
CS 501: Software Engineering 

Fall 2000 

Lecture 27 

 

Software Engineering as Engineering 



Administration 

•     Early examination:  send email to: 

               rosemary@cs.cornell.edu 

 



The Y2K Problem: Saving Memory 

•    In 1967 memory cost $1 per byte 

             The Air Force used single digit dates 

•    If 2-digit dates saved 1% of memory... 

      savings over 20 years $16 to $24 million per gigabyte 



The Y2K Problem: Saving Memory 

•    By 1980s, memory was much  cheaper, but 2-digit dates      

      were standard.  Why incur the cost of changing standards? 

 1970 The mortgage industry  

  1990 The Social Security Industry 

   moved towards 4-digit dates  

•    On January 1, 2000 2-digit dates stopped working! 



Where's the Problem? 

•    A simple bug: 

 dates of the  form 19xx have been encoded xx 

•    A simple fix: 

 find every occurrence of the bug 

 modify the code 

 recompile 

Where's the problem? 



Find Every Occurrence ... 

•    What computers do we use? 

 data processing 

 control 

 embedded systems 

 personal devices 

•    What programs do they run? 

 in-house development  

 packages and libraries 

 firmware, microcode, hardware 

   Who wrote this program? 

   Where is the source code? 



Where's the Problem? 

Computers fail everyday.  What's special about this bug? 

•    What if they all fail at the same time? 

•    What if we lose telephone, electricity, radio, etc.? 

•    Traffic signals, elevators,  

The greatest worry was uncertainty. 



Social Consequences 

Worry creates its own problems: 

•    Wal-Mart forecast lower profits in Q1 2000 

•    Legislation to limit law suits 

•    Opportunities for computer fraud and sabotage 

•    Trading partners 



Organizational Procedures 

•    Ostrich 

 => do nothing 

 => buy insurance 

•    Bureaucratic 

 => fill in forms that programs are compliant 

•    Subcontract 

 => hire Y2K specialists 

•    Do it yourself 

 => in-house computing department 



Y2K Validation 

Request from Library of Congress to confirm that our code 

is Y2K compliant: 

   Our code is fine 

     ....  but it depends on ... which depends on ...  

   Yes.  Our code is fine. 

Request from DARPA to confirm that our code is Y2K 

compliant: 

   It's been validated by another part of the US government 

        Thank you! 



Technical Strategies 

•    Replace noncompliant applications with compliant ones  

      (e.g., new versions of packages) 

•    Repair noncompliant applications (e.g., in-house  

      applications) 

•    Terminate noncompliant programs on an as-needed  

      basis  

•    Mask the data exchange between applications 

•     Object code interception 



New Bugs 

If it's not broke don't fix it. 

•    10 billion lines of code checked (often automatically) 

•    10 million new bugs introduced accidentally 

•    ?? security holes, errors, etc. introduced accidentally or  

     deliberately 



Is all the Money Going to Y2K? 

Y2K as a great excuse to have the computing budget 

increased: 

•    Upgrade the operating system 

•    Replace the old package 

•    Sell something to your customers 

What boss will turn turn a request for Y2K funds? 

What systems administrators will not install Y2K upgrades? 



Profiteering 

•    Buy gold, wood stoves, bottled water 

•    Y2K specialists 

•    Pundits, consultants, writers 

•    Religious cranks 



Final Thoughts on Y2K 

We create computer systems that are more complex than 

our understanding of them: 

•    We over estimate our ability to validate systems 

•    We under estimate our ability to adapt and respond 

Software engineering usually thinks of systems as 

independent. 

Will the long-term benefit of the Y2K problem be a greater 

understanding of how software systems interact with each 

other and with our social systems? 



The Need for Software Engineering 

Software as a product: 

=>  Awkward to use 

=>  Full of errors 

=>  No chance to try it out 

=>  No guarantees 

Not much of a product 



What is Engineering? 



What is Engineering? 

The profession of: 

... creating cost-effective solutions ... 

... to practical problems ... 

... by applying scientific knowledge ... 

... and established practices ... 

... building things ... 

and taking responsibility for them! 



Crafts, Science, Engineering 

Production 

Craft 

Commercial 

Science 

Professional 

Engineering 

From: Shaw and Garlan 



Crafts, Science, Engineering 

Production 

Craft 

Commercial 

Science 

Professional 

Engineering 

From: Shaw and Garlan 

algorithms 

data structures 

compiler 

construction 
software development 

methodologies 



Software Engineering as Engineering? 

•    Part craft -- part engineering 

•    Embryonic scientific basis 

•    Evolving body of knowledge 

•    Too much flux for the apparatus of a  

      profession (e.g., accreditation) 

Example:  Texas and the ACM 



The End 

•    Good process leads to good software: 

  the limits of heroic efforts 

•    Minimize risks: 

  visible process 

  function v. time v. cost 

•    The importance of people 

Requirements, requirements, requirements! 

     


