
CS 501: Software Engineering

Fall 2000

Lecture 21

Dependable Systems I

Reliability

2

Administration

Assignment 3

• Report due tomorrow at 5 p.m.

 group design with individual parts

• Presentations Wednesday through Friday

 every group member must present during the semester

3

Software Reliability

Failure: Software does not deliver the service expected by

the user (e.g., mistake in requirements)

Fault: Programming or design error whereby the delivered

system does not conform to specification

Reliability: Probability of a failure occurring in operational

use.

Perceived reliability: Depends upon:

 user behavior

 set of inputs

 pain of failure

4

Reliability Metrics

• Probability of failure on demand

• Rate of failure occurrence (failure intensity)

• Mean time between failures

• Availability (up time)

• Mean time to repair

• Distribution of failures

Hypothetical example: Cars are safer than

airplane in accidents (failures) per hour, but less

safe in failures per mile.

5

Reliability Metrics for Distributed Systems

Traditional metrics are hard to apply in multi-component

systems:

• In a big network, at a given moment something will be giving

 trouble, but very few users will see it.

• A system that has excellent average reliability may give

 terrible service to certain users.

• There are so many components that system administrators

 rely on automatic reporting systems to identify problem areas.

6

User Perception of Reliability

1. A personal computer that crashes frequently v. a machine

that is out of service for two days.

2. A database system that crashes frequently but comes back

quickly with no loss of data v. a system that fails once in three

years but data has to be restored from backup.

3. A system that does not fail but has unpredictable periods

when it runs very slowly.

7

Cost of Improved Reliability

$

Up time

99% 100%

Will you spend your money on new functionality

or improved reliability?

8

Specification of System Reliability

Example: ATM card reader

Failure class Example Metric

Permanent System fails to operate 1 per 1,000 days

non-corrupting with any card -- reboot

Transient System can not read 1 in 1,000 transactions

non-corrupting an undamaged card

Corrupting A pattern of Never

 transactions corrupts

 database

9

Principles for Dependable Systems

The human mind can encompass only limited complexity:

 => Comprehensibility

 => Simplicity

 => Partitioning of complexity

10

Principles for Dependable Systems

High-quality has to be built-in

 => Each stage of development must be done well

 => Testing and correction does not lead to quality

 => Changes should be incorporated into the structure

11

Quality Management Processes

Assumption:

Good processes lead to good software

The importance of routine:

Standard terminology (requirements, specification,

design, etc.)

Software standards (naming conventions, etc.)

Internal and external documentation

Reporting procedures

12

Quality Management Processes

Change management:

Source code management and version control

Tracking of change requests and bug reports

Procedures for changing requirements specifications,

designs and other documentation

Release control

13

Design and Code Reviews

• Colleagues review each other's work:

 can be applied to any stage of software development

 can be formal or informal

• The developer provides colleagues with:

 documentation (e.g., specification or design), or code listing

 talks through the work while answering questions

• Most effective when developer and reviewers prepare well

14

Benefits of Design and Code Reviews

Benefits:

• Extra eyes spot mistakes, suggest improvements

• Colleagues share expertise; helps with training

• An occasion to tidy loose ends

• Incompatibilities between modules can be identified

• Helps scheduling and management control

Fundamental requirements:

• Senior team members must show leadership

• Must be helpful, not threatening

15

Process (Plan) Reviews

Objectives:

• To review progress against plan (formal or informal)

• To adjust plan (schedule, team assignments,

functionality, etc.)

Impact on quality:

Good quality systems usually result from plans that are

demanding but realistic

Good people like to be stretched and to work hard, but

must not be pressed beyond their capabilities.

16

Statistical Testing

• Determine the operational profile of the software

• Select or generate a profile of test data

• Apply test data to system, record failure patterns

• Compute statistical values of metrics under test conditions

17

Statistical Testing

Advantages:

• Can test with very large numbers of transactions

• Can test with extreme cases (high loads, restarts, disruptions)

• Can repeat after system modifications

Disadvantages:

• Uncertainty in operational profile (unlikely inputs)

• Expensive

• Can never prove high reliability

18

Example: Dartmouth Time Sharing (1980)

A central computer serves the entire campus. Any failure is

serious.

Step 1. Gather data on every failure

• 10 years of data in a simple data base

• Every failure analyzed:

 hardware

 software (default)

 environment (e.g., power, air conditioning)

 human (e.g., operator error)

19

Example: Dartmouth Time Sharing (1980)

Step 2. Analyze the data.

• Weekly, monthly, and annual statistics

 Number of failures and interruptions

 Mean time to repair

• Graphs of trends by component, e.g.,

 Failure rates of disk drives

 Hardware failures after power failures

 Crashes caused by software bugs in each module

20

Example: Dartmouth Time Sharing (1980)

Step 3. Invest resources where benefit will be maximum, e.g.,

• Orderly shut down after power failure

• Priority order for software improvements

• Changed procedures for operators

• Replacement hardware

21

Factors for Fault Free Software

• Precise, unambiguous specification

• Organization culture that expects quality

• Approach to software design and implementation that hides

complexity (e.g., structured design, object-oriented programming)

• Use of software tools that restrict or detect errors (e.g.,

strongly typed languages, source control systems, debuggers)

• Programming style that emphasizes simplicity, readability, and

avoidance of dangerous constructs

• Incremental validation

22

Error Avoidance

Risky programming constructs

• Pointers

• Dynamic memory allocation

• Floating-point numbers

• Parallelism

• Recursion

• Interrupts

All are valuable in certain circumstances, but

should be used with discretion

23

Defensive Programming

Murphy's Law: If anything can go wrong, it will.

Defensive Programming:

• Redundant code is incorporated to check system state after

modifications

• Implicit assumptions are tested explicitly

24

Defensive Programming Examples

• Use boolean variable not integer

• Test i <= n not i = = n

• Assertion checking

• Build debugging code into program with a switch to

display values at interfaces

• Error checking codes in data, e.g., checksum or hash

25

Some Notable Bugs

• Built-in function in Fortran compiler (e0 = 0)

• Japanese microcode for Honeywell DPS virtual memory

• The microfilm plotter with the missing byte (1:1023)

• The Sun 3 page fault that IBM paid to fix

• Left handed rotation in the graphics package

Good people work around problems.

The best people track them down and fix them!

