CS 501: Software Engineering
Fall 2000

Lecture 26
Risk in Software Engineering



Administration: Laptop Return Times

Date: Wed Dec 6th
Time: 9:30-11:00 AM
Room: 5130 Upson

Date: Mon. Dec 11th
Time: 1:30 - 3:00 PM
Room: 5130 Upson

Date: Wed. Dec 13th
Time: 9:30-11:00 AM
Room: 5130 Upson



Administration

 Examination

1.5 hours
5 questions
based on lectures

Objective Is to reward those people who were regular
In attending class.



Fallures and Risks

Software development projects can fail in many ways:

Bad software engineering
 Late, over budget
 Lack of function, full of bugs, bad performance

Changing circumstances

« Changing markets
 Better alternatives

» Changes of management

The biggest single source of problems is poor
understanding of requirements



Managing Risk

Manage projects to avoid risk:

« Open and visible software process
=> Avolid surprises

 Continual review of requirements

« Willingness to modify or cancel projects



Canceling a Project

Example: Andrew Window Manager (wm)

 Technically superior to X (MIT's Athena project) in 1986

but ... Digital Equipment Corporation turning X into a
product with massive support

nobody ready to support wm

« Therefore wm cancelled in 1986, Andrew user interface
and applications ported to X



Failure to Cancel a Project

Example: University F developed a novel programming
language.

« From 1985 to 1989, this was a promising language for
simple programming of window-based applications

« By 1990, clearly not gaining acceptance beyond
University F

« But development continued for many more years (about
$500K)

Not cancelled because ...



Too Big to Cancel!

Example: University A has antiquated administrative systems.
Senior management decides to replace them all with commercial
packages from X. The timetable and budget are hopelessly
optimistic.

o Staff get dispirited.
« The Chief Information Officer finds another job.
« Anew Chief Information Officer is appointed.

What should she do?



We are doing it the Wrong Way!

Example: University B has a (big) joint project with
Company Y to develop a new computer operating system.

After two years work, a junior software developer
persuades the university leader that the technical approach
IS wrong.

« What should the university do?
» What should the company do?



10

How to Stop Gracefully

« It is harder to cancel a project than to start it.
« It is harder to withdraw a service than introduce it.

Considerations

» The proponents of the system must now reverse their public
stance.
=> Management of expectations

 Users of the service need a migration strategy.
 Technical staff must have a graceful path forward.



11

Time to Complete a Software Project

Large software projects typically take at least two years from
start to finish

« Formative phase -- changes of plan are easy to
accommodate

 Implementation phase -- fundamental changes are almost
Impossible

Yet many things can change in two years.



12

A Sense of Urgency

Example: A not-for-profit corporation is developing a

system for a government organization.

« By 1996 all research had been completed and the system
demonstrated successfully with real users.

 In 2000, the system is still not in full production

Reasons:
=> Incremental improvements to the software
=> Repeated requests for more functionality
=> Reluctance to reorganize clerical staff

Nobody had a sense of urgency



13

Overtaken by Events

Example: University C has a project to develop a digital

library system, with funds from Company Z , private
foundations and the government.

« By 1993 an extensive system is running at the university
and Z is marketing the technology to its customers.

« By 1994 it is clear that web browsers and web formats
(though technically weak) are becoming widely adopted.

=> What should the university do?

=> What should the company do?



14

Changing Reguirements and Design

Example: The CNRI Handle System -- a high performance,

distributed system to map names to resources (1994-99).

* In 1994 only web browser was Mosaic

e In 1994 Java did not exists
 In 1994 mirroring and caching utilities were not available
e In 1994 commercial interest was limited

Design decisions made in 1994 had to be changed. Software
was rewritten and greatly improved in 1998/9.

If a job's worth doing, it's worth doing twice!



15

Changes of Leadership

Many projects are wasted because of management changes

Example: In 1988, Company W gave University D $1,000,000
to port a new operating system to its personal computers. The
work was well done, on time.

« Company W changed its president and senior technical staff
during the project. The work was wasted.

« A decade later and several presidents later, Company W is
releasing a modern version of the same operating system.

A graduate student from University D is now Senior Vice
President of Company W!



16

Client Oversight

When work is out-sourced, the client must be vigilant.

Example: Company G was the world's leader in software for
optimization (e.g., linear and integer programming). G had
Implemented several packages for various manufacturers.

« An operating system Company H contracted with G to
develop an optimization package for its new operating system.

« The package was late, performed badly and disliked by
customers.

What went wrong? What can we learn?



17

Too Difficult!

Example: A development team at University E was given
government funds to build a high-performance gateway
from protocol x to protocol .

« A promising young developer was hired and assigned to
this task

 The project was too difficult for him, but he hid his
problems for many months.

 The project produced nothing of value.

What can we learn from this experience?



18

Engineering and Marketing

Corporate engineering & marketing divisions at cross purposes:

Examples:

« Xerox's Palo Alto Research Center pioneered window
managers, Ethernet, graphical user interfaces, font managers, etc,

=> Apple, Adobe, Digital, etc. brought them to the market

« IBM would not bring its first Unix workstation to the market
until the software had been largely rewritten

=> Sun's early workstations were unreliable but sold well



19

Senior Management Dynamics

Directors and shareholders appoint the President
=> The President does not want to admit failures

The President appoints the Chief Information Officer
=> The CIO does not want to admit failures

The CIO appoints the computing managers
=> The computing mangers do not want to admit failures

The computing managers appoint the developers
=> The developers do not want to admit failure

Everybody pretends that things are going well



Senior Management Dynamics

At last the troubles can not be hidden ...
 Directors and shareholders try to blame the President
« The President tries to blame the Chief Information Officer

« The CIO tries to blame the computing managers
(and grumbles about the President)

« The computing managers try to blame the developers
(and grumble about the CIO)

» The developers grumble about their managers

What can we do better?
20



Sobering Thoughts

« Major computing projects are very complex. Inevitably there
are delays and failures.

« Few organizations know how to manage risk & uncertainty.
* The best CIO's
=> Manage to minimize risk

=> Have the confidence of their staff who keep them
truthfully informed

=> Have the self-confidence to keep their seniors
truthfully informed

21



