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Dependable Systems I 

Reliability 
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Administration 

Assignment 3 

•     Report due tomorrow at 5 p.m. 

 group design with individual parts 

•     Presentations Wednesday through Friday 

 every group member must present during the semester 
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Software Reliability 

Failure:  Software does not deliver the service expected by 

the user (e.g., mistake in requirements) 

Fault:  Programming or design error whereby the delivered 

system does not conform to specification 

Reliability:  Probability of a failure occurring in operational 

use. 

Perceived reliability:  Depends upon: 

 user behavior 

 set of inputs 

 pain of failure 
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Reliability Metrics 

•    Probability of failure on demand 

•    Rate of failure occurrence (failure intensity) 

•    Mean time between failures 

•    Availability (up time) 

•    Mean time to repair 

•    Distribution of failures 

 

Hypothetical example: Cars are safer than 

airplane in accidents (failures) per hour, but less 

safe in failures per mile. 
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Reliability Metrics for Distributed Systems 

Traditional metrics are hard to apply in multi-component 

systems: 

•    In a big network, at a given moment something will be giving  

      trouble, but very few users will see it. 

•    A system that has excellent average reliability may give  

      terrible service to certain users. 

•    There are so many components that system administrators  

      rely on automatic reporting systems to identify problem areas. 
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User Perception of Reliability 

1.  A personal computer that crashes frequently v. a machine 

that is out of service for two days. 

2.  A database system that crashes frequently but comes back 

quickly with no loss of data v. a system that fails once in three 

years but data has to be restored from backup. 

3.  A system that does not fail but has unpredictable periods 

when it runs very slowly. 
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Cost of Improved Reliability 

$ 

Up time 

99% 100% 

Will you spend your money on new functionality 

or improved reliability? 
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Specification of System Reliability 

Example: ATM card reader 

Failure class    Example   Metric 

Permanent    System fails to operate 1 per 1,000 days 

non-corrupting   with any card -- reboot 

Transient    System can not read  1 in 1,000 transactions 

non-corrupting   an undamaged card 

Corrupting    A pattern of   Never 

     transactions corrupts 

     database 
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Principles for Dependable Systems 

The human mind can encompass only limited complexity: 

 =>  Comprehensibility 

 =>  Simplicity 

 =>  Partitioning of complexity 
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Principles for Dependable Systems 

High-quality has to be built-in 

 =>  Each stage of development must be done well 

 =>  Testing and correction does not lead to quality 

 =>  Changes should be incorporated into the structure 
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Quality Management Processes 

Assumption: 

Good processes lead to good software 

The importance of routine: 

Standard terminology (requirements, specification, 

design, etc.) 

Software standards (naming conventions, etc.) 

Internal and external documentation 

Reporting procedures 
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Quality Management Processes 

Change management: 

Source code management and version control 

Tracking of change requests and bug reports 

Procedures for changing requirements specifications, 

designs and other documentation 

Release control 
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Design and Code Reviews 

•    Colleagues review each other's work: 

          can be applied to any stage of software development 

          can be formal or informal 

•    The developer provides colleagues with: 

          documentation (e.g., specification or design), or code listing  

          talks through the work while answering questions 

•    Most effective when developer and reviewers prepare well  
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Benefits of Design and Code Reviews 

Benefits: 

•    Extra eyes spot mistakes, suggest improvements 

•    Colleagues share expertise; helps with training 

•    An occasion to tidy loose ends 

•    Incompatibilities between modules can be identified 

•    Helps scheduling and management control  

Fundamental requirements: 

•    Senior team members must show leadership 

•    Must be helpful, not threatening 
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Process (Plan) Reviews 

Objectives: 

•    To review progress against plan (formal or informal) 

•    To adjust plan (schedule, team assignments, 

functionality, etc.) 

Impact on quality: 

Good quality systems usually result from plans that are 

demanding but realistic 

Good people like to be stretched and to work hard, but 

must not be pressed beyond their capabilities. 
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Statistical Testing 

•    Determine the operational profile of the software 

•    Select or generate a profile of test data 

•    Apply test data to system, record failure patterns 

•    Compute statistical values of metrics under test conditions 
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Statistical Testing 

Advantages: 

•    Can test with very large numbers of transactions 

•    Can test with extreme cases (high loads, restarts, disruptions) 

•    Can repeat after system modifications 

Disadvantages: 

•    Uncertainty in operational profile (unlikely inputs) 

•    Expensive 

•    Can never prove high reliability 



18 

Example: Dartmouth Time Sharing (1980) 

A central computer serves the entire campus.  Any failure is 

serious. 

Step 1.   Gather data on every failure  

•    10 years of data in a simple data base 

•    Every failure analyzed: 

 hardware 

 software (default) 

 environment (e.g., power, air conditioning) 

 human (e.g., operator error) 
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Example: Dartmouth Time Sharing (1980) 

Step 2.  Analyze the data. 

•    Weekly, monthly, and annual statistics 

 Number of failures and interruptions 

 Mean time to repair 

•    Graphs of trends by component, e.g., 

 Failure rates of disk drives 

 Hardware failures after power failures 

 Crashes caused by software bugs in each module 
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Example: Dartmouth Time Sharing (1980) 

Step 3.  Invest resources where benefit will be maximum, e.g., 

•    Orderly shut down after power failure 

•    Priority order for software improvements 

•    Changed procedures for operators 

•    Replacement hardware 
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Factors for Fault Free Software 

•    Precise, unambiguous specification 

•    Organization culture that expects quality 

•    Approach to software design and implementation that hides 

complexity (e.g., structured design, object-oriented programming) 

•    Use of software tools that restrict or detect errors (e.g., 

strongly typed languages, source control systems, debuggers) 

•    Programming style that emphasizes simplicity, readability, and 

avoidance of dangerous constructs 

•    Incremental validation 
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Error Avoidance 

Risky programming constructs 

•    Pointers 

•    Dynamic memory allocation 

•    Floating-point numbers 

•    Parallelism 

•    Recursion 

•    Interrupts 

All are valuable in certain circumstances, but 

should be used with discretion 
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Defensive Programming 

Murphy's Law: If anything can go wrong, it will. 

 

Defensive Programming:   

•    Redundant code is incorporated to check system state after 

modifications 

•    Implicit assumptions are tested explicitly 
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Defensive Programming Examples 

•    Use boolean variable not integer    

•    Test i <= n not i = = n  

•    Assertion checking  

•    Build debugging code into program with a switch to 

display values at interfaces 

•    Error checking codes in data, e.g., checksum or hash 
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Some Notable Bugs 

•    Built-in function in Fortran compiler (e0 = 0) 

•    Japanese microcode for Honeywell DPS virtual memory 

•    The microfilm plotter with the missing byte (1:1023) 

•    The Sun 3 page fault that IBM paid to fix 

•    Left handed rotation in the graphics package 

Good people work around problems. 

The best people track them down and fix them! 


