CS 501: Software Engineering
Fall 2000

L_ecture 22

Dependable Systems |
Validation and Verification

Administration

Final Presentation

« Completed code, demonstration of operational system
« Program documentation
« User documentation

Client should be present at final presentation

Defensive Programming

Murphy's Law: If anything can go wrong, it will.

Defensive Programming:

« Redundant code is incorporated to check system state after
modifications

« Implicit assumptions are tested explicitly

Defensive Programming Examples

Use boolean variable not integer
Testi<=nnoti==
Assertion checking

Build debugging code into program with a switch to
display values at interfaces

Error checking codes in data, e.g., checksum or hash

Terminology

Fault avoidance

Build systems with the objective of creating fault-
free systems

Fault tolerance

Build systems that continue to operate when faults
occur

Fault detection (testing and validation)

Detect faults before the system is put into operation.

Fault Tolerance

Basic Techniques:

After error continue with next transaction
Timers and timeout in networked systems
Error correcting codes in data

Bad block tables on disk drives

Forward and backward pointers

Report all errors for quality control

Fault Tolerance

Backward Recovery:

« Record system state at specific events (checkpoints). After
failure, recreate state at last checkpoint.

« Combine checkpoints with system log that allows
transactions from last checkpoint to be repeated automatically.

Fault Tolerance

General Approach:
 Failure detection

« Damage assessment
« Fault recovery

« Fault repair

N-version programming -- Execute independent
Implementation in parallel, compare results, accept the
most probable.

Validation and Verification

Validation: Are we building the right product?

Verification: Are we building the product right?

In practice, it is sometimes difficult to distinguish between
the two.

That's not a bug. That's a feature!

10

Cleanroom Software Development

Software development process that aims to develop zero-defect
software.

« Formal specification

* Incremental development with customer input
« Constrained programming options

 Static verification

 Statistical testing

It is always better to prevent defects than to remove them later.

Example: The four color problem.

11

Static and Dynamic Verification

Static verification: Techniques of verification that do not
Include execution of the software.

« May be manual or use computer tools.
Dynamic verification

 Testing the software with trial data.

« Debugging to remove errors.

Static Validation & Verification

Carried out throughout the software development process.

Validation &

/ verification \

Requirements _
specification Design Program

13

Static Verification: Program Inspections

Program reviews whose objective is to detect faults

« Code may be read or reviewed line by line.

« 150 to 250 lines of code in 2 hour meeting.

« Use checklist of common errors.

« Requires team commitment, e.g., trained leaders

So effective that it can replace unit testing

Inspection Checklist: Common Errors

Data faults: Initialization, constants, array bounds, character strings

Control faults: Conditions, loop termination, compound statements,

case statements

Input/output faults: All inputs used; all outputs assigned a value

Interface faults: Parameter numbers, types, and order; structures and

14

shared memory

Storage management faults: Modification of links, allocation and de-
allocation of memory

Exceptions: Possible errors, error handlers

15

Static Analysis Tools

Program analyzers scan the source of a program for possible
faults and anomalies (e.g., Lint for C programs).

« Control flow: loops with multiple exit or entry points

« Data use: Undeclared or uninitialized variables, unused
variables, multiple assignments, array bounds

« Interface faults: Parameter mismatches, non-use of
functions results, uncalled procedures

« Storage management: Unassigned pointers, pointer
arithmetic

16

Static Analysis Tools (continued)

« Cross-reference table: Shows every use of a variable,
procedure, object, etc.

 Information flow analysis: Identifies input variables on which
an output depends.

« Path analysis: Identifies all possible paths through the
program.

17

Test Design

Testing can never prove that a system is correct. It can only
show that (a) a system is correct in a special case, or (b) that it
has a fault.

« The objective of testing is to find faults.
 Testing Is never comprehensive.

« Testing IS expensive.

Testing and Debugging

Testing iIs most effective if divided into stages:

« Unit testing at various levels of granularity

tests by the developer
emphasis Is on accuracy of actual code

e System and sub-system testing

uses trial data
emphasis is on integration and interfaces

e Acceptance testing

uses real data in realistic situations
emphasis Is on meeting requirements

18

19

Acceptance Testing

Alpha Testing: Clients operate the system in a realistic
but non-production environment

Beta Testing: Clients operate the system in a carefully
monitored production environment

Parallel Testing: Clients operate new system alongside

old production system with same data and compare
results

20

The Testing Process

System and Acceptance Testing is a major part of a software
project

It requires time on the schedule

It may require substantial investment in datasets,
equipment, and test software.

« (Good testing requires good people!

« Management and client reports are important parts of
testing.

What is the definition of "done"?

Testing Strategies

« Bottom-up testing. Each unit is tested with its own test
environment.

« Top-down testing. Large components are tested with
dummy stubs.

user interfaces
work-flow
client and management demonstrations

« Stress testing. Tests the system at and beyond its limits.

real-time systems
transaction processing

21

22

Test Cases

Test cases are specific tests that are chosen because they are
likely to find faults.

Test cases are chosen to balance expense against chance of
finding serious faults.

« Cases chosen by the development team are effective In
testing known vulnerable areas.

« Cases chosen by experienced outsiders and clients will be
effective in finding gaps left by the developers.

« Cases chosen by inexperienced users will find other
faults.

23

Test Case Selection: Coverage of Inputs

Objective Is to test all classes of input

« Classes of data -- major categories of transaction and
data inputs.

Cornell example: (undergraduate, graduate, transfer, ...)
by (college, school, program, ...) by (standing) by (...)

» Ranges of data -- typical values, extremes

 Invalid data, reversals, and special cases.

Test Case Selection: Program

Objective is to test all functions of each computer program
 Paths through the computer programs

Program flow graph
Check that every path is executed at least once

« Dynamic program analyzers
Count number of times each path is executed
Highlight or color source code
Can not be used with time critical software

24

Program Flow Graph

N—
o

e
Nes

if-then-else loop-while

Fixing Bugs

 Isolate the bug
Intermittent --> repeatable
Complex example --> simple example

« Understand the bug
Root cause
Dependencies
Structural interactions

* Fix the bug
Design changes
Documentation changes

26 Code changes

27

Moving the Bugs Around

Fixing bugs Is an error-prone process!
« When you fix a bug, fix its environment
« Bug fixes need static and dynamic testing

« Repeat all tests that have the slightest relevance
(regression testing)

Bugs have a habit of returning!

« When a bug is fixed, add the failure case to the test suite
for the future.

28

Regression Testing

Applied to modified software to provide confidence that
modifications behave as intended and do not adversely
affect the behavior of unmodified code.

« Basic technique is to repeat entire testing process after
every change, however small.

29

Real Time Software Development

Testing and debugging need special tools and
environments

« Debuggers, etc., can not be used to test real time
performance

« Simulation of environment may be needed to test
Interfaces -- e.g., adjustable clock speed

« General purpose tools may not be available

30

Software Engineering for Real Time

The special characteristics of real time computing require
extra attention to good software engineering principles:

» Requirements analysis and specification
« Development of tools

« Modular design

« Exhaustive testing

Heroic programming will fail!

31

Some Notable Bugs

Built-in function in Fortran compiler (e° = 0)

Japanese microcode for Honeywell DPS virtual memory
The microfilm plotter with the missing byte (1:1023)
The Sun 3 page fault that IBM paid to fix

Left handed rotation in the graphics package

Good people work around problems.
The best people track them down and fix them!

