle δ .  

Consider the power angle curve shown in Fig. 9.3. Suppose the system of Fig. 9.1 is operating in the 
steady state delivering a power of Pm at an angle of δ0 when due to malfunction of the line, circuit 
breakers open reducing the real power transferred to zero. Since Pm remains constant, the 
accelerating power Pa becomes equal to Pm . The difference in the power gives rise to the rate of 
change of stored kinetic energy in the rotor masses. Thus the rotor will accelerate under the constant 
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influence of non-zero accelerating power and hence the load angle will increase. Now suppose the 
circuit breaker re-closes at an angle δc. The power will then revert back to the normal operating curve. 
At that point, the electrical power will be more than the mechanical power and the accelerating power 
will be negative. This will cause the machine decelerate. However, due to the inertia of the rotor 
masses, the load angle will still keep on increasing. The increase in this angle may eventually stop 
and the rotor may start decelerating, otherwise the system will lose synchronism.  

Note that  

 

  

  

 

  

Fig. 9.3 Power-angle curve for equal area criterion.  

Hence multiplying both sides of (9.14) by  and rearranging we get  

  

  

Multiplying both sides of the above equation by dt and then integrating between two arbitrary angles 

δ0 and δc we get  

  

 

  

 

(9.15)  



  

Now suppose the generator is at rest at δ0. We then have dδ / dt = 0. Once a fault occurs, the 
machine starts accelerating. Once the fault is cleared, the machine keeps on accelerating before it 
reaches its peak at δc , at which point we again have dδ / dt = 0. Thus the area of accelerating is 

given from (9.15) as  

  

  

In a similar way, we can define the area of deceleration. In Fig. 9.3, the area of acceleration is given 

by A1 while the area of deceleration is given by A2 . This is given by  

Contd... Equal Area Criterion 

Now consider the case when the line is reclosed at δc such that the area of acceleration is larger than 
the area of deceleration, i.e., A1 > A2 . The generator load angle will then cross the point δm , beyond 
which the electrical power will be less than the mechanical power forcing the accelerating power to be 
positive. The generator will therefore start accelerating before is slows down completely and will 
eventually become unstable. If, on the other hand, A1 < A2 , i.e., the decelerating area is larger than 
the accelerating area, the machine will decelerate completely before accelerating again. The rotor 
inertia will force the subsequent acceleration and deceleration areas to be smaller than the first ones 
and the machine will eventually attain the steady state. If the two areas are equal, i.e., A1 = A2 , then 
the accelerating area is equal to decelerating area and this is defines the boundary of the stability 
limit. The clearing angle δc for this mode is called the Critical Clearing Angle and is denoted by δcr. 

We then get from Fig. 9.3 by substituting δc = δcr 

  

  

We can calculate the critical clearing angle from the ab move equation. Since the critical clearing 
angle depends on the equality of the areas, this is called the equal area criterion.  

Example 9.3:  

Consider the system of Example 9.1. Let us assume that the system is operating with Pm = Pe = 0.9 
per unit when a circuit breaker opens inadvertently isolating the generator from the infinite bus. During 
this period the real power transferred becomes zero. From Example 9.1 we have calculated δ0 = 

 

(9.16)  

 

 

(9.18)  



23.96 ° = 0.4182 rad and the maximum power transferred as  

  per unit  
  

We have to find the critical clearing angle.  

From (9.15) the accelerating area is computed as by note that Pe = 0 during this time. This is then 
given by  

 

  

To calculate the decelerating area we note that δm = π - 0.4182 = 2.7234 rad. This area is computed 
by noting that    Pe = 2.2164 sin(δ ) during this time. Therefore  

 

  

Equating A1 = A2 and rearranging we get  

 

  
 

  

Now a frequently asked question is what does the critical clearing angle mean?  

Since we are interested in finding out the maximum time that the circuit breakers may take for 
opening, we should be more concerned about the critical clearing time rather than clearing angle. 
Furthermore, notice that the clearing angle is independent of the generalized inertia constant H . 
Hence we can comment that the critical clearing angle in this case is true for any generator that has a 
d-axis transient reactance of 0.20 per unit. The critical clearing time, however, is dependent on H and 
will vary as this parameter varies.  

To obtain a description for the critical clearing time, let us consider the period during which the fault 

occurs. We then have Pe = 0. We can therefore write from  

  

  

Integrating the above equation with the initial acceleration being zero we get  

 

(9.19)  



  

Further integration will lead to  

  

  

Replacing δ by δcr and t by tcr in the above equation, we get the critical clearing time as  

  

  

  

Example 9.4:  

In Example 9.2, let us choose the system frequency as 50 Hz such that ωs is 100π. Also let us 
choose H as 4 MJ/MVA. Then with δcr being 1.5486 rad, δ0 being 0.4182 rad and Pm being 0.9 per 
unit, we get the following critical clearing time from (9.20)  

s  

  

 

  

To illustrate the response of the load angle δ , the swing equation is simulated in MATLAB. The swing 

equation of (9.14) is then expressed as  

  

  

 

  

 

  

 

(9.20)  

 

(9.21) 
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where Δωr is the deviation for the rotor speed from the synchronous speed ωs . It is to be noted that 
the swing equation of (9.21) does not contain any damping. Usually a damping term, that is 
proportional to the machine speed Δωr, is added with the accelerating power. Without the damping 
the load angle will exhibit a sustained oscillation even when the system remains stable when the fault 
cleared within the critical clearing time.  

 

Fig. 9.4 Stable and unstable system response as a function of clearing time.  

Fig. 9.4 depicts the response of the load angle δ for two different values of load angle. It is assumed 
that the fault occurs at 0.5 s when the system is operating in the steady state delivering 0.9 per unit 
power. The load angle during this time is constant at 23.96° . The load angle remains stable, albeit 
the sustained oscillation when the clearing time tcl is 0.253 s. The clearing angle during this time is 
88.72° . The system however becomes unstable when the clearing time 0.2531s and the load angle 
increases asymptotically. The clearing time in this case is 88.77° . This is called the Loss of 
Synchronism. It is to be noted that such increase in the load angle is not permissible and the 
protection device will isolate the generator from the system.  

The clearing time of (8.20) is derived based on the assumption that the electrical power Pe becomes 
zero during the fault as in (8.19). This need not be the case always. In that even we have to resort to 
finding the clearing time using the numerical integration of the swing equation. See example 9.5 to 
illustrates the point.  

Example 9.5 

Section IV: Multimachine Stability 

 Oscillations in s Two Area System  

Consider Fig. 9.10, which depicts a number of weights that are suspended by elastic strings. The 
weights represent generators and the electric transmission lines being represented by the strings. 
Note that in a transmission system, each transmission line is loaded below its static stability limit. 
Similarly, when the mechanical system is in static steady state, each string is loaded below its break 
point. At this point one of the strings is suddenly cut. This will result in transient oscillations in the 
coupled strings and all the weights will wobble. In the best possible case, this may result in the 
coupled system settling down to a new steady state. On the other hand, in the worst possible scenario 
this may result in the breaking of one more additional string, resulting in a chain reaction in which 
more strings may break forcing a system collapse. In a similar way, in an interconnected electric 
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power network, the tripping of a transmission line may cause a catastrophic failure in which a large 
number of generators are lost forcing a blackout in a large area.  

 

Modern power systems are interconnected and operate close to their transient and steady state 
stability limits. In large interconnected systems, it is common to find a natural response of a group of 
closely coupled machines oscillating against other groups of machines. These oscillations have a 
frequency range of 0.1 Hz to 0.8 Hz. The lowest frequency mode involves all generators of the 
system. This oscillation groups the system into two parts - with generators in one part oscillating 
against those of the the other part. The higher frequency modes are usually localized with small 
groups oscillating against each other. Unfortunately, the inter-area oscillation can be initiated by a 
small disturbance in any part of the system. These small frequency oscillations fall under the category 
of dynamic stability and are analysed in linear domain through the liberalisation of the entire 
interconnected systems model.  

Inter-area oscillations manifest wherever the power system is heavily interconnected. The oscillations, 
unless damped, can lead to grid failure and total system collapse. Low frequency oscillations in the 
range of 0.04 Hz to 0.06 Hz were observed in the Pacific North West region as early as 1950. 
Improper speed governor control of hydro units created these oscillations. The Northern and Southern 
regions of WSCC were interconnected by a 230 kV line in 1964. Immediately the system experienced 
a 0.1 Hz oscillation resulting in over 100 instances of opening of the tie line in the first nine months of 
operation. Some system damping was provided through the modification in the hydro turbine 
governors.  

A 500 kV pacific intertie and another ± 400 kV HVDC system was commissioned in 1968. This raised 
the frequency of oscillation from 0.1 Hz to 0.33 Hz and these oscillations could no longer be controlled 
through governor action alone. In late 1980's a new intertie joined the WSCC system to Alberta and 
British Columbia in Canada . As a result of this interconnection, the two different oscillation 
frequencies manifested - one at 0.29 Hz and the other at 0.45 Hz.  

Ontario Hydro is one of the largest utilities in North America . Due to the vast and sparsely populated 
topology of Canada , the operating span of Ontario hydro is over 1000 km from East to West and from 
North to South. The Ontario Hydro system is connected to the neighbouring Canadian provinces and 
the North Western region of the United States . In 1959 Ontario Hydro was connected to Michigan in 
the South and Quebec Hydro in the East. As a result of this connection, a 0.25 Hz oscillation was 
observed and a result of this it was decided to remove the tie with Quebec and retain the tie to 
Michigan . The Western portion of Ontario was connected to neighbouring Manitoba in 1956 and then 
Manitoba was connected to its neighbour Saskatchewan in 1960. This resulted in oscillation in the 
frequency range 0.35 Hz to 0.45 Hz often tripping the tie. As a result of this, Ontario Hydro decided to 
commission power system stabilizers for all their generating units since early 1960's. It has also 
sponsored extensive research in this area.  

Through research it was established that the action of automatic voltage regulators caused these 
oscillations. An automatic voltage regulator (AVR) regulates the generator terminal voltage and also 
helps in the enhancement of transient stability by reducing the peak of the first swing following any 
disturbance. However, its high gain contributed to negative damping to the system. The knowledge of 



this relation resulted in the commissioning of power system stabilizers. It was observed that these 
oscillations were results of the periodic interchange of kinetic energy between the generator rotors. A 
power system stabilizer (PSS) provides a negative feedback of the changes in rotor kinetic energy 
when it is connected to the excitation system thereby providing damping to these small oscillations. 
The PSS has been a subject of extensive research. The team of Dr. P. Kundur, then with Ontario 
Hydro, and his co-workers has done extensive research in the area of PSS tuning and its 
characteristics. Through their vast experience and extensive research, they reported the 
enhancement of inter-area and local modes through PSS reported in. Since a power system is piece-
wise linear, its system characteristics changes with operating point. Therefore an adaptive controller 
that can tune with the changes in the system has been developed and reported in. It was shown that 
the adaptive PSS is effective in damping large as well as small disturbances.  

The power flow between generators, as evident from (9.4), is dependent on the angle between those 
generators. The stable operating point of the power system is where the generated power at each 
station is matched by the electrical power sent out from that station. When there is a mismatch 
between electrical power out and the generated mechanical shaft power, the generator will accelerate 
at a rate determined by the power mismatch and the machine inertia as given in (9.14).  

  

Oscillations in s Two Area System 

Consider the simple power system shown in Fig. 9.11 in which two machines are operating. Let us 
assume that starting with the initial angles δ1 and δ2 with respect to some reference at nominal 
frequency, machine 1 accelerates while machine 2 decelerates from this nominal frequency. We then 

have  

  

  

where the subscripts 1 and 2 refer to machines 1 and 2 respectively. Let us assume that the 
transmission line is loss less. Then in the simple case where the power from machine 1 flows to 

machine 2, we get  

  

where δ12 = δ1 - δ2 .  

 

(9.25) 

 

(9.26) 



 

Fig. 9.11 Single-line diagram of a two-machine power system.  

  

Now since the system is lossless, (9.26) will also imply that Pm1 = - Pm2 . This means that in the steady 
state, the power generated at machine 1 is absorbed through machine 2. Combining (9.25) and (9.26) 

we get  

  

  

Let us now assume that H1 = H2 = H , V1 = V2 = 1.0 per unit and Pm1 = 0. We then get from (9.27)  

where the oscillation frequency ω is given by  

Thus the weighted difference of angles will approximate simple harmonic motion for small changes in 
δ12 and the frequency will decrease for an increase in inertia H or impedance X . Another aspect can 

be seen by adding the system to give  

Thus the overall acceleration of the machine group will depend on the overall balance between power 
generated and consumed. Usually there are governors on the generators to reduce generated power 
if the system frequency increases.  
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