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Software Engineering as Engineering 



Administration 

•     Early examination:  send email to: 

               rosemary@cs.cornell.edu 

 



The Y2K Problem: Saving Memory 

•    In 1967 memory cost $1 per byte 

             The Air Force used single digit dates 

•    If 2-digit dates saved 1% of memory... 

      savings over 20 years $16 to $24 million per gigabyte 



The Y2K Problem: Saving Memory 

•    By 1980s, memory was much  cheaper, but 2-digit dates      

      were standard.  Why incur the cost of changing standards? 

 1970 The mortgage industry  

  1990 The Social Security Industry 

   moved towards 4-digit dates  

•    On January 1, 2000 2-digit dates stopped working! 



Where's the Problem? 

•    A simple bug: 

 dates of the  form 19xx have been encoded xx 

•    A simple fix: 

 find every occurrence of the bug 

 modify the code 

 recompile 

Where's the problem? 



Find Every Occurrence ... 

•    What computers do we use? 

 data processing 

 control 

 embedded systems 

 personal devices 

•    What programs do they run? 

 in-house development  

 packages and libraries 

 firmware, microcode, hardware 

   Who wrote this program? 

   Where is the source code? 



Where's the Problem? 

Computers fail everyday.  What's special about this bug? 

•    What if they all fail at the same time? 

•    What if we lose telephone, electricity, radio, etc.? 

•    Traffic signals, elevators,  

The greatest worry was uncertainty. 



Social Consequences 

Worry creates its own problems: 

•    Wal-Mart forecast lower profits in Q1 2000 

•    Legislation to limit law suits 

•    Opportunities for computer fraud and sabotage 

•    Trading partners 



Organizational Procedures 

•    Ostrich 

 => do nothing 

 => buy insurance 

•    Bureaucratic 

 => fill in forms that programs are compliant 

•    Subcontract 

 => hire Y2K specialists 

•    Do it yourself 

 => in-house computing department 



Y2K Validation 

Request from Library of Congress to confirm that our code 

is Y2K compliant: 

   Our code is fine 

     ....  but it depends on ... which depends on ...  

   Yes.  Our code is fine. 

Request from DARPA to confirm that our code is Y2K 

compliant: 

   It's been validated by another part of the US government 

        Thank you! 



Technical Strategies 

•    Replace noncompliant applications with compliant ones  

      (e.g., new versions of packages) 

•    Repair noncompliant applications (e.g., in-house  

      applications) 

•    Terminate noncompliant programs on an as-needed  

      basis  

•    Mask the data exchange between applications 

•     Object code interception 



New Bugs 

If it's not broke don't fix it. 

•    10 billion lines of code checked (often automatically) 

•    10 million new bugs introduced accidentally 

•    ?? security holes, errors, etc. introduced accidentally or  

     deliberately 



Is all the Money Going to Y2K? 

Y2K as a great excuse to have the computing budget 

increased: 

•    Upgrade the operating system 

•    Replace the old package 

•    Sell something to your customers 

What boss will turn turn a request for Y2K funds? 

What systems administrators will not install Y2K upgrades? 



Profiteering 

•    Buy gold, wood stoves, bottled water 

•    Y2K specialists 

•    Pundits, consultants, writers 

•    Religious cranks 



Final Thoughts on Y2K 

We create computer systems that are more complex than 

our understanding of them: 

•    We over estimate our ability to validate systems 

•    We under estimate our ability to adapt and respond 

Software engineering usually thinks of systems as 

independent. 

Will the long-term benefit of the Y2K problem be a greater 

understanding of how software systems interact with each 

other and with our social systems? 



The Need for Software Engineering 

Software as a product: 

=>  Awkward to use 

=>  Full of errors 

=>  No chance to try it out 

=>  No guarantees 

Not much of a product 



What is Engineering? 



What is Engineering? 

The profession of: 

... creating cost-effective solutions ... 

... to practical problems ... 

... by applying scientific knowledge ... 

... and established practices ... 

... building things ... 

and taking responsibility for them! 
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Software Engineering as Engineering? 

•    Part craft -- part engineering 

•    Embryonic scientific basis 

•    Evolving body of knowledge 

•    Too much flux for the apparatus of a  

      profession (e.g., accreditation) 

Example:  Texas and the ACM 



The End 

•    Good process leads to good software: 

  the limits of heroic efforts 

•    Minimize risks: 

  visible process 

  function v. time v. cost 

•    The importance of people 

Requirements, requirements, requirements! 

     


