CS 501: Software Engineering
Fall 2000

e e
Lecture 21

Dependable Systems |
Reliability



Administration

Assignment 3
* Report due tomorrow at 5 p.m.
group design with individual parts
« Presentations Wednesday through Friday

every group member must present during the semester



Software Reliability

Failure: Software does not deliver the service expected by
the user (e.g., mistake in requirements)

Fault: Programming or design error whereby the delivered
system does not conform to specification

Reliability: Probability of a failure occurring in operational
use.

Perceived reliability: Depends upon:

user behavior
set of inputs
pain of failure



Reliability Metrics

Probability of failure on demand

Rate of failure occurrence (failure intensity)
Mean time between failures

Availability (up time)

Mean time to repair

Distribution of failures

Hypothetical example: Cars are safer than
airplane in accidents (failures) per hour, but less
safe in failures per mile.




Reliability Metrics for Distributed Systems

Traditional metrics are hard to apply in multi-component
systems:

 Ina big network, at a given moment something will be giving
trouble, but very few users will see it.

« Asystem that has excellent average reliability may give
terrible service to certain users.

« There are so many components that system administrators
rely on automatic reporting systems to identify problem areas.



User Perception of Reliability

1. A personal computer that crashes frequently v. a machine
that is out of service for two days.

2. A database system that crashes frequently but comes back
quickly with no loss of data v. a system that fails once in three
years but data has to be restored from backup.

3. Asystem that does not fail but has unpredictable periods
when it runs very slowly.



Cost of Improved Reliability

Up time

99% 100%

Will you spend your money on new functionality
or improved reliability?



Specification of System Reliability

Example: ATM card reader

Failure class

Example

Metric

Permanent
non-corrupting

System fails to operate
with any card -- reboot

1 per 1,000 days

Transient
non-corrupting

System can not read
an undamaged card

1 in 1,000 transactions

Corrupting

A pattern of
transactions corrupts
database

Never




Principles for Dependable Systems

The human mind can encompass only limited complexity:
=> Comprehensibility
=> Simplicity
=> Partitioning of complexity



10

Principles for Dependable Systems

High-quality has to be built-in

=> Each stage of development must be done well
=> Testing and correction does not lead to quality
=> Changes should be incorporated into the structure



11

Quality Management Processes

Assumption:

Good processes lead to good software

The importance of routine:

Standard terminology (requirements, specification,
design, etc.)

Software standards (naming conventions, etc.)
Internal and external documentation
Reporting procedures



12

Quality Management Processes

Change management:

Source code management and version control
Tracking of change requests and bug reports

Procedures for changing requirements specifications,
designs and other documentation

Release control



Design and Code Reviews

» Colleagues review each other's work:

can be applied to any stage of software development
can be formal or informal

« The developer provides colleagues with:

documentation (e.g., specification or design), or code listing
talks through the work while answering questions

» Most effective when developer and reviewers prepare well

13



14

Benefits of Design and Code Reviews

Benefits:

Extra eyes spot mistakes, suggest improvements
Colleagues share expertise; helps with training

An occasion to tidy loose ends

Incompatibilities between modules can be identified
Helps scheduling and management control

Fundamental requirements:

« Senior team members must show leadership
» Must be helpful, not threatening



15

Process (Plan) Reviews

Objectives:

« To review progress against plan (formal or informal)

« To adjust plan (schedule, team assignments,
functionality, etc.)

Impact on guality:

Good quality systems usually result from plans that are
demanding but realistic

Good people like to be stretched and to work hard, but
must not be pressed beyond their capabilities.



16

Statistical Testing

Determine the operational profile of the software
Select or generate a profile of test data
Apply test data to system, record failure patterns

Compute statistical values of metrics under test conditions



17

Statistical Testing

Advantages:

« Can test with very large numbers of transactions
« Can test with extreme cases (high loads, restarts, disruptions)
« Can repeat after system modifications

Disadvantages:

« Uncertainty in operational profile (unlikely inputs)
« EXpensive
« Can never prove high reliability



Example: Dartmouth Time Sharing (1980)

A central computer serves the entire campus. Any failure is
serious.

Step 1. Gather data on every failure

« 10 years of data in a simple data base
« Every failure analyzed:

hardware

software (default)

environment (e.g., power, air conditioning)
human (e.g., operator error)

18



Example: Dartmouth Time Sharing (1980)

Step 2. Analyze the data.

« Weekly, monthly, and annual statistics

Number of failures and interruptions
Mean time to repair

« Graphs of trends by component, e.g.,

Failure rates of disk drives
Hardware failures after power failures
Crashes caused by software bugs in each module

19



Example: Dartmouth Time Sharing (1980)

Step 3. Invest resources where benefit will be maximum, e.q.,

» Orderly shut down after power failure
 Priority order for software improvements
« Changed procedures for operators

* Replacement hardware

20



21

Factors for Fault Free Software

* Precise, unambiguous specification

« Organization culture that expects quality

« Approach to software design and implementation that hides
complexity (e.g., structured design, object-oriented programming)

« Use of software tools that restrict or detect errors (e.g.,
strongly typed languages, source control systems, debuggers)

« Programming style that emphasizes simplicity, readability, and
avoidance of dangerous constructs

e Incremental validation




22

Error Avolidance

Risky programming constructs

« Pointers

« Dynamic memory allocation
 Floating-point numbers

« Parallelism

* Recursion

* Interrupts

All are valuable in certain circumstances, but
should be used with discretion



23

Defensive Programming

Murphy's Law: If anything can go wrong, it will.

Defensive Programming:

« Redundant code is incorporated to check system state after
modifications

« Implicit assumptions are tested explicitly



24

Defensive Programming Examples

« Use boolean variable not integer
e Testi<=nnoti=-=
« Assertion checking

 Build debugging code into program with a switch to
display values at interfaces

« Error checking codes in data, e.g., checksum or hash



25

Some Notable Bugs

Built-in function in Fortran compiler (e° = 0)

Japanese microcode for Honeywell DPS virtual memory
The microfilm plotter with the missing byte (1:1023)
The Sun 3 page fault that IBM paid to fix

Left handed rotation in the graphics package

Good people work around problems.
The best people track them down and fix them!



