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Preface

Nowadays, environmental issues including air and water pollution, climate
change, overexploitation of marine ecosystems, exhaustion of fossil resources,
conservation of biodiversity are receiving major attention from the public,
stakeholders and scholars from the local to the planetary scales. It is now
clearly recognized that human activities yield major ecological and environ-
mental stresses with irreversible loss of species, destruction of habitat or cli-
mate catastrophes as the most dramatic examples of their effects. In fact, these
anthropogenic activities impact not only the states and dynamics of natural
resources and ecosystems but also alter human health, well-being, welfare and
economic wealth since these resources are support features for human life.
The numerous outputs furnished by nature include direct goods such as food,
drugs, energy along with indirect services such as the carbon cycle, the water
cycle and pollination, to cite but a few. Hence, the various ecological changes
our world is undergoing draw into question our ability to sustain economic
production, wealth and the evolution of technology by taking natural systems
into account.

The concept of “sustainable development” covers such concerns, although
no universal consensus exists about this notion. Sustainable development em-
phasizes the need to organize and control the dynamics and the complex in-
teractions between man, production activities, and natural resources in order
to promote their coexistence and their common evolution. It points out the
importance of studying the interfaces between society and nature, and espe-
cially the coupling between economics and ecology. It induces interdisciplinary
scientific research for the assessment, the conservation and the management
of natural resources.

This monograph, Sustainable Management of Natural Resources, Mathe-
matical Models and Methods, exhibits and develops quantitative and formal
links between issues in sustainable development, decisions and precautionary
problems in the management of natural resources. The mathematical and nu-
merical models and methods rely on dynamical systems and on control theory.
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The basic concerns taken into account include management of fisheries, agri-
culture, biodiversity, exhaustible resources and pollution.

This book aims at reconciling economic and ecological dimensions through
a common modeling framework to cope with environmental management prob-
lems from a perspective of sustainability. Particular attention is paid to multi-
criteria issues and intergenerational equity.

Regarding the interdisciplinary goals, the models and methods that we
present are restricted to the framework of discrete time dynamics in order to
simplify the mathematical content. This approach allows for a direct entry
into ecology through life-cycles, age classes and meta-population models. In
economics, such a discrete time dynamic approach favors a straightforward
account of the framework of decision-making under uncertainty. In the same
vein, particular attention has been given to exhibiting numerous examples,
together with many figures and associated computer programs (written in
Scilab, a free scientific software). The main approaches presented in the book
are equilibrium and stability, viability and invariance, intertemporal optimal-
ity ranging from discounted utilitarian to Rawlsian criteria. For these meth-
ods, both deterministic, stochastic and robust frameworks are examined. The
case of imperfect information is also introduced at the end. The book mixes
well known material and applications, with new insights, especially from via-
bility and robust analysis.

This book targets researchers, university lecturers and students in ecology,
economics and mathematics interested in interdisciplinary modeling related
to sustainable development and management of natural resources. It is drawn
from teachings given during several interdisciplinary French training sessions
dealing with environmental economics, ecology, conservation biology and en-
gineering. It is also the product of numerous scientific contacts made possible
by the support of French scientific programs: GDR COREV (Groupement de
recherche contrôle des ressources vivantes), ACI Ecologie quantitative, IFB-
GICC (Institut français de la biodiversité - Gestion et impacts changement cli-
matique), ACI MEDD (Modélisation économique du développement durable),
ANR Biodiversité (Agence nationale de la recherche).

We are grateful to our institutions CNRS (Centre national de la recherche
scientifique) and ENPC (École nationale des ponts et chaussées) for provid-
ing us with shelter, financial support and an intellectual environment, thus
displaying the conditions for the development of our scientific work within
the framework of extensive scientific freedom. Such freedom has allowed us to
explore some unusual or unused roads.

The contribution of C. Lobry in the development of the French network
COREV (Outils et modèles de l’automatique dans l’étude de la dynamique
des écosystèmes et du contrôle des ressources renouvelables) comprising biol-
ogists and mathematicians is important. We take this opportunity to thank
him and express our gratitude for so many interesting scientific discussions.
At INRIA (Institut national de recherche en informatique et automatique)
in Sophia-Antipolis, J.-L. Gouzé and his collaborators have been active in



Preface VII

developing research and continue to influence our ideas on the articulation
of ecology, mathematics and the framework of dynamic systems and control
theory. At the Université Paris-Dauphine, we are much indebted to the very
active team of mathematicians headed by J.-P. Aubin, who participated in
the CEREMADE (Centre De Recherche en Mathématiques de la Décision)
and CRVJC (Centre de Recherche Viabilité-Jeux-Contrôle) who significantly
influenced our work on control problems and mathematical modeling and
decision-making methods: D. Gabay deserves special acknowledgment regard-
ing natural resource issues. At École nationale supérieure des mines de Paris,
we are quite indebted to the team of mathematicians and automaticians at
CAS (Centre automatique et systèmes) who developed a very creative en-
vironment for exploring mathematical methods devoted to real life control
problems. We are particularly grateful to the influence of J. Lévine, and his
legitimate preoccupation with developing methods adapted and pertinent to
given applied problems. At ENPC, CERMICS (Centre d’enseignement et de
recherche en mathématiques et calcul scientifique) hosts the SOWG team (Sys-
tems and Optimisation Working Group), granting freedom to explore applied
paths in the mathematics of sustainable management. Our friend and col-
league J.-P. Chancelier deserves a special mention for his readiness in helping
us write Scilab codes and develop practical works available over the internet.
The CMM (Centro de Modelamiento Matemático) in Santiago de Chile has
efficiently supported the development of an activity in mathematical methods
for the management of natural resources. It is a pleasure to thank our col-
leagues there for the pleasant conditions of work, as well as new colleagues in
Peru now contributing to such development. A nice discussion with J. D. Mur-
ray was influential in devoting substantial content to uncertainty issues.

At CIRED (Centre international de recherche sur l’environnement et le
développement), we are grateful to O. Godard and J.-C. Hourcade for all we
learnt and understood through our contact with them regarding environmen-
tal economics and the importance of action timing and uncertainties. Our
colleagues J.-C. Pereau, G. Rotillon and K. Schubert deserve special thanks
for all the sound advice and challenging discussions concerning environmental
economics and bio-economics to which this book owes so much.

Regarding biodiversity management, the stimulating interest and support
shown for our work and modeling activities by J. Weber at IFB (Institut
français de la biodiversité) has constituted a major motivation. For the mod-
eling in fisheries management and marine biodiversity, it is a pleasure to thank
F. Blanchard, M.-J. Rochet and O. Thébaud at IFREMER (Institut français
de recherche pour l’exploitation de la mer) for their active investment in im-
porting control methods in the field. We also thank J. Ferraris at IRD (Institut
de recherche pour le développement). The cooperation with S. Planes (CNRS
and École pratique des hautes études) has always been fruitful and pleasant.
The contributions of C. Béné (World Fish Center) are major and scattered
throughout several parts of this monograph.
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At INRA (Institut national de recherche en agriculture), a very special
thanks to M. Tichit and F. Léger for fruitful collaboration despite the com-
plexity of agro-environmental topics. A. Rapaport deserves special mention
for his long investment in control methods in the field of renewable resources
management. At MNHN (Muséum national d’histoire naturelle), and espe-
cially within the Department Écologie et gestion de la biodiversité , we want
to point out the support of R. Barbault and D. Couvet. Their interest in dy-
namic control and co-viability approaches for the management of biodiversity
was very helpful. At CEMAGREF, we thank our colleague J.-P. Terreaux. At
ENPC, the CEREVE (Centre d’enseignement et de recherche eau ville en-
vironnement) has been a laboratory for confronting environmental problems
and mathematical methods with various researchers. Those at the Ministère
de l’Équipement and at the Ministère de l’Environnement, who have allowed,
encouraged and helped the development of interdisciplinary activities are too
numerous to be thanked individually.

The very active and fruitful role played by young PhD and postdoc re-
searchers such as P. Ambrosi, P. Dumas, L. Gilotte, T. Guilbaud, J.-O. Irisson
and V. Martinet should be emphasized. Without the enthusiasm and work of
young Master’s students like F. Barnier, M. Bosseau, J. Bourgoin, I. Bouzidi,
A. Daghiri, M. C. Druesne, L. Dun, C. Guerbois, C. Lebreton, A. Le Van,
A. Maure, T. Mahé, P. Rabbat, M. Sbai, M.-E. Sebaoun, R. Sabatier, L. Ton
That, J. Trigalo, this monograph would not have been the same. We thank
them for helping us explore new tracks and developing Scilab codes.

Paris, Michel De Lara
April 2008 Luc Doyen



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Sequential decision models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Exploitation of an exhaustible resource . . . . . . . . . . . . . . . . . . . . . 16
2.2 Assessment and management of a renewable resource . . . . . . . . 17
2.3 Mitigation policies for carbon dioxyde emissions . . . . . . . . . . . . . 24
2.4 A trophic web and sustainable use values . . . . . . . . . . . . . . . . . . . 27
2.5 A forestry management model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 A single species age-classified model of fishing . . . . . . . . . . . . . . . 31
2.7 Economic growth with an exhaustible natural resource . . . . . . . 35
2.8 An exploited metapopulation and protected area . . . . . . . . . . . . 37
2.9 State space mathematical formulation . . . . . . . . . . . . . . . . . . . . . . 38
2.10 Open versus closed loop decisions . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.11 Decision tree and the “curse of the dimensionality” . . . . . . . . . . 46

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Equilibrium and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1 Equilibrium states and decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Some examples of equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Maximum sustainable yield, private property, common

property, open access equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Stability of a stationary open loop equilibrium state . . . . . . . . . 60
3.5 What about stability for MSE, PPE and CPE? . . . . . . . . . . . . . . 63
3.6 Open access, instability and extinction . . . . . . . . . . . . . . . . . . . . . 66
3.7 Competition for a resource: coexistence vs exclusion . . . . . . . . . 68

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



X Contents

4 Viable sequential decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1 The viability problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Resource management examples under viability constraints . . . 76
4.3 The viability kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Viability in the autonomous case . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Viable control of an invasive species . . . . . . . . . . . . . . . . . . . . . . . . 86
4.6 Viable greenhouse gas mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7 A bioeconomic precautionary threshold . . . . . . . . . . . . . . . . . . . . . 90
4.8 The precautionary approach in fisheries management . . . . . . . . . 95
4.9 Viable forestry management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.10 Invariance or strong viability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Optimal sequential decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Dynamic programming for the additive payoff case . . . . . . . . . . . 112
5.3 Intergenerational equity for a renewable resource . . . . . . . . . . . . 115
5.4 Optimal depletion of an exhaustible resource . . . . . . . . . . . . . . . . 117
5.5 Over-exploitation, extinction and inequity . . . . . . . . . . . . . . . . . . 119
5.6 A cost-effective approach to CO2 mitigation . . . . . . . . . . . . . . . . 122
5.7 Discount factor and extraction path of an open pit mine . . . . . . 125
5.8 Pontryaguin’s maximum principle for the additive case . . . . . . . 131
5.9 Hotelling rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.10 Optimal management of a renewable resource . . . . . . . . . . . . . . . 136
5.11 The Green Golden rule approach . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.12 Where conservation is optimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.13 Chichilnisky approach for exhaustible resources . . . . . . . . . . . . . 141
5.14 The “maximin” approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.15 Maximin for an exhaustible resource . . . . . . . . . . . . . . . . . . . . . . . 148

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6 Sequential decisions under uncertainty . . . . . . . . . . . . . . . . . . . . . 153
6.1 Uncertain dynamic control system . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.2 Decisions, solution map and feedback strategies . . . . . . . . . . . . . 157
6.3 Probabilistic assumptions and expected value . . . . . . . . . . . . . . . 158
6.4 Decision criteria under uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 160
6.5 Management of multi-species harvests . . . . . . . . . . . . . . . . . . . . . . 161
6.6 Robust agricultural land-use and diversification . . . . . . . . . . . . . 162
6.7 Mitigation policies for uncertain carbon dioxyde emissions . . . . 163
6.8 Economic growth with an exhaustible natural resource . . . . . . . 166

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169



Contents XI

7 Robust and stochastic viability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.1 The uncertain viability problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.2 The robust viability problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.3 Robust agricultural land-use and diversification . . . . . . . . . . . . . 175
7.4 Sustainable management of marine ecosystems through

protected areas: a coral reef case study . . . . . . . . . . . . . . . . . . . . . 178
7.5 The stochastic viability problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.6 From PVA to CVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8 Robust and stochastic optimization . . . . . . . . . . . . . . . . . . . . . . . . 193
8.1 Dynamics, constraints, feedbacks and criteria . . . . . . . . . . . . . . . 194
8.2 The robust optimality problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.3 The robust additive payoff case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.4 Robust harvest of a renewable resource over two periods . . . . . . 199
8.5 The robust “maximin” approach . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.6 The stochastic optimality problem . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.7 Stochastic management of a renewable resource . . . . . . . . . . . . . 205
8.8 Optimal expected land-use and specialization . . . . . . . . . . . . . . . 210
8.9 Cost-effectiveness of grazing and bird community

management in farmland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

9 Sequential decision under imperfect information . . . . . . . . . . . 221
9.1 Intertemporal decision problem with imperfect observation. . . . 221
9.2 Value of information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
9.3 Precautionary catches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
9.4 Information effect in climate change mitigation . . . . . . . . . . . . . . 229
9.5 Monotone variation of the value of information and

precautionary effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.6 Precautionary effect in climate change mitigation . . . . . . . . . . . . 233

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

A Appendix. Mathematical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
A.1 Mathematical proofs of Chap. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
A.2 Mathematical proofs of Chap. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
A.3 Mathematical proofs of Chap. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
A.4 Robust and stochastic dynamic programming equations . . . . . . 248
A.5 Mathematical proofs of Chap. 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
A.6 Mathematical proofs of Chap. 8 . . . . . . . . . . . . . . . . . . . . . . . . . . 253
A.7 Mathematical proofs of Chap. 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261



1

Introduction

Over the past few decades, environmental concerns have received growing
attention. Nowadays, climate change, pollution control, over-exploitation of
fisheries, preservation of biodiversity and water resource management con-
stitute important public preoccupations at the local, state and even world
scales. Crises, degradation and risks affecting human health or the environ-
ment, along with the permanency of poverty, have fostered public suspicion
of the evolution of technology and economic growth while encouraging doubts
about the ability of public policies to handle such problems in time. The sus-
tainable development concept and the precautionary principle both came on
the scene in this context.

These concepts lead us to question the means of organizing and control-
ling the development and complex interactions between man, trade, produc-
tion activities and natural resources. There is a need to study the interfaces
between society and nature, and especially the coupling between economics
and ecology. Interdisciplinary scientific studies and research into the assess-
ment, conservation and management of natural resources are induced by such
preoccupations.

The problems confronted in sustainable management share certain charac-
teristic features: decisions must be taken throughout time and involve systems
marked by complex dynamics and uncertainties. We propose mathematical ap-
proaches centered around dynamical systems and control theory to formalize
and tackle such problems.

Environmental management issues

We review the main environmental management issues before focusing on the
notions of sustainable development and the precautionary principle.
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Exhaustible resources

One of the main initial environmental debates deals with the use and man-
agement of exhaustible resource such as coal and oil. In 1972, the Club of
Rome published a famous report, “The Limits to Growth” [28], arguing that
unlimited economic growth is impossible because of the exhaustibility of some
resources. In response to this position, numerous economists [10, 19, 38, 39]
have developed economic models to assess how the presence of an exhaustible
resource might limit economic growth. These works have pointed out that
substitutability features of natural resources are decisive in a production sys-
tem economy. Moreover the question of intergenerational equity appears as a
central point in such works.

Renewable resources

Renewable resources are under extreme pressure worldwide despite efforts to
design better regulation in terms of economic and/or control instruments and
measures of stocks and catches.

The Food and Agricultural Organization [15] estimates for instance that,
at present, 47-50% of marine fish stocks are fully exploited, 15-18% are over-
exploited and 9-10% have been depleted or are recovering from depletion.

Without any regulation, it is likely that numerous stocks will be further
depleted or become extinct as long as over-exploitation remains profitable
for individual agents. To mitigate pressure on specific resources and prevent
over-exploitation, renewable resources are regulated using quantity or price
instruments. Some systems of management are thus based on quotas, limited
entries or protected areas while others rely on taxing of catches or opera-
tions [6, 7, 20, 41]. The continued decline in stocks worldwide has raised
serious questions about the effectiveness and sustainability of such policies for
the management of renewable resources, and especially for marine resources.
Among the many factors that contribute to failure in regulating renewable
resources, both uncertainty and complexity play significant roles. Uncertainty
includes both scientific uncertainties related to resource dynamics or assess-
ments and the uncontrollability of catches. In this context, problems raised by
non-compliance of agents or by by-catch related to multi-species management
are important. The difficulties in the usual management of renewable resources
have led some recent works to advocate the use of ecosystemic approaches
[5, 8] as a central element of future resource management. This framework
aims at capturing a major part of the complexity of the systems in a relevant
way encompassing, in particular, trophic webs, habitats, spatialization and
uncertainty.

Biodiversity

More generally, the preservation, conservation and management of biodiversity
is at stake. In the Convention on Biological Diversity (Rio de Janeiro, 1992),
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biodiversity is defined as “the variability among living organisms from all
sources including, inter alia, terrestrial, marine and other aquatic ecosystems
and the ecological complexes of which they are part; this includes diversity
within species, between species and of ecosystems”. Many questions arise.
How can biodiversity be measured [2, 33]? How does biodiversity promote
the functioning, stability, viability and productivity of ecosystems [24, 26]?
What are the mechanisms responsible for perturbations ? How can the conse-
quences of the erosion of biodiversity be evaluated at the level of society [4]?
Extinction is a natural phenomenon that is part of the evolutionary cycle of
species. However, little doubt now remains that the Earth’s biodiversity is de-
clining [26]. For instance, some estimates [27] indicate that endangered species
encompass 11% of plants, 4.6% of vertebrates, 24% of mammals and 11% of
birds worldwide. Anthropic activities and man’s development is a major cause
of resource depletion and weakened habitat. One main focus of biodiversity
economics and management is to establish an economic basis for preservation
by pointing out the advantages it procures. Consequently, there is growing
interest in assessing the value and benefit of biological diversity. This is a
difficult task because of the complexity of the systems under question and the
non monetary values at stake. The concept of total economic value makes a
distinction between use values (production and consumption), ecosystem ser-
vices (carbon and water cycle, pollination. . . ), existence value (intrinsic value
of nature) and option values (potential future use).

Instruments for the recovery and protection of ecosystems, viable land
use management and regulation of exploited ecosystems refer to conserva-
tion biology and bioeconomics. Population Viability Analysis [29] is a specific
quantitative method used for conservation purposes. Within this context, pro-
tected areas or agro-environmental measures and actions are receiving growing
attention to enhance biodiversity and the habitats which support it.

Pollution

Pollution problems concerning water, air, land or food occur at different scales
depending on whether we are looking at local or larger areas. At the global
scale, climate change has now emerged as one, if not the most, important
issue facing the international community. Over the past decade, many efforts
have been directed toward evaluating policies to control the atmospheric ac-
cumulation of greenhouse gases (ghg). Particular attention has been paid to
stabilizing ghg concentration [23], especially carbon dioxide (co2). However,
intense debate and extensive analyses still refer to both the timing and mag-
nitude of emission mitigation decisions and policies along with the choice be-
tween transferable permits (to emit ghg) or taxes as being relevant economic
instruments for achieving such mitigation goals while maintaining economic
growth. These discussions emphasize the need to take into account scientific,
economic and technological uncertainties.
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Sustainable development

Since 1987, the term sustainable development, defined in the so-called Brundt-
land report Our Common Future [40], has been used to articulate all previ-
ous concerns. The World Commission on Environment and Development thus
called for a “form of sustainable development which meets the needs of the
present without compromising the ability of future generations to meet their
own needs”.

Many definitions of sustainable development have been introduced, as
listed by [32]. Their numbers reveal the large-scale mobilization of scientific
and intellectual communities around this question and the economic and polit-
ical interests at stake. Although the Brundtland report has received extensive
agreement – and many projects, conferences and public decisions such as the
Convention on Biological Diversity (Rio de Janeiro, 1992), the United Na-
tions Framework Convention on Climate Change (Rio de Janeiro, 1992) and
the Kyoto protocol (Kyoto, 1997), the World Summit on Sustainable Devel-
opment (Johannesburg 2002), nowadays refer to this general framework – the
meaning of sustainability remains controversial. It is taken to mean alter-
natively preservation, conservation or “sustainable use” of natural resources.
Such a concept questions whether humans are “a part of” or “apart from”
nature. From the biological and ecological viewpoint, sustainability is gener-
ally associated with a protection perspective. In economics, it is advanced by
those who favor accounting for natural resources. In particular, it examines
how economic instruments like markets, taxes or quotas are appropriate to
tackling so called “environmental externalities.” The debate currently focuses
on the substitutability between the economy and the environment or between
“natural capital” and “manufactured capital” – a debate captured in terms
of “weak” versus “strong” sustainability. Beyond their opposite assumptions,
these different points of view refer to the apparent antagonism between pre-
occupations of most natural scientists – concerned with survival and viability
questions – and preoccupations of economists – more motivated with effi-
ciency and optimality. At any rate, the basic concerns of sustainability are
how to reconcile environmental, social and economic requirements within the
perspectivies of intra- and intergenerational equity.

Precautionary principle

Dangers, crises, degradation and catastrophes affecting the environment or
human health encourage doubt as to the ability of public policies to face such
problems in time. The precautionary principle first appeared in such a context.
For instance, the 15th Principle of the 1992 Rio Declaration on Environment
and Development defines precaution by saying, “Where there are threats of
serious or irreversible damage, lack of full scientific certainty shall not be used
as a reason for postponing cost-effective measures to prevent environmental
degradation”.
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Yet there is no universal precautionary principle and Sandin [34] enumer-
ates nineteen different definitions. Graham [17] attempts to summarize the
ideas and associates the principle with a “better safe than sorry” stance. He
argues that the principle calls for prompt protective action rather than delay
of prevention until scientific uncertainty is resolved.

Unfortunately, the precautionary principle does not clearly specify what
changes one can expect in the relations between science and decision-making,
or how to translate the requirements of precaution into operating standards.
It is therefore vague and difficult to craft into workable policies.

What seems to be characteristic of the precaution context is that we face
both ex ante indecision and indeterminacy. The precautionary principle is,
however, the contrary of an abstention rule. This observation raises at least
two main questions. Why does indecision exist a priori? How can such indeci-
sion be overcome? At this stage, the impact of the resolution of uncertainties
on the timing of action appears as a touchstone of precaution.

Mathematical and numerical modeling

From this brief panorama of numerous issues related to the management of
natural resources, we observe that concepts such as sustainable development
and precaution – initially conceived to guide the action – are not directly
operational and do not mix well in any obvious manner. In such a context,
qualitative and quantitative analyzes are not easy to perform on scientific
grounds. This fact may be damaging both for decision-making support and
production of knowledge in the environmental field. At this stage, attempts to
address these issues of sustainability and natural resource management using
mathematical and numerical modeling appear relevant. Such is the purpose
of the present textbook. We believe that there is room for some mathematical
concepts and methods to formulate decisions, to aid in finding solutions to
environmental problems, and to mobilize the different specialized disciplines,
their data, modeling approaches and methods within an interdisciplinary and
integrated perspective.

Decision-making perspective

Actions, decisions, regulations and controls often have to rely on quantitative
contexts and numerical information as divers as effectiveness, precautionary
indicators and reference points, costs and benefit values, amplitudes and tim-
ing of decisions. To quote but a few: at what level should co2 concentration be
stabilized in the atmosphere? 450 ppm? 550 ppm? 650 ppm? What should the
level of a carbon tax be? At what date should the co2 abatements start? And
according to what schedule? What indicators and prices should be used for bio-
diversity? What viability thresholds should be considered for bird population
sustainability? What harvesting quota levels for cod, hake and salmon? What



6 1 Introduction

size reserves will assure the conservation of elephant species in Africa and
where should they be located? What land-use and degree of intensification
is appropriate for agro-environmental policies in Europe? How high should
compensation payments be for the biodiversity impact and damage caused by
development projects? In meeting such objectives of decision-making support,
two modeling orientations may be followed.

One class of models aims at capturing the large-scale complexity of the
problems under concern. Such an approach may be very demanding and time
consuming because such a model depends on a lot of parameters or mecha-
nisms that may be uncertain or unknown. In this case, numerical simulations
are generally the best way to display quantitative or qualitative results. They
are very dependent upon the calibration and estimation of parameters and
sensitivity analysis is necessary to convey robust assertions.

Another path for modeling to follow consists in constructing a low-
dimensional model representing the major features and processes of the com-
plex problem. One may speak of compact, aggregated, stylized or global mod-
els. Their mathematical study may be partly performed, which allows for very
general results and a better understanding of the mechanisms under concern.
It can also serve directly in decision-making by providing relevant indicators,
reference points and strategies. Moreover, on this basis, an initial, simple nu-
merical code can be developed. Using this small model and code to elaborate
a more complex code with numerical simulations is certainly the second step.
The results of the compact models should guide the analysis of more extended
models in order to avoid sinking into a quagmire of complexity created by the
numerous parameters of the model.

Interdisciplinary perspective

Many researchers in ecology, biology, economics and environment use math-
ematical models to study, solve and analyze their scientific problems. These
models are more or less sophisticated and complex. Integrated models are,
however, required for the management of natural resources. Unfortunately,
the models of each scientific area do not combine in a straightforward man-
ner. For instance, difficulties may occur in defining common scales of time
or space. Furthermore, the addition of several models extends the dimensions
of the problem and makes it complicated or impossible to solve. Ecological,
social and economic objectives may be contradictory. How may compromises
be found? How can one build decision rules and indicators based on multi-
ple observations and/or criteria? What should the coordination mechanism
to implement heterogeneous agents exploiting natural resources be? We hope
that this book favors and facilitates links between different scientific fields.
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Major mathematical material

The collection and analysis of data is of major interest for decision-making
support and modeling in the concerned fields. Hence it mobilizes a huge part
of the scientific research effort. Nevertheless, although quantitative informa-
tion, values and data are needed and indispensable, we want to insist on
the importance of mobilizing concepts and methods to formalize decisional
problems.

On the basis of the previous considerations, we consider that the basic
elements to combine sustainability, natural resource management and pre-
cautionary principles in some formal way are: temporal and dynamic con-
siderations, decision criteria and constraints and uncertainty management.
More specifically, we present equilibrium, intertemporal optimality and via-
bility as concepts which may shed interesting light on sustainable decision
requirements.

Temporal and dynamic considerations

First of all, it is clear that the problems of sustainable management are in-
trinsically dynamical . Indeed, delays, accumulation effects and intertemporal
externalities are important points to deal with. These dynamics are generally
nonlinear (the logistic dynamics in biological modeling being a first step from
linear to nonlinear growth models). By linking precaution with effects of irre-
versibility and flexibility, many works clearly point out the dynamical features
involved in these problems. The sustainability perspective combined with in-
tergenerational equity thus highlights the role played by the time horizon,
that is to say the temporal dimension of the problem.

Decisions, constraints & criteria

Secondly, by referring to regulation and prevention, the sustainability and
precautionary approaches are clearly decisional or control problems where
the timing of action is of utmost importance.

Another important feature of sustainability and precautionary actions re-
lies on safety, viability, admissibility and feasibility along the time line in
opposition to dangers, damage, crises or irreversibility. At this stage, the dif-
ferent modeling approaches dealing with such issues can be classified into
equilibrium, cost-benefit, cost-effectiveness, invariance and effectiveness for-
mulations.

The basic idea encompassed in the equilibrium approach, as in the max-
imum sustainable yield for fisheries of Gordon and Schaefer [16, 35], is to
remain at a safe or satisfying state. A relevant situation is thus steady state,
although stability allows for some dynamical processes around the equilibria.

Cost-benefit and cost-effectiveness approaches are related to intertempo-
ral optimal control [6, 9] and optimal control under constraints, respectively.
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In the cost-benefit case, the danger might be taken into account through a
so-called monetary damage function that penalizes the intertemporal decision
criteria. In contrast, the cost-effectiveness approach aims at minimizing in-
tertemporal costs while achieving to maintain damages under safety bounds.
In the optimal control framework, more exotic approaches regarding sustain-
ability include Maximin and Chichilnisky criteria [21]. Maximin is of interest
for intergenerational equity issues while Chichilnisky framework offers insights
about the trade-off between future and present preferences.

The safe minimum standards (sms) [31], tolerable window approach (TWA)
[36], population viability analysis (pva) [29], viability and invariance ap-
proaches [3, 13, 25, 30, 11, 12] indicate that tolerable margins should be
maintained or reached. State constraints or targets are thus a basic issue. The
so-called irreversibility constraints in the referenced works and their influence
also emphasize the role played by constraints in these problems, although, in
this context, irreversibility generally means decision and control constraints.

Uncertainty management

Thirdly, the issue of uncertainty is also fundamental in environmental man-
agement problems [1, 22, 14]. We shall focus on two kinds of uncertainty.

On the one hand, there is risk, which is an event with known probability.
To deal with risk uncertainty, policy makers have created a process called risk
assessment which can be useful when the probability of an outcome is known
from experience and statistics. In the framework of dynamic decision-making
under uncertainty, the usual approach is based on the expected value of utility
or cost-benefits while the general method is termed stochastic control.

On the other hand, there are cases presenting ambiguity or uncertainty
with unknown probability or with no probability at all. Most precaution and
environmental problems involve ambiguity in the sense of controversies, beliefs
and irreducible scientific uncertainties. In this sense, by dealing with ambi-
guity, multi-prior models may appear relevant alternatives for the precaution
issue. Similarly, pessimistic, worst-case, total risk-averse or guaranteed and
robust control frameworks may also shed interesting light. As a first step in
such directions, the present textbook proposes to introduce ambiguity through
the use of “total” uncertainty and robust control.

Content of the textbook

In this textbook, we advocate that concepts and methods from control theory
of dynamical systems may contribute to clarifying, analyzing and providing
mathematical and/or numerical tools for theoretical and applied environmen-
tal decision-making problems. Such a framework makes it possible to cover
the important issues mentioned above. First, it clearly accounts for dynamical
mechanisms. Second, the simple fact of exhibiting and distinguishing between
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states, controls, uncertainties and observations among all variables of a sys-
tem is already a structuring option in the elicitation of many models. Another
major interest of control theory is to focus on decision, planning and manage-
ment issues. Furthermore, the different fundamental methods of control theory
– that include stability, invariance and optimality – encompass the main ele-
ments of normative approaches for natural resource management, precaution
and sustainability.

Regarding the interdisciplinary goal, the models and methods that we
present are restricted to the framework of discrete time dynamics, in order to
simplify the mathematical content. By using this approach, we avoid the in-
troduction of too many sophisticated mathematics and notations. This should
favor an easy and faster understanding of the main ideas, results and tech-
niques. It should enable direct entry into ecology through life-cycle, age classes
and meta-population models. In economics, such a discrete time dynamics ap-
proach favors a straightforward account of the framework of decision under
uncertainty. In the same vein, particular attention has been given to exhibiting
numerous examples, together with many figures and associated computer pro-
grams (written in Scilab, a free scientific software). Many practical works pre-
senting management cases with Scilab computer programs can be found on the
internet at the address http://cermics.enpc.fr/~delara/BookSustain.
They may help the comprehension and serve for teaching.

We must confess that most of our examples are rather compact, global,
aggregated models with few dimensions, hence taking distance with complex-
ity in the first place. This is not because we do not aim at tackling such
complex issues but our approach is rather to start up with clear models and
methods before climbing higher mountains. This option helps both to “grasp”
the situation from a control-theoretical point of view and also to make easier
both mathematical and numerical resolution. For more complex models, we
only pave the way for their study by providing examples of Scilab code in this
perspective.

The emphasis in this book is not on building dynamical models, but on
the formalization of decisional issues. For this reason, we shall rely on existing
models without commenting them. We are aware of ongoing debate as to the
validity and the empirical value of commonly used models. We send the reader
to [42, 18] for useful warnings and to [37] for a mathematical point of view.

Moreover, we are aware that a lot of frustration may appear when read-
ing this book because many important topics are not handled in depth. For
instance, the integration of coordination mechanism, multi-agents and game
theory is an important issue for environmental decisions and planning which
is not directly developed here. These concerns represent challenging perspec-
tives. Similarly, the use of data, estimation, calibration and identification pro-
cesses constitute another important lack. Still, we had to set limits to our
work. Approaches presented in the book are equilibrium and stability, viabil-
ity and invariance, intertemporal optimality (going from discounted utilitarian
to Rawlsian criteria). For these methods, both deterministic, stochastic and
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robust frameworks are exposed. The case of imperfect information is also in-
troduced at the end. The book mixes well known material and applications
with new insights, especially from viability, robust and precaution analysis.

The textbook is organized as follows. In Chap. 2, we first present some
generic examples of environment and resource management detailed all along
the text, then give the general form of control models under study. Chap-
ter 3 examines the issues of equilibrium and stability. In Chap. 4, the prob-
lem of state constraints is particularly studied via viability and invariance
tools, introducing the dynamic programming method. Chapter 5 is devoted
to the optimal control question, still treated by dynamic programming but
also by the so-called maximum principle. In Chap. 6, we introduce the natu-
ral extension of controlled dynamics to the uncertain setting, and we present
different decision-making approaches including both robust and stochastic
criteria. The stochastic and robust dynamic programming methods are pre-
sented for viability purposes in Chap. 7 and for optimization in Chap. 8.
Chapter 9 is devoted to the case where information about the state sys-
tem is partial. Proofs are relegated to Appendix A. All the numerical ma-
terial may be found in the form of Scilab codes on the internet site
http://cermics.enpc.fr/~delara/BookSustain.
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2

Sequential decision models

Although the management of exhaustible and renewable resources and pollu-
tion control are issues of a different nature, their main structures are quite
similar. They turn out to be decision-making problems where time plays a
central role. Control theory of dynamic systems is well suited to tackling
such situations and to building up mathematical models with analytic, al-
gorithmic and/or numerical methods. First, such an approach clearly ac-
counts for evolution and dynamical mechanisms. Second, it directly copes
with decision-making, planning and management issues. Furthermore, control
theory proposes different methods to rank and select the decisions or controls
among which stability, viability or optimality appear relevant for environ-
mental and sustainability purposes. Some major contributions in this vein are
[3, 8, 9, 10, 11, 20]. As explained in the introduction, this monograph restricts
all the models and methods to discrete time dynamics. In this manner, we
avoid the introduction of too many sophisticated mathematics and notations.
From the mathematical point of view, the specific framework of discrete time
dynamics is not often treated by itself, contrarily to the continuous time case.
Among rare references, let us mention [1]. In the framework of control theory,
models then correspond to sequential decision-making problems. A sequential
decision model captures a situation in which decisions are to be made at dis-
crete stages, such as days or years. In this context, three main ingredients are
generally combined: state dynamics, acceptability constraints and optimality
criterion.

State, control, dynamics.

Each decision may influence a so-called state of the system: such a mechanism
mainly refers to the dynamics or transitions, including population dynamics,
capital accumulation dynamics and the carbon cycle, to quote but a few.

Constraints

At each stage, there may be admissibility, viability, desirability or effective-
ness conditions to satisfy, corresponding to the constraints of the system. Such
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constraints may refer to non extinction conditions for populations, pollution
standards, desirable consumption levels, guaranteed catches, minimal ecosys-
tem services or basic needs. Such acceptability issues will be examined in
detail in Chaps. 4 and 7.

Criterion optimization

An intertemporal criterion or performance may be optimized to choose among
the feasible solutions. Net present value of cost-benefit or rent, discounted util-
ity of consumption, fitness or welfare constitute the usual examples. However,
“maximin” assessments stand for more exotic criteria which are also of inter-
est for sustainability and equity purposes as will be explained in Chap. 5 and
Chap. 8.

The present chapter is organized as follows. The first sections are devoted
to examples and models inspired by resource and environmental management
in the deterministic case, i.e. without uncertainty. They include models for
exhaustible resources, renewable resources, biodiversity and pollution mitiga-
tion. We start with very stylized and aggregated models. More complex models
are then exposed. A second part, Sect. 2.9, introduces the general mathemat-
ical framework for sequential decisions in the certain case. Some remarks,
about decision strategies in Sect. 2.10 and about the curse of dimensionality
in Sect. 2.11, end the chapter.

2.1 Exploitation of an exhaustible resource

We present a basic economic model for the evaluation and management of an
exhaustible natural resource (coal, oil. . . ). The modeling on this topic is often
derived from the classic “cake eating” economy first studied by Hotelling in
[21]. The usual model [21] is in continuous time with an infinite horizon but
here we adapt a discrete time version with a finite horizon.

Consider an economy where the only commodity is an exhaustible natural
resource. Time t is an integer varying from initial time t = t0 to horizon T
(T < +∞ or T = +∞). The dynamics of the resource is simply written

S(t + 1) = S(t) − h(t) , t = t0, t0 + 1, . . . , T − 1 (2.1)

where S(t) is the stock of resource at the beginning of period [t, t+1[ and h(t)
the extraction during [t, t + 1[, related to consumption in the economy. When
T < +∞, the sequence of extractions h(t0), h(t0 + 1), . . . , h(T − 1) produces
the sequence of stocks S(t0), S(t0 +1), . . . , S(T −1), S(T ). When the range of
time t is not specified, it should be understood that it runs from t0 to T − 1,
or from t0 to T , accordingly.

It is first assumed that the extraction decision h(t) is irreversible in the
sense that at every time t



2.2 Assessment and management of a renewable resource 17

0 ≤ h(t) . (2.2)

Physical constraints imply that

h(t) ≤ S(t) , (2.3)

and that
0 ≤ S(t) . (2.4)

More generally, we could consider a stronger conservation constraint for the
resource as follows

S� ≤ S(t) , (2.5)

where S� > 0 stands for some minimal resource standard.
An important question is related to intergenerational equity. Can we im-

pose some guaranteed consumption (here the extraction or consumption) level
h�

0 < h� ≤ h(t) (2.6)

along the generations t? This sustainability concern can be written in terms
of utility in a form close to “maximin Rawls criterion” [33]. Of course, when
T = +∞, such a requirement cannot be fulfilled with a finite resource S(t0).

A very common optimization problem is to maximize the sum1 of dis-
counted utility derived from the consumption of the resource with respect to
extractions h(t0), h(t0 + 1), . . . , h(T − 1), i.e.

max
h(t0),...,h(T−1)

T−1∑

t=t0

ρtL
(
h(t)
)

where L is some utility function of consumption and ρ stands for a (social)
discount factor. Generally 0 ≤ ρ < 1 as ρ = 1

1+rf
is built from the interest

rate or risk-free return rf , but we may also consider the case ρ = 1 when
T < +∞.

2.2 Assessment and management of a renewable resource

In this subsection, we start from a one-dimensional aggregated biomass dy-
namic model, then include harvesting à la Schaefer and finally introduce
management criteria.

1 The sum goes from t = t0 up to T − 1 because extractions run from t0 to T − 1
while stocks go up to T .
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Biological model

Most bioeconomic models addressing the problem of renewable resource ex-
ploitation (forestry, agriculture, fishery) are built upon the framework of a
biological model. Such a model may account for the demographic structure
(age, stages or size classes, see [5]) of the exploited stock or may attempt
to deal with the trophic dimension of the exploited (eco)system. However,
biologists have often found it necessary to introduce various degrees of sim-
plification to reduce the complexity of the analysis.

In many models, the stock, measured through its biomass, is considered
globally as a single unit with no consideration of the structure population. Its
growth is materialized through the equation

B(t + 1) = g
(
B(t)

)
, (2.7)

where B(t) stands for the resource biomass and g : R+ → R+ is taken to
satisfy g(0) = 0. In discrete time, examples of g are given by [23, 8] and
illustrated by Fig. 2.1.

1. The linear model
g(B) = RB , (2.8)

where r = R − 1 is the per capita rate of growth.
2. The logistic model

g(B) = B + rB

(
1 − B

K

)
, (2.9)

where r ≥ 0 is the per capita rate of growth (for small populations), and
K is the carrying capacity2 of the habitat. We shall also use the equivalent
form

g(B) = (1 + r)B
(

1 − rB

(1 + r)K

)
. (2.10)

Such a logistic model in discrete time can be easily criticized since for
biomass B greater than the capacity K the biomass becomes negative,
which of course does not make sense.

3. The Ricker model

g(B) = B exp
(

r(1 − B

K
)
)

, (2.11)

where again K represents the carrying capacity.
4. The Beverton-Holt model

g(B) =
RB

1 + bB
, (2.12)

where the carrying capacity now corresponds to K = R−1
b .

2 The carrying capacity K is the lowest K > 0 which satisfies g(K) = K.
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5. The depensation models

g(B) = B + α(f(B) − B)(B − B�) , (2.13)

where α > 0 and f is any of the previous population dynamics, satisfying
f(B) ≥ (B) for B ∈ [0,K], and B� ∈]0,K[ stands for some minimum
viable population threshold. Indeed, g(B) < B whenever B < B� and
some Allee effect occurs in the sense that small populations decline to
extinction.

The choice among the different population dynamics deeply impacts the
evolution of the population, as illustrated by Fig. 2.2. The Beverton-Holt
dynamics generates “stable” behaviors while logistic or Ricker may induce
oscillations or chaotic paths.
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Fig. 2.1. Comparaison of distinct population dynamics g for r = 1.9, K = 10,
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Fig. 2.2. Trajectories for different population dynamics with common parameters
r = 1.9, K = 10, B� = 2 and same initial conditions B0. Trajectories are computed
with the Scilab code 1.
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Scilab code 1.

//
// exec dyn_pop.sce

lines(0);

r = 0.9; K= 10; R = 1+r ; MVP=K/5;

// Population dynamics parameters

k=R*K/(R-1);

function [y]=Logistic(t,B)

y=max(0, (R*B).*(1-B/k) )

endfunction

function [y]=Ricker(t,B)

y=B.*exp(r*(1-B/K))

endfunction

b=(R-1)/K ;

function [y]=Beverton(t,B)

y=(R*B)./(1 + b*B)

endfunction

function [y]=Depensation(t,B)

// y=max(0,B+(Beverton(t,B)-B).*(B-MVP)/MVP)

y=max(0,B+(Beverton(t,B)-B).*(B-MVP))

endfunction

// Dynamics

xset("window",0);xbasc(0);

B=linspace(0,2*K,1000);

plot2d(B,[B’ Ricker(0,B)’ Logistic(0,B)’ Beverton(0,B)’...

Depensation(0,B)’]);

// drawing diamonds, crosses, etc. to identify the curves

B=linspace(0,2*K,30);

plot2d(B,[B’ Ricker(0,B)’ Logistic(0,B)’ Beverton(0,B)’...

Depensation(0,B)’],-[1,2,3,4,5]);

legends(["Identity";"Ricker";"Logistic";"Beverton";...

"Depensation"],-[1,2,3,4,5],’ul’);

xtitle(’Biomass dynamics’,’Biomass B(t)’,’Biomass B(t+1)’)

// Comparaison of the shapes of population dynamics

T=10; time=0:T;

// Time horizon

N_simu=50;

// N_simu=30;

// Number of simulations

xset("window",1:4); xbasc(1:4);

// opening windows

for i=1:N_simu

// simulation loop

B_0=rand(1)*1.5*K;

// random initial conditions

y_Ricker=ode("discrete",B_0,0,time,Ricker);

y_Logistic=ode("discrete",B_0,0,time,Logistic);

y_BH=ode("discrete",B_0,0,time,Beverton);

y_D=ode("discrete",B_0,0,time,Depensation);

// Computation of trajectories starting from B0

// along distinct population dynamics

xset("window",1);

plot2d(time,[y_Ricker’],rect=[0,0,T,2*K]);

xtitle(’Ricker Trajectories’,’time (t)’,...

’biomas B(t)’)

xset("window",2);

plot2d(time,y_Logistic,rect=[0,0,T,2*K]);

xtitle(’Logistic Trajectories’,’time (t)’,...

’Biomass B(t)’)

xset("window",3);

plot2d(time,[y_BH’],rect=[0,0,T,2*K]);

xtitle(’Beverton-Holt Trajectories’,’time (t)’,....

’Biomass B(t)’)

xset("window",4);

plot2d(time,[y_D’],rect=[0,0,T,2*K]);

xtitle(’Depensation Trajectories’,’time (t)’,...

’Biomass B(t)’)

end

// end simulation loop

//

Harvesting

When harvesting activities are included, the model (2.7) above becomes the
Schaefer model, originally introduced for fishing in [31],

B(t + 1) = g
(
B(t) − h(t)

)
, 0 ≤ h(t) ≤ B(t) , (2.14)

where h(t) is the harvesting or catch at time t. Notice that, in the above
sequential model,

1. harvesting takes place at the beginning of the year t, hence the constraints
0 ≤ h(t) ≤ B(t) right above,

2. regeneration takes place at the end3 of the year t.

3 A formulation where regeneration occurs at the beginning of the year while har-
vesting ends would give B(t + 1) = g(B(t)) − h(t), with 0 ≤ h(t) ≤ g(B(t)).
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It is frequently assumed that the catch h is proportional to both biomass and
harvesting effort, namely

h = qeB , (2.15)

where e stands for the harvesting effort (or fishing effort, an index related
for instance to the number of boats involved in the activity), and q ≥ 0 is a
catchability coefficient. More generally, the harvesting is related to the effort
and the biomass through some relation

h = H(e,B) , (2.16)

where the catch function H is such that

• H(0, e) = H(B, 0) = 0
• H increases in both arguments biomass B and effort e; whenever H is

smooth enough, it is thus assumed that
⎧
⎨

⎩
0 ≤ HB(e,B) := ∂H

∂B (e,B) ,

0 ≤ He(e,B) := ∂H
∂B (e,B) .

Ecology and economics have two distinct ways to characterize the function H.
From the ecology point of view, such a relation H relies on a functional form of
predation, while from the economics viewpoint H corresponds to a production
function. At this stage, it is worth pointing out the case of a Cobb-Douglas
production function

H(e,B) = qeαBβ , (2.17)

where the exponents α ≥ 0 and β ≥ 0 stand for the elasticities of production.

The static Gordon-Schaefer model

A first approach consists in reasoning at equilibrium, when the a station-
ary exploitation induces a steady population. In this context, the well-known
Schaefer model gives the so-called sustainable yield associated to the fishing
effort by solving the implicit relation B = g(B − h) giving h. This issue is
examined in Chap. 3.

The economic model which is directly derived from the Schaefer model is
the Gordon model [17, 8] which integrates the economic aspects of the fishing
activity through the fish price p and the catch costs C(e) per unit of effort.
The rent, or profit, is defined as the difference between benefits and cost

R(e,B) := pH(e,B) − C(e) , (2.18)

where the cost function is such that

• C(0) = 0;
• C increases with respect to effort e; whenever C is smooth enough, it is

thus assumed that C ′(e) ≥ 0.
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It is frequently assumed that the costs are linear in effort, namely:

C(e) = ce with c > 0 .

Once given the cost function C, one can compute the effort e maximizing the
rent R(e,B) under the constraint that B = g(B − H(e,B)).

Although it suffers from a large number of unrealistic assumptions, the
Gordon model displays a certain degree of concordance with the empirical
histories of fisheries . It is probably for this reason, along with its indisputable
normative character, that it has been regularly used as the underlying frame-
work by optimal control theory since the latter was introduced in fisheries
sciences [8].

Intertemporal profit maximization

Assuming a fixed production structure, i.e. stationary capital and labor, an
economic model may be formulated as the intertemporal maximization of the
rent with respect to the fishing effort,

max
e(t0),...,e(T−1)

T−1∑

t=t0

ρt
(
pH
(
e(t), B(t)

)
− C

(
e(t)
))

,

where ρ represents a discount factor (0 ≤ ρ ≤ 1). An important constraint
is related to the limit effort e� resulting from the fixed production capacity
(number of boats and of fishermen):

0 ≤ e(t) ≤ e� .

Ecological viability or conservation constraint can be integrated by requiring
that

B� ≤ B(t) ,

where B� > 0 is a safe minimum biomass level.

Intertemporal utility maximization

We can also consider a social planner or a regulating agency wishing to make
use, in an optimal way, of the renewable natural resource over T periods.
The welfare optimized by the planner is represented by the sum of updated
utilities of successive harvests h(t) (assumed to be related to consumption, for
instance), that is

max
h(t0),...,h(T−1)

( T−1∑

t=t0

ρtL
(
h(t)
)

+ ρT L
(
B(T )

))
(2.19)

where ρ ∈ [0, 1[ is a discount factor and L is a utility function. Notice that
the final term L

(
B(T )

)
corresponds to an existence or inheritance value of

the stock.
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2.3 Mitigation policies for carbon dioxyde emissions

Let us consider a very stylized model of the climate-economy system. It is
described by two aggregated variables, namely the atmospheric co2 concen-
tration level denoted by M(t) and some economic production level such as
gross world product gwp denoted by Q(t), measured in monetary units. The
decision variable related to mitigation policy is the emission abatement rate
denoted by a(t). The goal of the policy makers is to minimize intertempo-
ral discounted abatement costs while respecting a maximal sustainable co2

concentration threshold at the final time horizon: this is an example of a
cost-effectiveness problem.

Carbon cycle model

The description of the carbon cycle is similar to [27], namely a highly simple
dynamical model

M(t + 1) = M(t) + αEbau(t)
(
1 − a(t)

)
− δ
(
M(t) − M−∞

)
, (2.20)

where

• M(t) is the co2 atmospheric concentration, measured in ppm, parts per
million (379 ppm in 2005);

• M−∞ is the pre-industrial atmospheric concentration (about 280 ppm);
• Ebau(t) is the baseline, or “business as usual” (bau), for the co2 emis-

sions,and is measured in GtC, Gigatonnes of carbon (about 7.2 GtC per
year between 2000 and 2005);

• the abatement rate a(t) corresponds to the applied reduction of co2 emis-
sions level (0 ≤ a(t) ≤ 1);

• the parameter α is a conversion factor from emissions to concentration;
α ≈ 0.471 ppm.GtC−1 sums up highly complex physical mechanisms;

• the parameter δ stands for the natural rate of removal of atmospheric co2

to unspecified sinks (δ ≈ 0.01 year−1).

Notice that carbon cycle dynamics can be reformulated as

M(t + 1) − M−∞ = (1 − δ) (M(t) − M−∞) + αEbau(t)
(
1 − a(t)

)
(2.21)

thus representing the anthropogenic perturbation of a natural system from a
pre-industrial equilibrium atmospheric concentration M−∞. Hence, δ accounts
for the inertia of a natural system, and is a most uncertain parameter4.

4 Two polar cases are worth being pointed out: when δ = 1, carbon cycle inertia is
nil and therefore co2 emissions induce a flow externality rather than a stock one;
on the contrary, when δ = 0, the stock externality reaches a maximum and co2

accumulation is irreversible.
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Emissions driven by economic production

The baseline Ebau(t) can be taken under the form Ebau(t) = Ebau(Q(t)), where
the function Ebau stands for the emissions of co2 resulting from the economic
production Q in a “business as usual” (bau) scenario and accumulating in
the atmosphere. The emissions depend on production Q because growth is
a major determinant of energy demand [24]. It can be assumed that bau

emissions increase with production Q, namely, when E is smooth enough,

dEbau(Q)
dQ

> 0 .

Combined with a global economic growth assumption, a rising emissions base-
line is given.

The global economics dynamic is represented by an autonomous rate of
growth g ≥ 0 for the aggregated production level Q(t) related to gross world
product gwp:

Q(t + 1) = (1 + g)Q(t) . (2.22)

This dynamic means that the economy is not directly affected by abatement
policies and costs. Of course, this is a restrictive assumption.

The cost-effectiveness criteria

A physical or environmental requirement is considered through the limita-
tion of concentrations of co2 below a tolerable threshold M � (say 450 ppm,
550 ppm, 650 ppm) at a specified date T > 0 (year 2050 or 2100 for instance):

M(T ) ≤ M � . (2.23)

The reduction of emissions is costly. Hence, it is assumed that the abatement
cost C(a,Q) increases with abatement rate a, that is for smooth C:

∂C(a,Q)
∂a

> 0 .

Furthermore, following for instance [18], we can assume that growth lowers
marginal abatement costs. This means that the availability and costs of tech-
nologies for carbon switching improve with growth. Thus, if the marginal
abatement cost ∂C(a,Q)

∂a is smooth enough, it decreases with production in the
sense:

∂2C(a,Q)
∂Q∂a

< 0 .

As a result, the costs of reducing a ton of carbon decline.

The cost-effectiveness problem faced by the social planner is an optimiza-
tion problem under constraints. It consists in minimizing the discounted in-
tertemporal abatement cost

∑T−1
t=t0

ρtC
(
a(t), Q(t)

)
while reaching the concen-

tration tolerable window M(T ) ≤ M �. The parameter ρ stands for a discount
factor. Therefore, the problem can be written as
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inf
a(t0),...,a(T−1)

T−1∑

t=t0

ρtC
(
a(t), Q(t)

)
, (2.24)

under the dynamics constraints (2.20) and (2.22) and target constraint (2.23).
Some projections are displayed in Fig. 2.3 together with the ceiling target

M � = 550 ppm. They are built from the Scilab code 2. The “business as
usual” path abau(t) = 0 does not display satisfying concentrations since the
ceiling target is exceeded at time t = 2035. The other path corresponding here
to a medium stationary abatement a(t) = 0.6 provides a viable path.
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Fig. 2.3. Projections of co2 concentration M(t) at horizon 2100 for different mit-
igation policies a(t) together with ceiling target M � = 550 ppm in black. In �, the
non viable “business as usual” path abau(t) = 0 and, in �, a viable medium sta-
tionary abatement a(t) = 0.6. The path in ⊕ relies on a total abatment a(t) = 1.
Trajectories are computed with the Scilab code 2.
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Scilab code 2.

//
clear

// PARAMETERS //

// initial time

t_0=1990;

// Final Time

t_F=2100;

// Time step

delta_t=1;

taux_Q=0.01;

// economic growth rate

alphaa=0.64;

// marginal ratio marginal atmospheric retention

// (uncertain +- 0.15)

sigma=0.519;

absortion=1/120 ;

// concentration target (ppm)

M_sup=550;

// Initial conditions

t=t_0;

M=354; //in (ppm)

M_bau=M; M_g=M;

Q = 20.9; // in (T US$)

E = sigma * Q ;

// Distinct abatment policies

u = 1*ones(1,t_F-t_0+1); // Strong mitigation

u = 0*ones(1,t_F-t_0+1); // No mitigation (BAU)

u = 0.6*ones(1,t_F-t_0+1); // medium mitigation

//u = 1*rand(1,t_F-t_0+1); // random mitigation

// Initialisation (empty lists)

L_t=[]; L_M=[]; L_bau=[]; L_E=[];

L_Eg=[];L_Eb=[]; L_Q=[];L_g=[];

// System Dynamics

for (t=t_0:delta_t:t_F)

L_t=[L_t t];

L_M=[L_M M];

L_Q=[L_Q Q];

L_bau=[L_bau M_bau];

L_g=[L_g M_g];

Q=(1+taux_Q)*Q;

E = sigma * Q * (1-u(t-t_0+1));

L_E=[L_E E];

// Emissions CO2

M = M* (1-absortion) + alphaa* E;

// dynamics concentration CO2

E_bau = sigma * Q ;

L_Eb=[L_Eb E_bau];

// Emissions Business as usual (BAU)

M_bau = M_bau* (1-absortion) + alphaa* E_bau;

// dynamics BAU

E_g = 0;

L_Eg=[L_Eg E_g];

// Green: no emissions

M_g = M_g* (1-absortion) + alphaa* E_g;

// dynamics without pollution

end,

// Results printing

long=prod(size(L_t));

step=floor(long/20);

abcisse=1:step:long;

xset("window",1);xbasc(1)

plot2d(L_t(abcisse),[L_E(abcisse)’ L_Eb(abcisse)’ ...

L_Eg(abcisse)’],style=-[4,5,3]) ;

legends(["viable";"BAU";"green"],-[4,5,3],’ul’);

xtitle(’Emissions E(t)’,’t’,’E(t) (GtC)’);

xset("window",2);xbasc(2)

plot2d(L_t(abcisse),[L_M(abcisse)’ L_bau(abcisse)’ ...

L_g(abcisse)’ ones(L_t(abcisse))’*M_sup],...

style=-[4,5,3,-1]) ;

legends(["viable";"BAU";"green";"threshold"],...

-[4,5,3,-1],’ul’);

xtitle(’Concentration CO2’,’t’,’M(t) (ppm)’);

xset("window",4); xbasc(4)

plot2d(L_t(abcisse),L_Q(abcisse));

xtitle(’Economie: Production Q(t)’,’t’,’Q(t) (T US$)’);

//

2.4 A trophic web and sustainable use values

Consider n species within a food web. An example of trophic web is given
in Sect. 7.4 for a large coral reef ecosystem. To give some feelings of the
numbers, 374 species were identified during a survey in the Abore reef reserve
(15 000 ha) in New Caledonia, differing in mobility, taxonomy (41 families)
and feeding habits. The analysis of species diets yielded 7 clusters, each cluster
forming a trophic group; the model in [14] restricts them to 4 trophic groups
(piscivors, macrocarnivors, herbivors and other fishes) plus coral/habitat.

Denote by Ni(t) the abundance (number of individuals, or approximation
by a continuous real) or the density (number of individuals per unit of surface)
of species i ∈ {1, . . . , n} at the beginning of period [t, t + 1[. The ecosystem
dynamics and the interactions between the species are depicted by a Lotka-
Volterra model:
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Ni(t + 1) = Ni(t)
(
Ri +

n∑

j=1

SijNj(t)
)

. (2.25)

• Autotrophs grow in the absence of predators (those species i for which
Ri ≥ 1), while consumers die in the absence of prey (when Ri < 1).

• The effect of i on j is given by the term Sij so that i consumes j when
Sij > 0 and i is the prey of j if Sij < 0. The numerical response of
a consumer depends on both the number of prey captured per unit of
time (functional response) and the efficiency with which captured prey
are concerted into offspring. In this model, we represent prey effect j on
consumers i by Sij = −eijSji, where eij is the conversion efficiency (e < 1
when the size of the consumer is larger than that of its prey).

• The strength of direct intra-specific interactions is given by Sii < 0. Pos-
sible mechanisms behind such self-limitation include mutual interferences
and competitions for non-food resources. When the index i labels group
of species (trophic groups for instance), it may account for intra-group
interactions.

The ecosystem is also subject to human exploitation. Such an anthro-
pogenic pressure induced by harvests and catches h(t) =

(
h1(t), . . . , hn(t)

)

modifies the dynamics of the ecosystem as follows

Ni(t + 1) =
(
Ni(t) − hi(t)

)(
Ri +

n∑

j=1

Sij

(
Nj(t) − hj(t)

))
, (2.26)

with the constraint that the captures do not exceed the stock values

0 ≤ hi(t) ≤ Ni(t) .

Note that many catches can be set to zero since the harvests may concentrate
on certain species as top predators. We consider that catches h(t) provide a
direct use value through some utility or payoff function L(h1, . . . , hn). The
most usual case of a utility function is the separable one

L(h1, . . . , hn) =
n∑

i=1

pihi = p1h1 + · · · + pnhn ,

where pi plays the role of price for the resource i as the marginal utility value
of catches hi. Other cases of substitutable and essential factors may impose
the consideration of a utility function of the form

L(h1, . . . , hn) =
n∏

i=1

hαi
i = hα1

1 × · · · × hαn
n .

An interesting problem in terms of sustainability, viability and effectiveness
approaches is to guarantee some utility level L� at every time in the following
sense:
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L
(
h1(t), . . . , hn(t)

)
≥ L� , t = t0, . . . , T − 1 . (2.27)

Let us remark that the direct use value constraint (2.27) induces the conser-
vation of part of the resource involved since5

L(N(t)) ≥ L(h(t)) ≥ L� > 0 =⇒ ∃i ∈ {1, . . . , n}, Ni(t) > 0 .

However, along with the direct use values, conservation requirements related
to existence values may also be explicitly handled through existence con-
straints of the form

Ni(t) ≥ N �
i > 0 , (2.28)

where N �
i stands for some quasi-extinction threshold.

2.5 A forestry management model

An age-classified matrix model

We consider a forest whose structure in age6 is represented in discrete time
by a vector N of R

n
+

N(t) =

⎛

⎜⎜⎜⎝

Nn(t)
Nn−1(t)

...
N1(t)

⎞

⎟⎟⎟⎠ ,

where Nj(t) (j = 1, . . . , n − 1) represents the number of trees whose age,
expressed in the unit of time used to define t, is between j − 1 and j at the
beginning of yearly period [t, t+1[; Nn(t) is the number of trees of age greater
than n− 1. We assume that the natural evolution (i.e. under no exploitation)
of the vector N(t) is described by a linear system

N(t + 1) = AN(t) , (2.29)

where the terms of the matrix A are nonnegative which ensures that N(t)
remains positive at all times. Particular instances of matrices A are of the
Leslie type (see [5])

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 − mn 1 − mn−1 0 · · · 0

0 0 1 − mn−2
. . . 0
. . . 0

0 . . . 0
. . . 1 − m1

γn γn−1 · · · · · · γ1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(2.30)

5 As soon as L(0) = 0.
6 Models by size classes are commonly used, because size data are more easily

available than age.
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where mj and γj are respectively mortality and recruitment parameters be-
longing to [0, 1]. The rate mj is the proportion of trees of age j − 1 which die
before reaching age j while γj is the proportion of new-born trees generated
by trees of age j − 1. In coordinates, (2.29) and (2.30) read

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Nn(t + 1) = (1 − mn)Nn(t) + (1 − mn−1)Nn−1(t) ,

Nj(t + 1) = (1 − mj−1)Nj−1(t) , j = 2, . . . , n − 1 ,

N1(t + 1) = γnNn(t) + · · · + γ1N1(t) .

(2.31)

Harvesting and replanting

Now we describe the exploitation of such a forest resource. We assume the
following main hypotheses:

1. only the oldest trees may be cut (the minimum age at which it is possible
to cut trees is n − 1);

2. new trees of age 0 may be planted.

Thus, let us introduce the scalar decision variables h(t), representing the trees
harvested at time t, and i(t), the new trees planted. The control is then the
two dimensional vector

u(t) =
(

h(t)
i(t)

)
.

Previous assumptions lead to the following controlled evolution

N(t + 1) = AN(t) + Bhh(t) + Bii(t) , (2.32)

where

Bh =

⎛

⎜⎜⎜⎜⎜⎝

−1
0
...
0
0

⎞

⎟⎟⎟⎟⎟⎠
and Bi =

⎛

⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞

⎟⎟⎟⎟⎟⎠
.

Furthermore, since one cannot plan to harvest more than will exist at the end
of the unit of time, the control variable h(t) is subject to the constraint

0 ≤ h(t) ≤ CAN(t) ,

where the row vector C is equal to (1 0 0 · · · 0), which ensures the non nega-
tivity of the resource N . Thus, we have assumed implicitly that the harvesting
decisions h(t) are effective at the end7 of each time interval [t, t + 1[.

7 If the harvesting decisions h(t) are effective at the beginning of each unit of time
t, we have 0 ≤ h(t) ≤ C N(t) = Nn(t).
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Cutting trees is costly, but brings immediate benefits, while planting trees
is costly and will bring future income. All this may be aggregated in a per-
formance function L(h, i) and the planner objective consists in maximizing
the sum of discounted performance of successive cuts h(t) and replanting i(t),
that is8

max
h(·),i(·)

+∞∑

t=t0

ρtL
(
h(t), i(t)

)
,

where again ρ is a discount factor chosen in [0, 1[.

2.6 A single species age-classified model of fishing

We present an age structured abundance population model with a possibly non
linear stock-recruitment relationship derived from fish stock management [28].

Time is measured in years, and the time index t ∈ N represents the begin-
ning of year t and of yearly period [t, t + 1[. Let A ∈ N

∗ denote a maximum
age9, and a ∈ {1, . . . , A} an age class index, all expressed in years. The pop-
ulation is characterized by N = (Na)a=1,...,A ∈ R

A
+, the abundances at age:

for a = 1, . . . , A − 1, Na(t) is the number of individuals of age between a − 1
and a at the beginning of yearly period [t, t + 1[; NA(t) is the number of
individuals of age greater than A − 1. The evolution of the exploited popula-
tion depends both on natural mortality, recruitment and human exploitation.
Hence, for ages a = 1, . . . , A − 1, the following evolution of the abundances
can be considered

Na+1(t + 1) = Na(t) exp
(
− (Ma + λ(t)Fa)

)
, (2.33)

where

• Ma is the natural mortality rate of individuals of age a;
• Fa is the mortality rate of individuals of age a due to harvesting between

t and t + 1, taken to remain constant during yearly period [t, t + 1[; the
vector (Fa)a=1,...,A is termed the exploitation pattern;

• the control λ(t) is the fishing effort multiplier, taken to be applied in the
middle of yearly period [t, t + 1[.

Since NA(t) is the number of individuals of age greater than A − 1, an
additional term appears in the dynamical relation

NA(t+1) = NA−1(t) exp
(
− (MA−1 +λ(t)FA−1)

)
+NA(t)π exp

(
− (MA +λ(t)FA)

)
.

(2.34)

8 h(·) = (h(t0), h(t0 + 1), . . .) and i(·) = (i(t0), i(t0 + 1), . . .).
9 To give some ideas, A = 3 for anchovy and A = 8 for hake are instances of

maximum ages. This is partly biological, partly conventional.
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The parameter π ∈ {0, 1} is related to the existence of a so-called plus-group:
if we neglect the survivors older than age A then π = 0, else π = 1 and the
last age class is a plus group10.

Recruitment involves complex biological and environmental processes that
fluctuate in time and are difficult to integrate into a population model. The
recruits N1(t + 1) are taken to be a function of the spawning stock biomass
SSB defined by

SSB(N) :=
A∑

a=1

γaυaNa , (2.35)

that sums up the contributions of individuals to reproduction, where
(γa)a=1,...,A are the proportions of mature individuals (some may be zero)
at age and (υa)a=1,...,A are the weights at age (all positive). We write

N1(t + 1) = ϕ
(
SSB

(
N(t)

))
, (2.36)

where the function ϕ describes a stock-recruitment relationship, of which typ-
ical examples are

• constant: ϕ(B) = R;
• linear: ϕ(B) = rB;
• Beverton-Holt: ϕ(B) = B

α+βB ;
• Ricker: ϕ(B) = αBe−βB.

Denoting

N(t) =

⎛

⎜⎜⎜⎜⎜⎝

N1(t)
N2(t)

...
NA−1(t)
NA(t)

⎞

⎟⎟⎟⎟⎟⎠
∈ R

A
+

we deduce from (2.33), (2.34) and (2.36) the global dynamics of the stock
controlled by catch pressure λ(t):

N(t+1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ
(
SSB

(
N(t)

))

N1(t) exp
(
−
(
M1 + λ(t)F1

))

N2(t) exp
(
−
(
M2 + λ(t)F2

))

...

NA−2(t) exp
(
−
(
MA−2 + λ(t)FA−2

))

NA−1(t) exp
(
−
(
MA−1+λ(t)FA−1

))
+π exp

(
−
(
MA+λ(t)FA

))
NA(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

10 π = 0 for anchovy and π = 1 for hake, for instance.
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Examples of trajectories may be found in Fig. 2.4 for the Bay of Biscay
anchovy. They are built thanks to the Scilab code 3. Figs. 2.4 (a) and (b)
correspond to low constant recruitment. Figs. 2.4 (c) and (d) correspond to
medium constant recruitment while Figs. 2.4 (e) and (f) show a Ricker rela-
tion. The last Figs. 2.4, (g) and (h), stand for a linear recruitment form.

The yearly exploitation is described by catch-at-age ha and yield Y , re-
spectively defined for a given vector of abundance N and a given control λ by
the Baranov catch equations [28]. The catches are the number of individuals
captured over one year:

Ha(λ,N) =
λFa

λFa + Ma

(
1 − exp

(
− (Ma + λFa)

))
Na . (2.37)

The production in terms of biomass at the beginning of year t is

Y (λ,N) =
A∑

a=1

υa Ha(λ,N) , (2.38)

where we recall that υa is the mean weight of individuals of age a.
Sustainability of the resource may focus more on species conservation con-

straints, upon spawning stock biomass for instance, as with the International
Council for the Exploration of the Sea (ices) precautionary approach,

SSB
(
N(t)

)
≥ B� .

Sustainability of the exploitation may stress guaranteed production

Y
(
λ(t), N(t)

)
≥ Y � .

A decision problem may be to optimize discounted rent

max
λ(·)

+∞∑

t=t0

ρt
(
pY
(
λ(t), N(t)

)
− cλ(t)

)
,

where p are unit prices while c are unit costs.
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Fig. 2.4. Bay of Biscay anchovy trajectories for different stock-recruitment rela-
tionships with same initial condition and fishing effort multiplier λ(t) = 0.5. They
are built thanks to the Scilab code 3. Figs. (a) and (b) correspond to low constant
recruitment. Figs. (c) and (d) correspond to medium constant recruitment while
Figs. (e) and (f) show a Ricker relation. The last Figs., (g) and (h), stand for a
linear recruitment form.
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Scilab code 3.

//
// exec anchovy.sce

// ANCHOVY

// parameters for the dynamical model

sex_ratio = 0.5 ;

mature=sex_ratio*[1 1 1]; // proportion of matures at ages

weight=10^(-3)*[16, 28, 36]; // mean weights at ages (kg)

M=1.2; // natural mortality

F=[0.4 0.4 0.4]; // exploitation pattern

pi=0 ; // no plus-group

A=sum(ones(F)); // maximum age

// STOCK-RECRUITMENT RELATIONSHIPS

RR= 10^6 * [14016 7109 3964 696] ;

// R_mean R_gm R_min 2002 (ICES) R_min 2004 (ICES)

// // CONSTANT STOCK-RECRUITMENT

function y=mini_constant(x)

y= mini(RR) ;

endfunction

function y=mean_constant(x)

y= RR(1) ;

endfunction

// // RICKER STOCK-RECRUITMENT

a=0.79*10^6;

b=1.8*10^(-5);

// Ricker coefficients for tons

function y=Ricker(x)

xx=10^{-3}*x // xx measured in tons

y= a *( xx .* exp(-b* xx ) );

endfunction

// // LINEAR STOCK-RECRUITMENT

r= (500* 10^3) *21* 0.5 * 10^{-5} ;

function y=linear(x)

y= r * x ;

endfunction

function y=SSB(N)

// Spawning biomass

y= (mature.*weight) * N ;

endfunction

function Ndot=dynamics(N,lambda,phi)

// Population dynamics

mat=diag( exp(-M - lambda * F(1:($-1)) ) ,-1 ) +...

diag( [zeros(F(1:($-1))) pi*exp(-M - lambda * F($)) ]);

// sub diagonal terms // diagonal terms

Ndot= mat*N + [phi(SSB(N)) ; zeros(N(2:$)) ] ;

endfunction

// initial values

N1999=10^6*[4195 2079 217]’;

N2000=10^6*[7035 1033 381]’;

N2001=10^6*[6575 1632 163]’;

N2002=10^6*[1406 1535 262]’;

N2003=10^6*[1192 333 255]’;

N2004=10^6*[2590 254 43]’;

// N0=10^6*[1379 1506 256]’;

// ICES values

B_pa = 10^6 * 33 ; // kg

F_pa=1;

B_lim=21000 * 10^3 ; // kg

// F_lim=Inf;

// TRAJECTORIES

T=10; // horizon in years

multiplier=0.5;

stock_recruitment=list();

stock_recruitment(1)=mini_constant;

stock_recruitment(2)=mean_constant;

stock_recruitment(3)=Ricker;

stock_recruitment(4)=linear;

for i=1:4 do

phi=stock_recruitment(i) ;

// selecting a stock-recruitment relationship

traj=[N1999];

for t=0:(T-1)

traj=[traj, dynamics(traj(:,$),multiplier,phi)] ;

end

//

total_biomass= weight * traj ;

//

xset("window",i) ; xbasc(i);

plot2d(0:T,total_biomass,rect=[0,0,T,4*10^8])

xtitle(’Projections total biomass...

with catch pressure u(t)=’...

+string(multiplier),’time t (years)’,...

’total biomass B(t) (kg)’)

xset("window",10+i) ; xbasc(10+i);

plot2d(0:T,traj’,rect=[0,0,T,2*10^10]);

// drawing diamonds, crosses, etc. to identify the curves

plot2d(0:T,traj’,style=-[1,2,3]);

legends([’ages 0--1’;’ages 1--2’;’ages 2--’],-[1,2,3],’ur’)

xtitle(’Projections for the 3 age-classes...

with catch pressure u(t)=’...

+string(multiplier),’time t (years)’,’abundances N_a(t)’)

end

//

2.7 Economic growth with an exhaustible natural
resource

Let us introduce a model referring to the management of an economy using
an exhaustible natural resource as in [20]. Following [12] or [33], the classic
cake eating economy first studied by Hotelling in [21] is expanded through a
model of capital accumulation and consumption processes in the form of [29].
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In a discrete time version, the economy with the exhaustible resource use is
then described by the dynamic

{
S(t + 1) = S(t) − r(t) ,

K(t + 1) = (1 − δ)K(t) + Y
(
K(t), r(t)

)
− c(t) ,

(2.39)

where S(t) is the exhaustible resource stock (at the beginning of period [t, t+
1[), r(t) stands for the extraction flow per discrete unit of time, K(t) represents
the accumulated capital, c(t) stands for the consumption and the function Y
represents the technology of the economy. Parameter δ is the rate of capital
depreciation. The most usual example of production function is the so-called
Cobb-Douglas

Y (K, r) = AKαrβ , (2.40)

where the exponents α > 0 and β > 0 represent the elasticities of production
related to capital and resources respectively.

The controls of this economy are levels of consumption c(t) and extrac-
tion r(t) respectively. Additional constraints can be taken into account. The
extraction r(t) is irreversible in the sense that

0 ≤ r(t) . (2.41)

We take into account the scarcity of the resource by requiring

0 ≤ S(t) .

More generally, we can consider a stronger conservation constraint for the
resource as follows

S� ≤ S(t) , (2.42)

where S� > 0 stands for some guaranteed resource target, referring to a strong
sustainability concern whenever it has a strictly positive value.

We also assume the investment in the reproducible capital K to be irre-
versible in the sense that

0 ≤ Y
(
K(t), r(t)

)
− c(t) . (2.43)

We thus ensure the growth of capital if there is no depreciation.
We also consider that the capital is non negative:

0 ≤ K(t) . (2.44)

A sustainability requirement can be imposed through some guaranteed con-
sumption level c� along the generations:

0 < c� ≤ c(t) . (2.45)

The optimality problem exposed in [12] is
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max
c(·),r(·)

+∞∑

t=t0

ρtL(c(t)) ,

where ρ ∈ [0, 1[ is a discount factor. Such a model questions how technology
impacts the feasible or optimal extraction and consumptions paths.

2.8 An exploited metapopulation and protected area

Many works advocate the use of reserves as a central element of ecosys-
tems and biodiversity sustainable management. The idea of closing areas as
a fishery management instrument appeared two decades ago among marine
ecologists. The first proposals focused on protected areas as laboratories, call-
ing for modest areas in which ecologists could examine unexploited systems.
By the early 1990s, the idea had evolved into a larger vision that called for
significant areas to be set aside, often on the order of 20 − 30% of the coast-
line. This change in scale coincided with several important papers on fisheries
management. Most of these studies claimed that the world’s fisheries were in
a state of crisis, that conventional methods were to blame, and that a new
approach to management was required. The main effects expected from the
establishment of reserves are increased abundances and biomasses of spawn-
ing stocks and recruitment inside the protected area and, in surrounding areas
through spillover, rebuilding of ecosystems and protection of habitat. Other
potentially significant conservation and resource-enhancement benefits also
include enhanced biodiversity, better habitat, increased catches and a hedge
against management failures.

Several models have been developed to investigate the effectiveness of MPA
in terms of stock conservation and catches. An extensive review of the litera-
ture can be found in [32, 19].

Let us now present mono-specific metapopulation modeling. Consider n
biomasses Nj located in n patches which may diffuse from one patch to the
other. Without interference and harvesting, each biomass would follow sepa-
rately Nj(t+1) = g

(
Nj(t)

)
as in (2.7). One model with migration and catches

hj(t) is, for any j = 1, . . . , n,

Nj(t + 1) = g
(
Nj(t)

)
+

n∑

k=1, k �=j

τk,jNk(t) −
n∑

k=1, k �=j

τjkNj(t) − hj(t) (2.46)

where 0 ≤ τj,k < 1 measures the migration rate from area j to patch k and
hj(t) stands for the catches in area j. Notice that catches hj(t) take place at
the end of period [t, t + 1[ in this model. If protected area requirements are
introduced, a major harvesting constraint becomes

0 ≤ hj(t) ≤ q�
j , (2.47)
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where q�
j = 0 if the area is closed. A decision problem is to maximize the

utility derived from the catches as follows

max
0≤hj(t)≤q�

j

+∞∑

t=t0

ρt
n∑

j=1

L
(
hj(t)

)
,

where ρ ∈ [0, 1[ is a discount factor. In this perspective, a reserve effect on
catches means that

∃ q�
j = 0 such that max

0≤hj(t)≤q
�
j

+∞∑

t=t0

ρt
n∑

j=1

L
(
hj(t)

)
< max

0≤hj(t)

+∞∑

t=t0

ρt
n∑

j=1

L
(
hj(t)

)
.

In this framework, the role played by the geometry of the reserve in relation
to the diffusion characteristics is a challenging issue.

2.9 State space mathematical formulation

Although the models previously introduced for the management of exhaustible
and renewable resources and pollution control are different, their main struc-
tures are quite similar. They are basically decision-making problems where
time plays a central role. Control theory of dynamic systems is well suited to
tackling such situations and building up mathematical models with analytic,
algorithmic and/or numerical methods. Basically, the purpose of control the-
ory is to find relevant decision or control rules to achieve various goals. In par-
ticular, a classical approach of control theory considers such problems through
a state space formulation where decisions, commands or actions influence the
evolution of a state variable in a causal way.

2.9.1 The dynamics

In the usual approach to a control problem, specifying the formulation of the
dynamical model is the first phase of the analysis. In a discrete time context,
and in specific terms making the components i = 1, . . . , n explicit, this is a
difference equation11:
{

xi(t + 1) = Fi

(
t, x1(t), . . . , xn(t), u1(t), . . . , up(t)

)
, t = t0, t0 + 1, . . . , T − 1,

xi(t0) = xi0.

In a compact form, a dynamical model or dynamical system is:
{

x(t + 1) = F
(
t, x(t), u(t)

)
, t = t0, t0 + 1, . . . , T − 1 ,

x(t0) = x0 .
(2.48)

Here we denote by:
11 In the continuous time context, the dynamic is represented by the differential

equation ẋ(t) = F
(
t, x(t), u(t)

)
, t ≥ t0.
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• t, the time index, belonging to the set of integers N; t0 is the initial time
and the integer T > t0 stands for the time horizon, be it finite (T < +∞)
or infinite (T = +∞); thus t runs from t0 to T ;

• x(t) =
(
x1(t), . . . , xn(t)

)
, the state, embodying a set of variables which

sum up the information needed together with the control to pass from one
time t to the following time t+1; this state is an element of some state space
denoted by X; we shall restrict ourselves to the usual case corresponding
to finite dimensional space, namely X = R

n;
• u(t) =

(
u1(t), . . . , up(t)

)
, the control or decision, chosen by the decision-

maker and which causes the dynamic evolution of the state x according
to the transition equation (2.48); this decision belongs to some decision
space denoted by U; we shall consider a finite dimensional space, namely
U = R

p;
• F : N × X × U → X, the dynamics-mapping representing the system’s

evolution; in many cases, the dynamic F does not depend on time t and
is said to be autonomous or stationary ;

• x0, the initial state or initial condition, considered at initial time t = t0 ∈
{0, 1, . . . , T − 1}; observe that all subsequent values x(t0 + 1), x(t0 + 2),
. . . of the state are generated by this initial state and the sequences of
controls via the transition equation (2.48); x(t) is a function of the initial
condition x(t0) and of past controls u(t0),. . . , u(t − 1).

The linear case corresponds to the situation where the dynamic F can be
written in the form F (t, x, u) = F (t)x + G(t)u, where F (t) is a square matrix
of size n, and G is a matrix with n rows and p columns, giving

x(t + 1) = F (t)x(t) + G(t)u(t) . (2.49)

2.9.2 The trajectories

A state trajectory , or state path, is any sequence

x(·) :=
(
x(t0), x(t0 + 1), . . . , x(T )

)
with x(t) ∈ X (2.50)

and a control trajectory, or control path, is any sequence

u(·) :=
(
u(t0), u(t0 + 1), . . . , u(T − 1)

)
with u(t) ∈ U . (2.51)

The trajectories space is X
T+1−t0 × U

T−t0 , consisting of state and control
trajectories
(
x(·), u(·)

)
:=
(
x(t0), x(t0 + 1), . . . , x(T − 1), x(T ), u(t0), u(t0 + 1), . . . , u(T − 1)

)
.

(2.52)

Among all trajectories, of particular interest are those
(
x(·), u(·)

)
which

satisfy the dynamical equation (2.48).
Notice that when T < +∞ there are T controls and T + 1 states: indeed,

by (2.48), the ultimate control u(T − 1) generates a final state x(T ). When
T = +∞, one considers instead sequences x(·) := (x(t0), x(t0 + 1), . . .) and
u(·) := (u(t0), u(t0 + 1), . . .) and the trajectories space is X

N × U
N.
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2.9.3 The feasible decisions

Each value u(t) of u(·) specifies the control that will be chosen at time t:
such a control is called a decision at time t. A rule that assigns a sequence of
decisions is called a policy or a strategy, especially when a decision at time t
depends on the past states x(t0),. . . , x(t) and controls u(t0),. . . , u(t − 1).

As displayed by previous examples, we may need to impose conditions or
constraints on the system, including the states and the decisions, described
as follows.

Decision or control constraints.

The admissible decisions are described, at each time t, by

u(t) ∈ B
(
t, x(t)

)
, t = t0, . . . , T − 1 , (2.53a)

where B
(
t, x(t)

)
⊂ U is some non empty subset of the control space U. This

subset is generally specified under the inequality form

bi
1

(
t, x(t), u(t)

)
≥ 0 , . . . , bi

k

(
t, x(t), u(t)

)
≥ 0 ,

and/or equality form

be
1

(
t, x(t), u(t)

)
= 0 , . . . , be

l

(
t, x(t), u(t)

)
= 0 ,

where the functions bi
1,. . . , bi

k, be
1,. . . , be

l are real-valued. Frequently, we con-
sider a constant set of feasible control values B and we ask for u(t) ∈ B.

State constraints.

It is required that, at each time t, the state belongs to a non empty state
domain A(t) ⊂ X

x(t) ∈ A(t), t = t0, . . . , T − 1 , (2.53b)

generally specified under the inequality form

ai
1

(
t, x(t)

)
≥ 0 , . . . , ai

m

(
t, x(t)

)
≥ 0 ,

and/or equality form

ae
1

(
t, x(t)

)
= 0 , . . . , ae

q

(
t, x(t)

)
= 0 .

As shown in the examples above, the usual case corresponds to a constant set
of feasible state values A which does not depend on time in the sense that we
require x(t) ∈ A.
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Final state constraints.

Here it is required that the final state reaches some non empty state domain
A(T ) ⊂ X, called the target, that is

x(T ) ∈ A(T ) , (2.53c)

generally specified under the inequality form

ai
1

(
T, x(T )

)
≥ 0 , . . . , ai

m

(
T, x(T )

)
≥ 0 ,

and/or equality form

ae
1

(
T, x(T )

)
= 0 , . . . , ae

q

(
T, x(T )

)
= 0 .

This target issue is closely related to the controllability concept studied in the
control system literature [15]. When T = +∞, the above statements may be
understood as limits when time goes to infinity.

The so-called viability or invariance approach focuses on the role played by
these different admissibility constraints. This point is examined in more detail
in Chap. 4. Admissible equilibria shed a particular light on such feasibility
issues. They are studied especially in Chap. 3.

2.9.4 The criterion and the evaluation of the decisions

Now, given an initial state x0 and an initial time t0, one may try to se-
lect a sequence of control variables among the feasible and tolerable ones.
The usual selection of a decision sequence consists in optimizing (minimiz-
ing or maximizing) some π criterion, representing the total cost or pay-
off/gain/utility/performance of the decisions over T + 1 − t0 stages. Here-
after, we shall rather deal with maximization problems where the criterion is
a payoff.

A criterion π is a function π : X
T+1−t0 × U

T−t0 → R which assigns a real
number to a state and control trajectory. Following the classification of [20]
in the context of sustainability, we distinguish the following criteria.

• Additive criterion (without inheritance). It is the most usual crite-
rion defined12 in the finite horizon case by the sum

π
(
x(·), u(·)

)
=

T−1∑

t=t0

L
(
t, x(t), u(t)

)
. (2.54)

Function L is referred to as the system’s instantaneous payoff or gain,
profit, benefit, utility, etc. In economics or finance, the usual present value

12 Whenever time is considered continuous, the intertemporal criteria is defined by
the following integral π

(
x(·), u(·)

)
=
∫ T

t0
L
(
t, x(t), u(t)

)
dt.
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(PV) approach corresponds to the time separable case with discounting
criterion in the form of [16, 22]

π
(
x(·), u(·)

)
=

T−1∑

t=t0

ρtL
(
x(t), u(t)

)
, (2.55)

where ρ stands for a discount factor (0 ≤ ρ ≤ 1). The instantaneous
gain L

(
x(t), u(t)

)
may be a profit or a utility. This approach favors the

present through the discount of future value and is sometimes qualified as
“dictatorship of the present” because it neglects the future needs as soon
as ρ < 1. In the infinite horizon case, we consider

π
(
x(·), u(·)

)
=

+∞∑

t=t0

ρtL
(
x(t), u(t)

)
. (2.56)

The quadratic case corresponds to the situation where L and M are
quadratic in the sense that L(t, x, u) = x′R(t)x + u′Q(t)u, where R(t)
and Q(t) are positive matrices, giving:

π
(
x(·), u(·)

)
=

T−1∑

t=t0

(
x(t)′R(t)x(t) + u(t)′Q(t)u(t)

)
.

The case with inheritance, with the addition of a final payoff at final time
T , will be seen later. The present value with inheritance will also be pre-
sented in the Chichilnisky type criterion definition.

• The Maximin. The Rawlsian or maximin form in the finite horizon is

π
(
x(·), u(·)

)
= min

t=t0,...,T−1
L
(
t, x(t), u(t)

)
. (2.57)

The criterion focuses on the instantaneous value of the poorest genera-
tion, as in [30]. In economics literature, the Maximin approach has been
discussed as an equity criterion [2, 30]. In particular, it has been used in
environmental economics to deal with sustainability and intergenerational
equity [4]. For instance, [33] examines the optimal and equitable allocation
of an exhaustible resource. Other references include [13, 25, 26, 34].
In the infinite horizon, we obtain

π
(
x(·), u(·)

)
= inf

t=t0,...,+∞
L
(
t, x(t), u(t)

)
.

The ultimate generation T may also be taken into account by considering

π
(
x(·), u(·)

)
= min

(
min

t=t0,...,T−1
L
(
t, x(t), u(t)

)
,M
(
T, x(T )

))
. (2.58)
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• Green Golden type criterion. Originally formulated in the infinite hori-
zon, the so-called “Green Golden” form introduced by [7] and discussed in
[20] puts emphasis on the ultimate payoff. In our discrete time framework
when the horizon T is finite, we label Green Golden a criterion of the form

π
(
x(·), u(·)

)
= M

(
T, x(T )

)
, (2.59)

which puts weight only on the final payoff associated with the state x(T )
of the resource.
This approach considers only the far future and is qualified as “dictator-
ship of the future” because it neglects the present needs. As the state x
generally refers to the natural resource, such an approach may also fa-
vor the ecological or environmental dimensions justifying the term “green
rule.”
In the infinite horizon case, it corresponds to

π
(
x(·), u(·)

)
= lim inf

T→+∞
M
(
T, x(T )

)
. (2.60)

• Chichilnisky type criterion. Originally formulated in infinite horizon,
the so-called Chichilnisky criterion is a convex combination of present
value and Green Golden criteria [6].
In our discrete time framework, when the horizon T is finite, we shall label
of Chichilnisky type a criterion of the form

π
(
x(·), u(·)

)
= θ

T−1∑

t=t0

L
(
t, x(t), u(t)

)
+ (1 − θ)M

(
T, x(T )

)
(2.61)

where θ ∈ [0, 1] stands for the coefficient of present dictatorship. This
criterion makes it possible to avoid both the dictatorship of the present
and the dictatorship of the future.

• Additive criterion (with inheritance). It is defined in the finite hori-
zon case by the sum:

π
(
x(·), u(·)

)
=

T−1∑

t=t0

L
(
t, x(t), u(t)

)
+ M

(
T, x(T )

)
. (2.62)

Let us remark that such a case with scrap value can be associated with a
Chichinilsky formulation for θ = 1/2.

2.9.5 The optimization problem

The constraints (2.53a), (2.53b) and (2.53c) specified beforehand, combined
with the dynamics (2.48), settle the set of all possible and feasible state
and decision trajectories. Such a feasibility set, denoted by T ad(t0, x0) ⊂
X

T+1−t0 × U
T−t0 , is defined by
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(
x(·), u(·)

)
∈ T ad(t0, x0) ⇐⇒

(
x(·), u(·)

)
satisfies (2.48)−(2.53a)−(2.53b)−(2.53c) .

In other words,

T ad(t0, x0) :=

⎧
⎪⎪⎨

⎪⎪⎩

(
x(·), u(·)

)

∣∣∣∣∣∣∣∣

x(t0) = x0,
x(t + 1) = F

(
t, x(t), u(t)

)
, t = t0, . . . , T − 1

u(t) ∈ B
(
t, x(t)

)
, t = t0, . . . , T − 1

x(t) ∈ A(t), t = t0, . . . , T

⎫
⎪⎪⎬

⎪⎪⎭
.

(2.63)

We now aim at ranking the admissible paths according to a given criterion
π previously defined. Of particular interest is an optimal solution. Hence, the
optimal control problem is defined as the following optimization problem:

sup(
x(·),u(·)

)
∈T ad(t0,x0)

π
(
x(·), u(·)

)
. (2.64)

Abusively, we shall often formulate the hereabove optimization problem in the
simplified form

sup
u(·)

π
(
x(·), u(·)

)
. (2.65)

Since we are interested in the existence of optimal admissible decisions,
we generally assume that the supremum is achieved. Hence the supremum
sup becomes a maximum max (or inf = min for minimization) and the prob-
lem (2.64) reads

π
(
x�(·), u�(·)

)
= max(

x(·),u(·)
)
∈T ad(t0,x0)

π
(
x(·), u(·)

)
, (2.66)

where u�(·) =
(
u�(t0), u�(t0 + 1), . . . , u�(T − 1)

)
denotes a feasible optimal

decision trajectory and x�(·) =
(
x�(t0), x�(t0+1), . . . , x�(T )

)
an optimal state

trajectory. Equivalently, the following notation is used:
(
x�(·), u�(·)

)
∈ arg max(

x(·),u(·)
)
∈T ad(t0,x0)

π
(
x(·), u(·)

)
. (2.67)

2.10 Open versus closed loop decisions

We point out two distinct approaches to compute relevant decision sequences.
By relevant is meant at least admissible decisions, that is to say elements
of the set T ad(t0, x0) defined in (2.63), and, possibly, optimal ones, such as
solutions of (2.64).
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Open loop

In this case, the key concept is to manipulate control trajectories depending
only on time

u : t �→ u(t) ,

then compute the state by the dynamical equation (2.48):

x(t + 1) = F
(
t, x(t), u(t)

)
.

For the maximization problem (2.64), when the horizon T is finite, it boils
down to maximizing the criterion π with respect to T−t0 variables (u(t0), u(t0+
1), . . . , u(T − 1)). Thus, if every control u(t) lies in a finite dimensional space
R

p it follows that we are coping with an optimization problem on R
p(T−t0).

Closed loop

A second approach consists in searching for a control rule, called feedback, a
mapping13 u depending on both the time t and the state x:

u : (t, x) �→ u(t, x) ∈ U .

Then the control and state trajectories are recovered by the relations

u(t) = u
(
t, x(t)

)
and x(t + 1) = F

(
t, x(t), u(t)

)
.

Let us indicate that in the deterministic case closed and open loops are closely
related because the state x(t) in u(t) = u

(
t, x(t)

)
is completely computed

from the dynamic F and the previous x(t0) and u(t0), . . . , u(t − 1). Hence,
the mapping u(t, x) is not used for all values of x, but only for the predictable
x(t).

In fact, looking for feedbacks turns out to be a relevant method for imple-
mentation in real time, whenever the system is under disturbances or uncer-
tainty x(t + 1) = F

(
t, x(t), u(t), w(t)

)
not directly taken into account by the

modeling. Such ideas will be scrutinized in Chaps. 6, 7 and 8.
This second approach is more difficult in the sense that we now look for a

function of the state and not only a sequence u(t0), . . . , u(T − 1). A solution
is developed in Chaps. 4 and 5 where we introduce the dynamic programming
method.

Furthermore, one can specify more restrictive conditions on the feedback.
For instance, linear or continuous or smooth feedbacks may yield interesting
additional properties for the control and decision laws.

13 Note that u denotes a mapping from N × X to U, while u denotes a variable
belonging to U.
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2.11 Decision tree and the “curse of the dimensionality”
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Fig. 2.5. Binary decision tree

Whenever the time horizon term T along with the set of controls U are
finite, the graph theory together with operational research constitute relevant
frameworks to handle dynamical decision issues. Binary decisions where u ∈
U = {0, 1} illustrate this configuration. Indeed, given an initial condition x(0)
at initial time t0 = 0, we can:

• represent the set of all feasible trajectories x(·) generated by (2.48) starting
from x(0) by a tree, as in Fig. 2.5, where the states x(t) are associated
with nodes and decisions u(t) correspond to edges of the graph defined by
the relation

xRy ⇐⇒ ∃t ≥ 0 , ∃u ∈ B(t, x) such that y = F (t, x, u) ;

• evaluate the performance and the criterion on every admissible path in
order to choose the optimal one.

Although this method seems useful and easy to implement on a computer,
it may yield a difficult numerical situation and a so-called curse of the dimen-
sionality. To get a taste of it, consider a binary decision u ∈ {0, 1} on horizon
T , providing 2T possible sequences (u(0), . . . , u(T − 1)) ∈ {0, 1}T .

On a computer, a double-precision real requires 8 bytes = 23 bytes. So if
a computer’s ram has 8 GBytes = 8 (1 024)3 bytes = 233 bytes, we can store
up to 230 double-precision reals.

One can thus imagine the difficulties implied by the comparison of 252

criterions’ final values for a horizon T = 52, corresponding to an annual
problem with a weekly step size.
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3

Equilibrium and stability

A key concept for the study of dynamical systems is stability. Basically, a
dynamical system is stable with respect to a given desired trajectory if weak
perturbations cause only small variations in the trajectories with respect to
the one being tracked. The most commonly tracked trajectory is that of equi-
librium.

Designed for autonomous systems, i.e. when dynamics does not directly
depend on time, an equilibrium of a dynamical system corresponds to a sta-
tionary state and is associated with fixed points of the dynamics in the discrete
time case.

Equilibria highlight sustainability concerns in an interesting way as empha-
sized by the sustainable yield approach used for the management of renewable
resources [2, 4, 5]. In particular, the notions of maximum sustainable yield,
private property or common property equilibria capture important ideas for
bioeconomic modeling.

From the mathematical viewpoint, detailed concepts and results dealing
with stability can be found in [8, 9] and [6] for results on stability property and
the Lyapunov approach. Here we restrict the methods to the use of linearized
dynamics. The basic idea of linearization is that, in a small neighborhood of
an equilibrium, the dynamics behaves, in most cases, similarly to its linear ap-
proximation involving the first order derivatives. Usual tools of linear algebra
including eigenvalues can then be invoked.

The present chapter is organized as follows. A first Sect. 3.1 introduces
the notion of equilibrium for controlled dynamics. Examples coping with ex-
haustible and renewable resources or pollution management illustrate the con-
cept in Sect. 3.2. In Sect. 3.3, particular emphasis is given to different bioe-
conomic issues related to the notion of sustainable yield. A second part is
devoted to the concept of stability in the context of open-loop decisions. The
method of linearization is exposed in Sect. 3.4 and applied to some examples
in the remaining sections.
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3.1 Equilibrium states and decisions

In this section, we deal with autonomous dynamics, or stationary dynamics,
in the sense that the dynamics does not depend directly on time t, namely:

x(t + 1) = F
(
x(t), u(t)

)
, t = t0, t0 + 1, . . . with x(t0) = x0 , (3.1)

where x(t) ∈ X = R
n represents the state of the system and u(t) ∈ U = R

p

stands for the decision vector as in (2.48). x0 ∈ X is the initial condition at
initial time t0 ∈ N.

Similarly, decision and state constraints are time independent:
{

x(t) ∈ A ,

u(t) ∈ B
(
x(t)
)

.
(3.2)

Basically, an equilibrium of a dynamical system corresponds to a situation
where the evolution is stopped in the sense that the state becomes steady:

x(t + s) = x(t) , t = t0, t0 + 1, . . . , s = 0, 1 . . .

In the framework of controlled dynamical systems, such an equilibrium is
related to both a stationary admissible state and a stationary decision. For
the discrete time case on which we focus, this means that we face problems
of fixed points.

Definition 3.1. The state xe ∈ X is an admissible equilibrium, or steady
state, of the autonomous dynamical system (3.1) under constraints (3.2) if
there exists a decision ue ∈ U satisfying

F (xe, ue) = xe with ue ∈ B(xe) and xe ∈ A . (3.3)

By extension, we shall also say that (xe, ue) is an admissible equilibrium.

3.2 Some examples of equilibria

For some of the models presented in Chap. 2, we describe the equilibria if any
exist.

3.2.1 Exploitation of an exhaustible resource

We recall the system introduced in Sect. 2.1 for the management of an ex-
haustible stock S(t):

S(t + 1) = S(t) − h(t) .

The resource stock Se and harvesting he are stationary whenever
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Se = Se − he .

As expected, the only equilibrium solution for any resource level Se is zero
extraction: he = 0. This observation means that the only equilibrium config-
uration is without exploitation. Of course, this is not a challenging result in
terms of management. The equilibrium approach is of little help. The opti-
mality approach is more fruitful and will be examined in Sect. 5.9.

3.2.2 Mitigation policies for carbon dioxyde emissions

Assuming stationary emissions Ebau ≥ 0 in the carbon cycle model of Sect. 2.3,
the dynamic (2.20) becomes

M(t + 1) = M(t) + αEbau

(
1 − a(t)

)
− δ(M(t) − M−∞) ,

and any equilibrium (Me, ae) satisfies

Me = M−∞ +
αEbau(1 − ae)

δ
with 0 ≤ ae ≤ 1 .

When we write it as

ae = 1 − δ(Me − M−∞)
αEbau

when 0 ≤ δ(Me − M−∞)
αEbau

≤ 1 ,

we see that the level of abatement to stabilize concentration at Me is sensitive
to carbon removal rate δ.

3.2.3 Single species equilibrium in an age-structured fish stock
model

The model, already introduced in Sect. 2.6, is derived from fish stock man-
agement. We compute an equilibrium (Ne, λe) such that

g(Ne, λe) = Ne ,

where the dynamic g is given, in absence of a plus-group, by

g(N1, . . . , NA, λ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ
(
SSB(N)

)

N1 exp
(
− (M1 + λF1)

)

N2 exp
(
− (M2 + λF2)

)

...

NA−2 exp
(
− (MA−2 + λFA−2)

)

NA−1 exp
(
− (MA−1 + λFA−1)

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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with spawning stock biomass SSB defined by

SSB(N) :=
A∑

a=1

γaυaNa ,

and ϕ a stock-recruitment relationship. The computation of an equilibrium
Ne(λ), for λ ≥ 0, gives

N1,e(λ) = Z(λ) and Na,e(λ) = sa(λ)Z(λ) , a = 1, . . . , A

where

sa(λ) := exp
(
−
(
M1 + · · · + Ma−1 + u(F1 + · · · + Fa−1)

))
(3.4)

is the proportion of equilibrium recruits which survive up to age a (a =
2, . . . , A) while s1(λ) = 1. The number Z(λ) of recruits at equilibrium is
a nonnegative fixed point of the function z �→ ϕ

(
zspr(λ)

)
where spr corre-

sponds to the equilibrium spawners per recruits, namely

spr(λ) :=
A∑

a=1

γaυasa(λ) .

Being a fixed point means that Z(λ) is the solution of the equation:

Z(λ) = ϕ
(
Z(λ)spr(λ)

)
.

We do not go into detail on existence results of such a fixed point. However,
in the Beverton-Holt case where the recruitment mechanism corresponds to
ϕ(B) = RB

1+bB , the solution can be specified as follows:

Z(λ) = max
(

R spr(λ) − 1
b spr(λ)

, 0
)

.

3.2.4 Economic growth with an exhaustible natural resource

Recall that the economy in Sect. 2.7 is governed by the evolution of
{

S(t + 1) = S(t) − r(t) ,

K(t + 1) = (1 − δ)K(t) + Y
(
K(t), r(t)

)
− c(t) .

Even if the second equation has, by itself, an equilibrium (Ke, ce, re) ∈ R
3
+

solution of
0 = −δKe + Y

(
Ke, re

)
− ce ,

the overall system has no other equilibrium than with re = 0, as we have seen
in Subsect. 3.2.1, above right. As soon as resource r is needed for production,
then Y (K, 0) = 0 and the only global admissible equilibrium is

re = ce = Ke = 0

and the economy collapses. The equilibrium approach is of little help in terms
of management in this case.
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3.3 Maximum sustainable yield, private property,
common property, open access equilibria

In contrast to the exhaustible resource management case where the equilib-
rium approach does not bring challenging results, the renewable resource case
is more interesting.

The concept of maximum sustainable yield [2] is one of the cornerstones
of the management of renewable resources. Despite considerable criticism, it
remains a reference. Other equilibria deriving from different property rights
on the resource are also presented.

3.3.1 Sustainable yield for surplus model

Designed for the management of renewable resources, the Schaefer model (2.14)
introduced in Sect. 2.2 corresponds to:

B(t + 1) = g
(
B(t) − h(t)

)
, 0 ≤ h(t) ≤ B(t) . (3.5)

At equilibrium, the harvesting he induces a steady population Be whenever

Be = g(Be − he) and 0 ≤ he ≤ Be .

One obtains the so-called sustainable yield σ(Be) by an implicit equation
whenever, for given Be, there exists a unique he satisfying the above equation,
giving:

σ(Be) := he ⇐⇒ Be = g(Be − he) and 0 ≤ he ≤ Be . (3.6)

The relation may also be written as

he︸︷︷︸
surplus

= g(Be − he)︸ ︷︷ ︸
regeneration

− (Be − he)︸ ︷︷ ︸
biomass after capture

≥ 0 ,

meaning that “a surplus production exists that can be harvested in perpetuity
without altering the stock level” [2, p. 1]. Indeed, he can be harvested forever,
while the biomass is maintained indefinitely at level Be.

Notice that if the dynamic g and the sustainable yield function B �→
σ(B) are differentiable, we can deduce from Be = g

(
Be − σ(Be)

)
in (3.6) the

marginal relation

σ′(B) =
g′
(
B − σ(B)

)
− 1

g′
(
B − σ(B)

) . (3.7)

Thus, the sustainable yield σ is the solution of a differential equation.
As in [5], it is worth distinguishing particular cases of such sustainable

yields that play an important role in the economics literature for the manage-
ment of renewable resources.
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3.3.2 Maximum sustainable equilibrium

The maximum sustainable equilibrium (mse) is the solution (Bmse, hmse) of

σ(Bmse) = hmse = max
B≥0, h=σ(B)

h = max
B≥0

σ(B) . (3.8)

The maximum catch hmse is called the maximum sustainable yield (msy).
Whenever the sustainable yield function B �→ σ(B) is differentiable, the

first order optimality condition reads

σ′(Bmse) = 0 .

Consequently, using (3.7) when the dynamic g is supposed to be differentiable,
the maximum sustainable biomass (Bmse, hmse) solves

g′(Bmse − hmse) = 1 and g(Bmse − hmse) = Bmse . (3.9)

It should be emphasized that such a steady state depends only on the
biological features of the stock summarized by the function g. More specific
computations of mse are displayed in the following paragraphs for linear,
Beverton-Holt or logistic growth relations.

3.3.3 Private property equilibrium

Assuming a constant price p per unit of harvested biomass, the total revenue
resulting from harvesting h is ph. Harvesting costs are C(h,B). The economic
rent or profit R(h,B) provided by the management of the resource is defined
as the difference between benefits and harvesting costs:

R(h,B) := ph − C(h,B) .

The so-called private property equilibrium (ppe) is the equilibrium solution
(Bppe, hppe) which maximizes such a rent as follows:

R(hppe, Bppe) = max
B≥0, h=σ(B)

R(h,B) . (3.10)

Assume that the harvesting costs C(h,B) are smooth, and let Ch(h,B) and
CB(h,B) denote the partial derivatives. By writing first order optimality con-
ditions and using (3.7), the ppe satisfies the following marginal conditions:

g′(Bppe − hppe) =
p − Ch(hppe, Bppe)

p − Ch(hppe, Bppe) − CB(hppe, Bppe)
. (3.11)

It can be pointed out that ppe equilibrium combines ecological and eco-
nomic dimensions through the marginal cost, income and growth values.
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3.3.4 Common property equilibrium

In the open access perspective, it is assumed that any positive rent is dis-
sipated [2, p. 25]. A forthcoming Subsect. 3.3.6 shows how this concept can
be derived from an equilibrium perspective on an extended dynamic with
one additional state component. The so-called common property equilibrium
(cpe) captures this situation of zero-profit as a solution (Bcpe, hcpe) =(
Bcpe, σ(Bcpe)

)
of

R(hcpe, Bcpe) = 0 ,

that is,
hcpe = σ(Bcpe) and phcpe = C(hcpe, Bcpe) . (3.12)

For the sake of simplicity, we assume that the harvesting costs are propor-
tional to effort e = h/(qB) (see (2.15)), which can be written

C(h,B) =
ch

qB
, (3.13)

with c a unit cost of effort, and q a catchability coefficient. In this case, what-
ever the natural dynamic g, the common property equilibrium Bcpe satisfies,
by (3.12),

Bcpe =
c

pq
.

Under the open access assumption, the sustainability and conservation re-
quirements are in jeopardy through the cpe as soon as unit costs c decrease
or price p strongly increases since Bcpe may then drop.

Notice that the common property equilibrium depends, apart from the
catchability coefficient q, only on economics parameters (unitary cost c and
price p), unlike the private property equilibrium which also depends on dy-
namic g.

3.3.5 Examples for different population dynamics

We follow here the material introduced in Sect. 2.2. The harvesting costs are
assumed to be proportional to effort as in (3.13).

The linear model

Consider g(B) = RB with R ≥ 1. In this case, we obtain that

• the sustainable yield function is

σ(B) =
R − 1

R
B ,

• the maximum sustainable equilibrium does not contain much information
since

Bmse = hmse = +∞ ,
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• neither is the private property equilibrium a useful concept since

Bppe = hppe = +∞ .

The Beverton-Holt model

Assume that g(B) = RB
1+bB with growth R > 1 and saturation b > 0

parameters.

• Any admissible equilibrium (Be, he) satisfies

Be =
R(Be − he)

1 + b(Be − he)
and 0 ≤ he ≤ Be ,

and the sustainable yield corresponds therefore to

σ(B) = B − B

R − bB
for 0 ≤ B ≤ K :=

R − 1
b

. (3.14)

This is illustrated in Fig. 3.1. The last inequality ensures an admissibility
requirement 0 ≤ σ(B) ≤ B. The notation K stems from the fact that R−1

b
is the carrying capacity of the biological dynamic. In other words, the
biomass K = R−1

b is the only strictly positive equilibrium of the natural
dynamic without harvesting. Of course, harvesting decision constraints
may more stringently restrict the domain of validity for this last relation.

Scilab code 4.

//
// exec sustainable_yield_tuna.sce

R_tuna=2.25; // discrete-time intrinsic growth

R=R_tuna;

K_tuna = 250000; // carrying capacity in metric tons

K = K_tuna;

c_tuna=2500;

// unit cost of effort in dollars per standard fishing day

p_tuna=600; // market price in dollars per metric ton

// BEVERTON-HOLT DYNAMICS

R_BH = R_tuna ;

b_BH = (R_BH-1) / K ;

// SUSTAINABLE YIELD FUNCTION

function [SY]=sust_yield(B)

SY=B-( B ./ ( R_BH - b_BH *B ) ) ;

endfunction

B_MSE = ( R_BH - sqrt(R_BH) ) / b_BH ;

// maximum sustainable equilibrium

MSY=sust_yield(B_MSE) ;

// maximum sustainable yield

xset("window",1); xbasc();

abcisse=linspace(0,K,100);

plot2d(abcisse,sust_yield(abcisse),rect=[0,0,K,1.1*MSY]);

H_MSY=linspace(0,MSY,20);

plot2d(B_MSE*ones(H_MSY),H_MSY,style=-6);

xtitle("Sustainable yield for the ...

Beverton-Holt model (tuna)",...

"biomass (metric tons)","catches (metric tons)");

// private property equilibrium

cost=c_tuna;

price=p_tuna;

B_PPE = ...

( R_BH - sqrt(R_BH - (b_BH * cost / price) ) ) / b_BH ;

//

• A first order optimality condition gives the mse:

Bmse =
R −

√
R

b
. (3.15)
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Fig. 3.1. Sustainable yield for Beverton-Holt model with tuna data. Biomass and
catches are measured in metric tons. The maximum sustainable equilibrium is
achieved at Bmse = 150 000 metric tons, and provides the maximum sustainable
yield hmse = 50 000 metric tons. The curve comes from Scilab code 4.

• Whenever the common property equilibrium solution of (3.12) is admis-
sible, i.e. 0 ≤ c

p ≤ K or bc
p ≤ R − 1, the private property equilibrium

is

Bppe =
R −

√
R − bc

p

b
.

Remark that ppe biomass is always larger than maximum sustainable
equilibrium biomass in the sense that

Bppe > Bmse . (3.16)

In this sense, the ppe equilibrium is more conservative than the mse.

The logistic model

Consider g(B) = RB(1 − B
κ ). Any equilibrium (Be, he) satisfies

Be = g(Be − he) ⇐⇒ Be = R(Be − he)
(

1 − (Be − he)
κ

)
.

By (3.9), the mse (Bmse, hmse) solves in addition
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g′(Bmse − hmse) = R(1 − 2
Bmse − hmse

κ
) = 1 ,

giving

hmse =
(R − 1)2

4R
κ and Bmse =

R2 − 1
4R

κ .

The Ricker model

Now, we have g(B) = B exp(r(1 − B
K )). In this case, the sustainable yield he =

σ(Be) is given by the implicit relation Be = (Be − he) exp(r(1 − (Be−he)
K )),

and numerical solvers are required.

3.3.6 Open access dynamics

The open access situation occurs when no limitation is imposed on the harvest-
ing effort. Consider any model of assessment and management of a renewable
resource as in Sect. 2.2. We now postulate that the variations of harvesting
effort are proportional to the flow of economic rent

{
B(t + 1) = g

(
B(t) − qe(t)B(t)

)
,

e(t + 1) = e(t) + αR
(
e(t), B(t)

)
,

(3.17)

where parameter α > 0 measures the sensitivity of the agents possibly exploit-
ing the resource with respect to profits. In this formulation, the effort becomes
a state of the dynamical system and there is no longer control in the dynamical
system (3.17). Then, assuming that the rent is defined by R

(
e,B
)

= pqBe−ce,
any non trivial equilibrium (Be, ee) satisfies

Be =
c

pq
and ee =

p

c
σ(

c

pq
) , (3.18)

where σ stands for the sustainable yield function. Such an equilibrium (Be, ee)
is termed Gordon’s Gordon’s bionomic equilibrium.

3.4 Stability of a stationary open loop equilibrium state

By stationary open loop, we mean that the control u(t) is set at a stationary
value ue:

u(t) = ue .

The state follows a discrete-time dynamic, for which traditional notions of
stability are presented. Of particular importance is the concept of asymptotic
stability which, though subtle, may generally be tested by a simple matrix
analysis.
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3.4.1 General definition

Stability of an equilibrium (xe, ue) is, to begin with, a local property. We
consider the dynamics on a neighborhood of the equilibrium state xe with the
fixed equilibrium decision ue as follows

x(t + 1) = F (x(t), ue) , x(t0) = x0 . (3.19)

Equation (3.19) appears as a deterministic difference equation without control
or decision. Being stable means that any trajectory x(t) starting close enough
to xe remains in the vicinity of xe. Being asymptotically stable means that
any trajectory x(t) starting close enough to xe remains in the vicinity of xe

and converges towards xe as illustrated by Fig. 3.2.
Formal definitions dealing with the stability of the equilibrium state xe

read as follows.

Definition 3.2. Consider state xe and decision ue satisfying (3.3). The equi-
librium state xe is said to be

• stable if, for any neighborhood M(xe) of xe, there exists a neighborhood
N (xe) of xe such that for every x0 in N (xe), the solution x(t) of (3.19)
belongs to N (xe) for every t ≥ t0,

∀x0 ∈ N (xe) , x(t) ∈ M(xe) , ∀t ≥ t0 ;

• asymptotically stable if it is stable and if there exists a neighborhood
N (xe) of xe having the following property1: for any x0 in N (xe), the so-
lution x(t) of (3.19) approaches xe while t → +∞

∀x0 ∈ N (xe), lim
t→+∞

x(t) = xe .

• unstable if it is not stable.

The basin of attraction of an equilibrium state xe is the set of initial states
x0 ∈ X from which a solution x(t) of (3.19) starts converging towards xe when
t → +∞. When the basin of attraction of an equilibrium state xe is the whole
state space X, one speaks of a globally asymptotically stable equilibrium state.

3.4.2 Stability of linear systems

Whenever the dynamic (3.19) turns out to be linear, it defines a dynamic
linear system

x(t + 1) = Ax(t) , (3.20)

where A is a real square matrix of size n. In this case, stability requirements
are easy to characterize using linear algebraic calculus and, in particular,
1 This last property defines an attractive point.
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eigenvalues2. Let us recall how the asymptotic behavior of the trajectories for
the linear system (3.20) depends on the modulus3 of the eigenvalues (possibly
complex) of the matrix A. The set of all eigenvalues of the square matrix A is
the spectrum spec(A). The sketch of the proof of the following Theorem 3.3
is recalled in Sect. A.1 in the Appendix.

Theorem 3.3. The zero equilibrium state for the linear system (3.20) is
asymptotically stable if the eigenvalues λ ∈ spec(A) of the matrix A have
modulus strictly less than one:

max
λ∈spec(A)

|λ| < 1 ⇐⇒ 0 is asymptotically stable for (3.20) .

Thanks to this result, we obtain a very simple criterion characterizing the
asymptotic stability of the equilibrium state xe = 0 of the linear system (3.20).

3.4.3 Linearization around the equilibrium

Unfortunately, in many cases, the dynamics around the equilibrium do not
display linear features. However, whenever dynamic F is continuously differ-
entiable, the linearization of the dynamics around the equilibrium generally
enables derivation of the local stability behavior of the system around this
equilibrium. This result stems from the fact that, close to the equilibrium
xe, dynamic F (x, ue) behaves like its first order (or linear) approximation
involving the derivatives ∂F

∂x (xe, ue) since

F (x, ue) ≈ xe + (x − xe)
∂F

∂x
(xe, ue) .

The linearized system associated with the dynamic (3.19) is

ξ(t + 1) = Aξ(t) , (3.21)

where the square matrix A = ∂F
∂x (xe, ue) is the Jacobian matrix of the dynamic

F (x, u) =

⎛

⎜⎝
F 1(x1, x2, . . . , xn, u)

...
Fn(x1, x2, . . . , xn, u)

⎞

⎟⎠

at the equilibrium (xe, ue):

2 Recall that an eigenvalue of the square matrix A is a complex λ such that there
exists a non zero complex vector v satisfying Av = λv. Eigenvalues are solutions
of the equation 0 = Det(A − λI), where I is the identity matrix.

3 For any complex z = a + ib ∈ C where i2 = −1, a ∈ R represents the real part,
b ∈ R stands for the imaginary part while the modulus is |z| =

√
a2 + b2.
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A =
∂F

∂x
(xe, ue) =

⎛

⎜⎜⎜⎜⎝

∂F 1

∂x1
(xe, ue)

∂F 1

∂x2
(xe, ue) · · · ∂F 1

∂xn
(xe, ue)

...
...

. . .
...

∂Fn

∂x1
(xe, ue)

∂Fn

∂x2
(xe, ue) · · ·

∂Fn

∂xn
(xe, ue)

⎞

⎟⎟⎟⎟⎠
. (3.22)

We can obtain asymptotic stability results using linearized dynamics [10].

Theorem 3.4. Let xe be an equilibrium state of the dynamical system (3.19)
where F is continuously differentiable in a neighborhood of (xe, ue). If the zero
equilibrium of the linearized system (3.21)-(3.22) is asymptotically stable, then
xe is asymptotically stable. In other words

max{|λ| , λ ∈ spec
(∂F

∂x
(xe, ue)

)
} < 1 =⇒ xe asymptotically stable.

If none of the eigenvalues of the Jacobian matrix (3.22) have a modulus exactly
equal to one, and if at least one eigenvalue has a modulus strictly greater than
one, then xe is unstable.

3.5 What about stability for MSE, PPE and CPE?

Due to the practical importance of management based on maximum sustain-
able yield management, private property, common property, or open access
equilibria, we provide an analysis of the stability of their equilibria.

We consider surplus models (3.5) for the management of a renewable re-
source. From Theorem 3.4, a sufficient condition for asymptotic stability of
(Be, he) relies on the marginal condition

|g′(Be − he)| < 1 .

We saw in (3.9) that the maximum sustainable equilibrium (Bmse, hmse) sat-
isfies g′(Bmse − hmse) = 1, when Bmse > 0. The maximum sustainable equilib-
rium thus lies at the boundary between asymptotic stability and instability.

As far as the private property equilibrium ppe is concerned, it is asymp-
totically stable under some assumptions on the signs of the following partial
derivatives:

• Ch(h,B) ≤ p, meaning that an increment in catches increases the rent
since Rh(h,B) = p − Ch(h,B) ≥ 0;

• CB(h,B) ≤ 0, meaning that the harvesting costs decrease with the
biomass.

Indeed, from (3.11) we deduce that

0 ≤ g′(Bppe − hppe) =
p − Ch(hppe, Bppe)

p − Ch(hppe, Bppe) − CB(hppe, Bppe)
≤ 1 ,
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(a) CPE Equilibrium: instability and ex-
tinction from below
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(b) PPE Equilibrium: stability

Fig. 3.2. Local stability of PPE and instability of CPE equilibria for Beverton-
Holt recruitment for Antartic blue whale data from [7]: intrinsic growth R = 1.05,
carrying capacity K = 400 000 whales, cost c = 600 000 $ per whale-catcher year,
catchability q = 0.0 016 per whale-catcher year and p = 7 000 $ per whale. Trajec-
tories are obtained by Scilab code 5. The straight line is the maximum sustainable
equilibrium mse.

and the private property equilibrium ppe is asymptotically stable.

Let us now examine the stability of the equilibria for the Beverton-Holt
g(B) = RB

1+bB recruitment dynamic. Let (Be, he) be an admissible equilibrium,
namely 0 ≤ Be ≤ R−1

b and he = σ(Be) given by (3.14). We have

d

dB |B=Be

g(B − he) =
R

(
1 + b(Be − he)

)2 =
(R − bBe)2

R
.

Thus, any equilibrium (Be, he) is asymptotically stable if

(R − bBe)2 < R .

Since Be ≤ R−1
b , we obtain that R − bBe0 ≥ 1 and we find the stability

requirement:
R −

√
R

b
< Be .

Consequently, equilibria Be need to be small enough for a feasible harvesting
to exist (Be ≤ K by (3.14)) while large enough for asymptotic stability to
hold true. Using (3.15), we thus establish the following requirements for an
equilibrium to exist and to be asymptotically stable.

Result 3.5 For the Beverton-Holt population dynamic, an equilibrium Be is
asymptotically stable if it lies between the maximum sustainable biomass and
the carrying capacity

Bmse < Be ≤ K .
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Fig. 3.2 illustrates the stability results for the Antartic blue whale. Both
common property and private property equilibria are examined from data
provided in [7]: intrinsic growth is set to R = 1.05 per year, carrying ca-
pacity is K = 400 000 whales, unit cost is c = 600 000 $ per whale-catcher
year, catchability is q = 0.0 016 per whale-catcher year and p = 7 000 $
per whale. Trajectories are obtained by Scilab code 5. Computations for
equilibrium states give Bmse ≈ 197 560 whales, Bppe ≈ 224 962 whales and
Bcpe ≈ 53 571 whales. From inequality (3.16) Bmse < Bppe, we deduce that
the sole owner equilibrium Bppe is asymptotically stable whereas the maxi-
mum sustainable equilibrium is not. The stability of cpe depends on costs
and prices: a low fraction

c

pq
= Bcpe displays instability as one might then

have Bcpe ≤ Bmse. Such is the case for blue whale data as depicted by Fig. 3.2
(a). Let us point out that instability of cpe also means extinction, in the
sense that B(t) →t→+∞ 0 for initial states B(t0) starting from below the
equilibrium Bcpe.

Scilab code 5.

//
// exec stab_BH.sce ; clear

////////////////////////////////////////////////////

// Antartic Blue whales data

////////////////////////////////////////////////////

// Biological parameters and functions

R_B=1.05;

// Intrinsic rate of growth 5% per year

k = 400000;

// Carrying capacity (whales)

b = (R_B-1)./k;

function [y]=Beverton(N)

// Beverton-Holt population dynamics

y=(R_B*N)./(1 + b*N)

endfunction

function [h]=Sust_yield(N)

// sustainable yield

h=Beverton(N)-N

endfunction

function [y]=Beverton_e(t,N)

he=Sust_yield(Ne);

y=max(0,Beverton(N) - he);

endfunction

// Economic parameters

c_e=600000; // cost in $ per whale catcher year

p=7000; // price in $ per blue whale unit

q=0.0016; // catchability per whale catcher year

////////////////////////////////////////////////////

// Equilibria and yields

////////////////////////////////////////////////////

NMSE= (sqrt(R_B) - 1)/b ;

// Maximum sustainable equilibrium MSE

NPPE= ( sqrt( R_B * (1 + (b*c_e/(p*q)) ) ) - 1 ) / b ;

// Private property equilibrium PPE

NCPE=c_e/(p*q) ;

// Common property equilibrium CPE

hMSE= Sust_yield(NMSE) ;

hPPE= Sust_yield(NPPE) ;

hCPE= Sust_yield(NCPE) ;

////////////////////////////////////////////////////

// Trajectories simulations

////////////////////////////////////////////////////

// Only the last line counts. Change it.

Ne=NCPE // unstable case

Ne=NPPE // stable case

he=Beverton(Ne)-Ne

Horizon=500; time=1:Horizon;

// Time horizon

epsil=20000;

// Perturbation level around the equilibrium

xset("window",2); xbasc(2);

plot2d2(time,ones(1,Horizon)*NMSE,rect=[1,0,Horizon,k]);

Time=linspace(1,Horizon,20);

plot2d2(Time,ones(Time)*NMSE,style=-4);

legends("MSE",-4,’lr’)

// Plot of the MSE

for (i=1:10) // trajectories loop

N0=Ne + 2*(rand(1)-0.5)*epsil;

// perturbation of initial state

Nt=ode("discrete",N0,0,time,Beverton_e);

// computation of the trajectory

plot2d2(time,Nt,rect=[1,0,Horizon,k]);

// plot of the trajectory

end

xtitle(’Abundances trajectories’,’years’,...

’abundances (whales)’)

//
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3.6 Open access, instability and extinction

For the open access model, the Jacobian matrix of dynamics (3.17) at equi-
librium xe = (Be, ee) is

A =
dF

dx
(xe) =

(
(1 − qee)g′

(
Be(1 − qee)

)
; −qBeg

′(Be(1 − qee)
)

αpqee ; 1

)
,

where we use the property (3.18) that Be =
c

pq
. In the linear case g(B) = RB

where ee =
R − 1
Rq

, stability cannot be performed as illustrated by Fig. 3.3.

This situation stems from the fact that the Jacobian matrix reads as follows:

A =

(
R(1 − qee) ; −RqBe

αpqee ; 1

)
=

(
1 −Rc

p

αpR−1
R 1

)
.

The two eigenvalues (λ1, λ2) of matrix A are the solution of

0 = Det(A − λI2) = (1 − λ)2 + αc(R − 1) .

Since R > 1, we deduce that λ1 = 1−i
√

αc(R − 1) and λ2 = 1+i
√

αc(R − 1).
Therefore, the modulus of each eigenvalue is

|λ1| = |λ2| =
√

1 + αc(R − 1) ,

strictly greater than 1 whenever α > 0. Consequently, stability cannot occur
as illustrated in the Figs. 3.3 for the specific parameters p = 1, q = 1, c = 2,
α = 10−2.5, g(B) = (1 + r)B, r = 0.1. Note that such an instability relies
on oscillations that display greater and greater amplitude through time. This
process ends with the collapse of the whole system, including extinction of the
resource. Other illustrative numerical examples can be found in [3] for logistic
dynamics.
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Fig. 3.3. Open access: a case of instability and non viability (p = 1, q = 1, c = 2,
α = 10−2.5, g(B) = RB, R = 1.1). The trajectories were generated by Scilab code 6.
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Scilab code 6.

//
// exec open_access.sce ; clear

p=1;q=1;c=2;

eta=10^{-2.5}; r=0.1;// Divergent case for open access

NV=%eps*10^10 // Minimum viable population

N_CPE=c/(p*q)

E_CPE=r/q

R=1+r;

A=[1 -R*c/p; eta*p*r/R 1]; // Jacobian matrix

spec(A) // Spectrum of Jacobian matrix

// Linear population growth with Allee effect

function [y]=Linear(N)

y=N*(1+r), y=y*(y>NV)

endfunction

// rent of the catches

function R=Rent(N,e)

R=p*q*e*N-c*e

endfunction

function y=Open_access(t,x)

// Open access dynamics

y=zeros(2,1)

N=x(1,1),e=x(2,1)

y(1,1)=max(0,Linear(N-q*e*N))

y(2,1)=max(0,(e+eta*Rent(N,e)))

endfunction

// graphics

xset("window",2); xbasc(2); ...

xtitle(’Biomass trajectory’,’time t’,’biomass B(t)’);

xset("window",3); xbasc(3); ...

xtitle(’Effort trajectory’,’time t’,’effort e(t)’)

xset("window",4); xbasc(4); ...

xtitle(’Phase portrait’,’biomass B(t)’,’effort e(t)’)

// trajectories

Horizon=10000;

time=0:Horizon;

x0=[N_CPE;E_CPE]+(rand(1)-0.5)/100;

// initial condition around CPE

xt=ode("discrete",x0,0,time,Open_access);

// Computation of the trajectory

xset("window",2);

plot2d(time,[ones(Horizon+1,1)*N_CPE xt(1,:)’],...

rect=[1,0,Horizon,max(xt(1,:))*1.5]);

xset("window",3);

plot2d(time,xt(2,:)’,rect=[1,0,Horizon,max(xt(2,:))*1.5]);

xset("window",4);

plot2d(xt(1,time+1), xt(2,time+1)’,...

rect=[0,0,max(xt(1,:))*1.5,max(xt(2,:))*1.5]);

//

3.7 Competition for a resource: coexistence vs exclusion

We end this Chapter with the exclusion principle in ecology coping with a
community competing for a limited resource. Species competition is an issue
of fundamental importance to ecology. The classical theory makes use of the
Lotka-Volterra competition model. In the past few decades, Tilman [11] has
introduced a new approach based on a mechanistic resource-based model of
competition between species and uses the resource requirements of the com-
peting species to predict the outcome of species competition. The strength of
the resource-based model lies in an exclusion principle. This principle states
that, in the context of a multi-species competition for a limiting factor, the
species with the lowest resource requirement in equilibrium will competitively
displace all other species. In this setup, the system is driven to mono-culture
and the equilibrium outcome of species competition is the survival of the
species which is the superior competitor for the limiting resource, that is, the
species with the lowest resource requirement. This model has been examined
from a bioeconomic perspective for the management of renewable resources.
As shown in [1], an exclusion process again occurs, condemning, in this sense,
biodiversity. Numerous studies are now aiming at relaxing the model to allow
for the coexistence of species. The model is generally described in a continuous
time framework. However, we here expose a discrete time version and study
the stability of the equilibrium. The state variables are
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Fig. 3.4. An example of the exclusion principle of a resource-based model: the
only stable equilibrium contains only the species (here N3) with lowest resource
requirement at equilibrium Re. The other species N1, N2, N4, N5 are driven to
extinction.

• species i density Ni(t), for i = 1, . . . , n;
• the limited resource, represented by R(t), for which the species compete.

The time interval between t and t + 1 is Δt. We consider the dynamic

Ni(t + 1) = Ni(t) + Δt

(
Ni(t)(fiR(t) − di)

)
, i = 1, . . . , n , (3.23a)

R(t + 1) = R(t) + Δt

(
S(t) − aR(t) −

n∑

i=1

wifiR(t)Ni(t)
)

. (3.23b)

In (3.23a), the rate of growth

Ni(t + 1) − Ni(t)
Δt

= Ni(t)(fiR(t) − di)

of species i density is linear in Ni(t) with per capita rate of growth fiR(t)−di

where

• fiR(t) is the resource-based per capita growth of species i; the higher
fi > 0, the more species i can exploit the resource R(t) for its own growth;

• di > 0 is the natural death rate.
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In (3.23b), the rate of growth

R(t + 1) − R(t)
Δt

= S(t) − aR(t) −
n∑

i=1

wifiR(t)Ni(t)

of the resource R(t) is decomposed in three terms:

• S(t) is the input of the resource, supposed to be known and taken as
stationary in what follows;

• −aR(t) corresponds to self-limitation of the resource with a > 0; the ex-
pression S(t)−aR(t) stands for the natural evolution of the resource with-
out interactions with species;

• −wifiR(t)Ni(t) represents the effect of competition of species i on the
resource, where wi > 0 is the impact rate of species i on resource R.

The following Result states the so-called exclusion principle, also illus-
trated by Fig. 3.4. A proof is given in Sect. A.1 in the Appendix.

Result 3.6 Suppose that input S(t) is stationary, set to value Se. If Se is
large enough, and if the time unit Δt > 0 is small enough4, the only asymp-
totically stable equilibrium of (3.23a)-(3.23b) is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Re = min
i=1,...,n

di

fi
=

die

fie

,

Ni,e =

⎧
⎨

⎩

Se − Rea

Rewiefie

> 0 if i = ie ,

0 if i �= ie .

(3.24)

4 And excluding the exceptional case where di/fi = dj/fj for at least one pair
i 	= j.
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4

Viable sequential decisions

Basically, viability means the ability of survival, namely the capacity for a sys-
tem to maintain conditions of existence through time. By extension, viability
may also refer to perennial situations of good health, safety, or effectiveness
in the sense of cost-effectiveness in economics.

Of major interest are viability concerns for the sustainability sciences and
especially in bioeconomics, environmental or ecological economics or conser-
vation biology. Harvesting a resource without jeopardizing it, preventing ex-
tinction of rare species, preserving biodiversity or ecosystems, avoiding or
mitigating climate change are all examples of sustainability issues where via-
bility plays a major role. For instance, the quantitative method of conservation
biology for the survival of threatened species is termed Population Viability
Analysis (pva) [19]. Safe Minimum Standards (sms) [4] have been proposed
with the goal of preserving and maintaining a renewable resource at a level
that precludes irreversible extinction except in cases where social costs are
prohibitive or immoderate. Similarly, the ices precautionary framework [15]
aims at conserving fish stocks and fisheries on the grounds of several indi-
cators including spawning stock biomass or fishing effort multiplier. In this
context, reference points not to be exceeded for these bioeconomic indicators
stand for management objectives. In the same vein, for greenhouse gas issues,
a tolerable mitigation policy is often represented by a ceiling threshold of
co2 concentration (for instance 450 ppm) not to be violated [16]. Basically,
in these cases, sustainability is defined as the ability to maintain the system
within some satisfying normative bounds for a large or indefinite time.

Regarding these issues, a major challenge is to study the compatibility be-
tween controlled biological, physical and economical dynamics and constraints
or targets accounting for economic and/or ecological objectives. Such preoccu-
pations refer to the study of controlled dynamical systems under constraints
and targets. Such a mathematical problem is termed weak or controlled invari-
ance [6, 24] or a viability problem [1]. In applied mathematics and the systems
theory, the question of constraints has mostly been neglected to concentrate
rather on steady state equilibria or optimization concepts. Equilibrium and
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stability depicted in the previous Chap. 3 are only a partial response to via-
bility issues. Indeed, equilibria are clearly “viable” but such an analysis does
not take into account the full diversity of possible transitions of the system.
Although dynamics optimization problems are usually formulated under con-
straints as will be seen in Chap. 5, the role played by the constraints poses
difficult technical problems and is generally not tackled by itself. Furthermore,
the optimization procedure reduces the diversity of feasible forms of evolution
by, in general, selecting a single trajectory.

The aim of this Chapter is to provide the specific mathematical tools to
deal with discrete time dynamical systems under state and control constraints
and to shed new light on some applied viability problems, especially in the
economic and environmental fields.

The ideas of all the mathematical statements presented in this Chapter are
inspired mainly by [1] in the continuous case. Here, to restrict the mathemat-
ical content to a reasonable level, we focus on the discrete time framework as
in [8, 24]. We illustrate the mathematical concepts or results through simple
examples taken from the environmental and sustainability topics. We refer
for instance to [17] for exhaustible resource management. The tolerable win-
dows approach [5, 21] proposes a similar framework, mainly focusing on cli-
mate change issues. Works [2, 3, 7, 9, 10, 11, 13, 18, 20] cope with renewable
resource management and especially fisheries. Agricultural and biodiversity
issues are especially handled in [23, 22]. From the ecological point of view, the
so-called population viability analysis (pva) and conservation biology display
concerns close to those of the viable control approach by focusing on extinc-
tion processes in an uncertain (stochastic) framework. Links between pva and
the viable control approach will be examined in Chap. 7 dealing with stochas-
tic viability. Moreover, as emphasized in [17], the viable control approach is
deeply connected with the Rawlsian or maximin approach [14] important for
intergenerational equity as will be explained in Chap. 5.

The chapter is organized as follows. In Sect. 4.1, we present the viability
problem on the consistency between a controlled dynamic and acceptability
constraints. Resource management examples under viability constraints are
given in Sect. 4.2. The main concept to tackle the viability problem is the via-
bility kernel, introduced in Sect. 4.3 together with the dynamic programming
method. By dynamic programming, the dynamic viability decision problem
is solved sequentially: one starts at the final time horizon and then applies
some backward induction mechanism at each time step. A specific Sect. 4.4 is
dedicated to viability in the autonomous case. Following sections are devoted
to examples. We end with invariance, or strong viability, in Sect. 4.10. This
is a very demanding concept which refers to the respect of given constraints
whatever the admissible options of decisions or controls taken at every time.
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4.1 The viability problem

The viability problem relies on the consistency between a controlled dynamic
and acceptability constraints applying both to states and decisions of the
system.

The dynamics

We consider again the following nonlinear dynamical system, as in Sect. 2.9,

x(t + 1) = F
(
t, x(t), u(t)

)
, t = t0, . . . , T − 1 with x(t0) = x0 , (4.1)

where x(t) ∈ X = R
n is the state (co2 concentration, biomass, abun-

dances. . . ), u(t) ∈ U = R
p is the control or decision (abatement, catch, ef-

fort. . . ), T ∈ N∪{+∞} corresponds to the time horizon which may be finite or
infinite, and x0 ∈ X is the initial condition at initial time t0 ∈ {0, . . . , T − 1}.

Viability is related to preservation, permanence and sustainability of some
conditions which represent survival, safety or effectiveness of a system. We
introduce both decision and state constraints, and coin them as ex ante or a
priori viability conditions.

Decision constraints

We consider the conditions

u(t) ∈ B
(
t, x(t)

)
, t = t0, . . . , T − 1 . (4.2a)

The non empty control domain B
(
t, x(t)

)
⊂ U is the set of admissible and

a priori acceptable decisions. The most usual case occurs when the set of
admissible controls is constant i.e. B(t, x) = B for every state x and time t.
Generally, these constraints are associated with equality and inequality (vec-
torial) requirements of the form

bi

(
t, x(t), u(t)

)
≤ 0 , be

(
t, x(t), u(t)

)
= 0 .

State constraints

The safety, the admissibility or the effectiveness of the state for the system at
time t is represented by non empty state constraint domains A(t) ⊂ X in the
sense that we require

x(t) ∈ A(t) , t = t0, . . . , T − 1 . (4.2b)

The usual example of such a tolerable window A(t) concerns equality and
inequality (vectorial) constraints of the type

ai

(
t, x(t)

)
≤ 0 , ae

(
t, x(t)

)
= 0 .
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Target constraints

Target problems are specific state requirements of the form

x(T ) ∈ A(T ) . (4.2c)

Hereafter, target constraints (4.2c) and state constraints (4.2b) are unified
through the following constraints

x(t) ∈ A(t) , t = t0, . . . , T . (4.2d)

The question of consistency between dynamics and constraints

Dynamics (4.1) and constraints (4.2a)–(4.2d) form a set of relations for which
there may or may not exist a global solution because some requirements and
processes may turn out to be contradictory along time. Viability or weak or
controlled invariance issues focus on the initial states for which at least one
feasible solution combining dynamics and constraints exists. Mathematically
speaking, the viability problem consists in identifying conditions under which
the following set of state-control trajectories (already introduced in (2.63)),

T ad(t0, x0) =

⎧
⎪⎪⎨

⎪⎪⎩

(
x(·), u(·)

)

∣∣∣∣∣∣∣∣

x(t0) = x0 ,
x(t + 1) = F

(
t, x(t), u(t)

)
, t = t0, . . . , T − 1

u(t) ∈ B
(
t, x(t)

)
, t = t0, . . . , T − 1

x(t) ∈ A(t) , t = t0, . . . , T

⎫
⎪⎪⎬

⎪⎪⎭
(4.3)

is not empty, and then exhibiting its elements.
More specifically, in the sustainability context, viability may capture the

satisfaction of both economic and environmental constraints. In this sense, it
is a multi-criteria approach sometimes known as co-viability.

Moreover, as soon as the constraints do not explicitely depend on time t
and the horizon is infinite (T = +∞), let us stress that an intergenerational
equity feature is naturally integrated within this framework as the viability
requirements are identical along time without future or present preferences.

4.2 Resource management examples under viability
constraints

We provide simple examples in the management of a renewable resource, in
climate change mitigation, in the management of an exhaustible resource and
of forestry.
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4.2.1 Viable management of a threatened population

Suppose that the dynamics of a renewable resource, characterized by its
biomass B(t) and catch level h(t), is governed by

B(t + 1) = g
(
B(t) − h(t)

)
,

where g is some natural resource growth function, as in Sect. 2.2. The har-
vesting of the population is constrained by the biomass

0 ≤ h(t) ≤ B(t) .

We look for policies which maintain the biomass level within an ecological
window, namely between conservation and maximal safety values, at all times.

0 < B� ≤ B(t) ≤ B� .

Think of a population which may have extinction threats for small popu-
lation levels because of some Allee effect while it can be dangerous for other
species or the habitat from some higher level. Elephant populations in Africa
or predator fish species like Nile Perch are significant examples. For social ra-
tionale, we can also require guaranteed harvests that provide food or money
for local human populations in the area under concern:

0 < h� ≤ h(t) .

The question that arises is whether conservation, habitat and harvesting goals
can all be met simultaneously.

4.2.2 Mitigation for climate change

The following model, presented in Sect. 2.3, deals with the management of
the interaction between economic growth and greenhouse gas emissions as in
[12]. Let us consider the following dynamics of co2 concentration M(t) and
economic production Q(t):

{
M(t + 1) = M(t) + αEbau

(
Q(t)

)
(1 − a(t)) − δ(M(t) − M∞) ,

Q(t + 1) = (1 + g)Q(t) .

Here, control a(t) ∈ [0, 1] is the abatement rate of co2 emissions. The co2

emission function Ebau(Q) > 0 represents a “business as usual” scenario and
depends on production level Q(t). Production Q(t) grows at rate g. We require
the abatement costs C(a,Q) not to exceed a maximal cost threshold:

C
(
a(t), Q(t)

)
≤ c� , t = 0, . . . , T .

The concentration has to remain below the tolerable level at the horizon T in
a target framework:
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M(T ) ≤ M � .

A more demanding requirement consists in constraining the concentration
over the whole period:

M(t) ≤ M � , t = 0, . . . , T .

4.2.3 Management of an exhaustible resource

Following [17] in a discrete time context, we describe an economy with ex-
haustible resource use by

{
S(t + 1) = S(t) − h(t) ,

K(t + 1) = K(t) + Y
(
K(t), h(t)

)
− c(t) ,

as in Sect. 2.7, where S is the exhaustible resource stock, h stands for the
extraction flow, K represents the accumulated capital, c stands for the con-
sumption and the function Y represents the technology of the economy. Hence,
the decision or controls of this economy are levels of consumption c and ex-
traction h respectively.

Now let us consider the state-control constraints. First it is assumed that
extraction h(t) is irreversible in the sense that

0 ≤ h(t) . (4.4)

We also consider that the capital is nonnegative

0 ≤ K(t) . (4.5)

We take into account scarcity of the resource by requiring

0 ≤ S(t) .

Letting S� > 0 stand for some minimal resource target, we can more generally
consider a stronger conservation constraint for the resource as follows:

S� ≤ S(t) . (4.6)

We may choose to impose a requirement related to some guaranteed consump-
tion level c� > 0 along the generations:

c� ≤ c(t) . (4.7)

This constraint refers to sustainability and intergenerational equity since it
can be written in terms of utility in a form close to Rawl’s criteria:

L(c�) ≤ inf
t=t0,...,T−1

L
(
c(t)
)

.

This equivalence comes from the fact that a utility function is strictly increas-
ing1 in consumption c.
1 We shall say that f is an increasing function if x ≥ x′ ⇒ f(x) ≥ f(x′), while f

is a strictly increasing function if x > x′ ⇒ f(x) > f(x′).
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4.2.4 Forestry management

A detailed version of the following model with age classes is exposed in [20].
As described in Sect. 2.5, we consider a forest whose structure in age is rep-
resented in discrete time by a vector of surfaces

N(t) =

⎛

⎜⎜⎜⎝

Nn(t)
Nn−1(t)

...
N1(t)

⎞

⎟⎟⎟⎠ ∈ R
n
+ ,

where Nj(t) (j = 1, . . . , n− 1) represents the surface used by trees whose age,
expressed in the unit of time used to define t, is between j − 1 and j at the
beginning of yearly period [t, t+1[; Nn(t) is the surface of trees of age greater
than n − 1. We assume that the natural evolution, i.e. without exploitation,
of the vector N(t) is described by a linear system

N(t + 1) = AN(t) , (4.8)

where the terms of the matrix A are nonnegative, which ensures that N(t)
remains nonnegative at any time. Particular instances of matrices A are of
the Leslie type

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 − m 1 − m 0 · · · 0

0 0 1 − m
. . . 0
. . . 0

0 . . . 0
. . . 1 − m

γ γ γ . . . γ

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (4.9)

where m ∈ [0, 1] is a mortality parameter and γ plays the role of the recruit-
ment parameter.

Now we describe the exploitation of such a forest resource. For the sake
of simplicity, we assume, first, that the minimum age at which trees can be
cut is n and, second, that each time a tree is cut, it is immediately replaced
by a tree of age 0. Thus, introducing the scalar variable decision h(t) which
represents the surface of trees harvested at time t, we obtain the following
controlled evolution

N(t + 1) = AN(t) + B h(t) ,

where B is equal to the column2 vector
(
−1 0 · · · 0 1

)′.
Furthermore, since one cannot plan to harvest more than exists at the

beginning of the unit of time, the decision or control variable h(t) is subject
to the constraint
2 The superscript ′ stands for transposition.
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0 ≤ h(t) ≤ Nn(t) = CN(t) ,

where the row vector C is equal to
(
1 0 · · · 0 0

)
, which ensures the non-

negativity of the resource. Notice that by choosing this constraint, we have
implicitly assumed that the harvesting decisions h(t) are effective at the be-
ginning3 of each period [t, t + 1[.

To encompass the economic or social feature of the exploitation, we asso-
ciate the harvesting h(t) with an income, a utility or a service. This harvesting
is required to exceed some minimal threshold h� > 0 at any time:

h� ≤ h(t) .

4.3 The viability kernel

Mathematically, viability or weak invariance issues refer to the consistency
between dynamics (4.1) and constraints (4.2a)–(4.2d). Among different ideas4

to display viability, we focus on the largest viable part of the state constraints:
this corresponds to the viability kernel concept that we develop hereafter.

4.3.1 The viability kernel

Indeed, a first idea to generate viable behaviors is to consider the set of states
from which at least one trajectory starts together with a control sequence,
both satisfying the dynamical system equations and the constraints through-
out time.

Definition 4.1. The viability kernel at time s ∈ {t0, . . . , T} for dynam-
ics (4.1) and constraints (4.2a)–(4.2b)–(4.2c) is the subset of the state space X,
denoted by Viab(s), defined by:

Viab(s) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ∈ X

∣∣∣∣∣∣∣∣∣∣

there exist decisions u(·)
and states x(·) starting from x at time s
satisfying for any time t ∈ {s, . . . , T − 1}
dynamics (4.1) and constraints (4.2a)–(4.2b)
and satisfying (4.2c) at final time T.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (4.10)

Notice that, as illustrated in Fig. 4.1,

Viab(s) ⊂ A(s)
3 Harvesting decisions effective at the end of each unit of time t would give 0 ≤

h(t) ≤ CAN(t).
4 One consists in enlarging the constraints and corresponds to the viability envelope

concept, while the idea of forcing is to modify the dynamics by introducing new
regulations or controls.
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because the state constraint (4.2b) is satisfied at time s. It can also be em-
phasized that the viability kernel at horizon T is the target set (4.2c):

Viab(T ) = A(T ) .

Although we are especially interested in the viability kernel Viab(t0) at
initial time t0, we have introduced all the Viab(s) for s ∈ {t0, . . . , T}. Indeed,
we now describe how Viab(t0) is given by a backward induction involving the
other viability kernels Viab(T ), Viab(T − 1), . . . , Viab(t0 + 1).

Fig. 4.1. The state constraint set A is the large set. It includes the smaller viability
kernel Viab.

4.3.2 Maximality and Bellman properties

As in dynamics optimization problems5, the Bellman/dynamic programming
principle (DP) can be obtained within the viable control framework. Basically,
the dynamic programming principle means that the dynamics decision-making
problem is solved sequentially: one starts at the final time horizon and then
applies some backward induction mechanism at each time. For viability prob-
lems, this principle can be described through both geometrical and functional
formulations. We distinguish the infinite and finite horizons. The proofs of
the two following Propositions 4.2 and 4.3 can be found in Sect. A.2 in the
Appendix.

A geometric characterization in the finite horizon case is given by the
following Proposition 4.2.

Proposition 4.2. Assume that T < +∞. The viability kernel Viab(t) satis-
fies the backward induction, where t runs from T − 1 down to t0:
5 See Chaps. 5 and 8.
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{
Viab(T ) = A(T ) ,

Viab(t) = {x ∈ A(t) | ∃u ∈ B(t, x) , F (t, x, u) ∈ Viab(t + 1)} .
(4.11)

Similarly, an equivalent functional characterization can be derived in the
finite horizon case. To achieve this, we introduce the extended6 characteristic
function of a set K ⊂ X:

ΨK(x) :=

{
0 if x ∈ K

+∞ otherwise.
(4.12)

Proposition 4.3. Assume that T < +∞. The extended function V : (t, x) �→
ΨViab(t)(x) is the solution of the Bellman equation, or dynamic programming
equation, where t runs from T − 1 down to t0:

⎧
⎪⎨

⎪⎩

V (T, x) = ΨA(T )(x) ,

V (t, x) = inf
u∈B(t,x)

(
ΨA(t)(x) + V

(
t + 1, F (t, x, u)

))
.

(4.13)

This Proposition may provide an approximation algorithm by replacing ΨA(t)

with a function taking a large value on A(t) and zero elsewhere.

4.3.3 Viable controls and feedbacks

The previous characterizations of the viability kernels point out that, for every
point x inside the corridor Viab(t), there exists an admissible control u which
yields a future state F (t, x, u) remaining in Viab(t + 1) and, consequently, in
A(t). Thus, the following viable regulation set

B
viab(t, x) := {u ∈ B(t, x) | F (t, x, u) ∈ Viab(t + 1)} (4.14)

is not empty. Any u ∈ B
viab(t, x) is said to be a viable control. A viable feedback

is a function u : N × X → U such that u(t, x) ∈ B
viab(t, x) for all (t, x).

At this stage, let us note that the viability kernels elicit the “true” state
constraints of the problem because the viable strategies and controls are de-
signed to make sure that the state remains within the viability kernels Viab(t)
instead of the initial state constraints A(t). This situation explains why we
may speak of ex post viability. In other words, the boundary of viability ker-
nels stands for security barriers with respect to initial viability bounds which
are larger, as depicted by Fig. 4.1.

6 By extended, we mean that a real valued function may take the values −∞ and
+∞.
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We can see at once that B
viab(t, x) has no reason to be reduced to a sin-

gleton and, thus, there is no uniqueness of viable decisions. This situation ad-
vocates for multiplicity and flexibility in the viable decision process. We may
however require more oriented and specified decisions among the viable ones.
Reference [1] proposes some specific selection procedures such as barycen-
tric, slow or inertial viable controls. Other optimal selections are examined in
Chap. 5 dealing with optimal control.

Viability kernels and viable controls make a characterization of the feasi-
bility problem as exposed in Subsect. 4.1 possible. The proof of the following
Proposition 4.4 is a consequence of Proposition 4.2 and of the definition (4.14).

Proposition 4.4. The feasibility set T ad(t0, x0) in (4.3) is not empty if, and
only if, the initial state belongs to the initial viability kernel:

x0 ∈ Viab(t0) ⇐⇒ T ad(t0, x0) �= ∅ . (4.15)

Furthermore, any trajectory in T ad(t0, x0) is generated by selecting u(t) ∈
B

viab
(
t, x(t)

)
. In other words

T ad(t0, x0) =

⎧
⎨

⎩
(
x(·), u(·)

)
∣∣∣∣∣∣

x(t0) = x0,
x(t + 1) = F

(
t, x(t), u(t)

)
, t = t0, . . . , T − 1

u(t) ∈ B
viab
(
t, x(t)

)
, t = t0, . . . , T − 1

⎫
⎬

⎭ .

(4.16)

Notice that the state constraints (4.2d) have now disappeared, having been
incorporated into the new control constraints u(t) ∈ B

viab
(
t, x(t)

)
.

4.3.4 Viability in the infinite horizon case

Particularly when T = +∞, rather than considering the constraints (4.2a)–
(4.2b), one may consider the state/control constraintswhich are respected at
any time t:

(x(t), u(t)) ∈ D(t) ⊂ X × U . (4.17)

The definition of the viability kernel is now [8]

Viab :=

⎧
⎪⎪⎨

⎪⎪⎩
x ∈ X

∣∣∣∣∣∣∣∣

there exist decisions u(·)
and states x(·) starting from x at time t0
satisfying for any time t = t0, t0 + 1, . . .
dynamics (4.1) and constraints (4.17).

⎫
⎪⎪⎬

⎪⎪⎭
. (4.18)

4.4 Viability in the autonomous case

The so-called autonomous case of fixed (or autonomous, stationary) con-
straints and dynamics is when
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A(t) = A ,

B(t, x) = B(x) ,

F (t, x, u) = F (x, u) .

(4.19)

The following Proposition 4.5 is a consequence of Definition 4.1 of viability
kernels.

Proposition 4.5. In the autonomous case (4.19), the viability kernels are
increasing with respect to time:

Viab(t0) ⊂ Viab(t0 + 1) ⊂ · · · ⊂ Viab(T ) = A . (4.20)

If, in addition, the horizon is infinite (T = +∞), the viability kernels are
stationary and we write the common set Viab:

Viab(t0) = · · · = Viab(t) = · · · = Viab ⊂ A . (4.21)

4.4.1 Equilibria and viability

Chap. 3 pointed out the interest of equilibria in dealing with sustainability
issues, especially for renewable resources, through the maximum sustainable
yield concept. An equilibrium is only a partial response to viability issues.
Indeed, admissible equilibria are clearly “viable” but such an analysis does
not take into account the full diversity of tolerable transitions of the system.
It turns out that the viability approach enlarges that of equilibrium. Hence, in
the autonomous case (4.19), it is straightforward to prove that the admissible
equilibria constitute a part of any viability kernel.

Proposition 4.6. In the autonomous case (4.19), the admissible equilibria of
Definition 3.1 belong to the viability kernel Viab(t) at any time t:

X
ad
e

:= {xe ∈ A | ∃ue ∈ B(xe) , xe = F (xe, ue)} ⊂ Viab(t) .

Notice that, by (4.20), this is equivalent to X
ad
e

⊂ Viab(t0).

4.4.2 Viability domains

Viability domains are convenient for the characterization of the viability kernel
as shown below. Basically, a viability domain is a set that coincides with its
viability kernel. It is defined as follows.

Definition 4.7. In the autonomous case (4.19), a subset V ⊂ X is said to be
weakly invariant, or a viability domain, or a viable set if

∀x ∈ V , ∃u ∈ B(x) , F (x, u) ∈ V . (4.22)
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An equivalent functional characterization is ΨV(x) = min
u∈B(x)

ΨV

(
F (x, u)

)
.

The set of equilibria is a particular instance of a viability domain. Cycles or
limit cycles constitute other illustrations of viability domains. Such a concept
is central to characterizing the viability kernel as detailed below.

4.4.3 Maximality and Bellman properties

In the autonomous case (4.19), the infinite horizon case provides the sim-
plest characterization since time disappears from the statements. A geometric
assertion in the infinite horizon case is given by the following Theorem [1]
involving viability domains (a proof may be found in [8]).

Theorem 4.8. In the autonomous case (4.19), the viability kernel is the
largest viability domain contained in A, that is to say, the union of all vi-
ability domains in A.

Thus, any viability domain is a lower approximation of the viability kernel,
being included in the latter. Similarly, we obtain a functional dynamic pro-
gramming characterization in the infinite horizon case.

Proposition 4.9. In autonomous case (4.19), the extended function ΨViab is
the largest solution V of the Bellman equation, or dynamic programming
equation, {

V (x) = inf
u∈B(x)

V
(
F (x, u)

)
,

V (x) ≥ ΨA(x) .
(4.23)

4.4.4 Viable controls

In the autonomous case (4.19) and in the infinite horizon case, the time com-
ponent vanishes and we obtain the viable controls as follows:

B
viab(x) := {u ∈ B(x) | F (x, u) ∈ Viab} . (4.24)

Hence, ensuring viability means remaining in the viability kernel, which stands
for the “true constraints” and thus sheds light on ex post viability.

4.4.5 Hopeless, comfortable and dangerous configurations

In the autonomous case (4.19), three significant situations are worth being
pointed out.

The comfortable case

Whenever the viability kernel is the whole set of constraints

A = Viab(t0) = Viab(t) ,

it turns out that the a priori state constraints (namely the set A) are relevant.
Indeed, from every state in A a feasible policy starts. In this case, the set A

is a viability domain.
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The dangerous case and security barriers

Configuration of partial viability refers to the case where the viability kernel
is neither empty nor viable, that is to say:

∅ � Viab(t0) � A .

As shown by Fig. 4.1, this case is dangerous since parts of the initial constraint
domain A are safe but others may lead to collapse or crisis by violating the
constraints in finite time whatever the admissible decisions u(·) applied. In-
deed, the set of boundary points of the viability kernel, Viab(t0), which is
located in A can be interpreted as the anticipative zone of dangers. If we go
over this safety barrier, we have to face the crisis (to be outside A) in finite
time whatever the future decisions taken. In this sense, one may speak of
viability margins for the viability kernel.

The hopeless case

Whenever the viability kernel is empty, that is

Viab(t0) = ∅ ,

unavoidable crisis and irreversibility is everywhere within domain A. In this
sense, we have a hopeless situation, and set A is said to be a repeller. Other
strategies, such as enlarging the constraints or modifying the dynamics should
be applied in order to solve the viability problem.

The following sections present the viability kernels together with related
viable feedbacks for some of the examples exposed in Sect. 4.2.

4.5 Viable control of an invasive species

We consider the discrete dynamics of an invasive species characterized by its
biomass B(t) and harvesting effort decision e(t). For the sake of simplicity, we
restrict the study to a non-density-dependent and linear case

B(t + 1) = RB(t)
(
1 − e(t)

)
,

where the productivity of the resource is strictly larger than 1 (R > 1). The
effort is constrained by

0 ≤ e� ≤ e(t) ≤ e� ≤ 1 .

We assume that the policy is to constrain the ultimate biomass level within an
ecological window, namely between conservation and maximal safety values
at time horizon T , giving:

0 < B� ≤ B(T ) ≤ B� .

We can show that viability occurs if the initial biomass is sufficiently high,
but not too high.
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Fig. 4.2. Viable resource management for time horizon T = 5. The tolerable
conservation window is C = [B�, B�] = [1, 2]. Growth parameter is R = 1.1. Effort
bounds are e� = 0.1 and e� = 0.3. We plot (a) viable trajectories of biomass states
B(t) and the boundaries of the viability kernel Viab(t), (b) Effort e(t) with the
acceptability bounds [e�, e�]. Trajectories have been generated by Scilab code 7

Result 4.10 The viability kernels are intervals

Viab(t) = [B�(t), B�(t)] ,

whose viability biomass bounds are given by
{

B�(t) = B�
(
R(1 − e�)

)t−1−T

B�(t) = B�
(
R(1 − e�)

)t−1−T
.

Viable feedback efforts e(t, B) are those belonging to the set

Eviab(t, B) =
{

e

∣∣∣∣1 − B�(t)
RB

≤ e ≤ 1 − B�(t)
RB

and e� ≤ e ≤ e�

}
.

Numerical illustrations are given in Fig. 4.2. Proof is expounded in
Sect. A.2 in the Appendix. When the state constraint is not only a final
one, but rather a requirement 0 < B� ≤ B(t) ≤ B� holding over all times
t = t0, . . . , T , one can verify that the viability kernels are intervals whose
bounds are given by backward inductions:

B�(t) = max{B�,
B�(t + 1)
R(1 − e�)

} and B�(t) = min{B�,
B�(t + 1)
R(1 − e�)

} .
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Scilab code 7.

//
// exec invasive_viability.sce

lines(0);

R=1.1;

// resource productivity

function y=dynpop(B)

y=R*B;

endfunction

Horizon=5 ;

// final time

B_min=1; B_max=2;

// state Constraints - target

e_min=0.01; e_max=0.3;

// control constraints

// Characteristic function State (approximation)

function y=Phi_x(t,B)

SGN = bool2s((B_min <= B) & (B<=B_max)) ;

// is 1 when B belongs to [B_min,B_max], 0 else

y=0*SGN + 1/%eps *(1-SGN) ;

// is 0 when B belongs to [B_min,B_max], +infty else

// if (B_min <= B) & (B<=B_max) then y=0;

// else y=exp(100);

// end

endfunction

// Characteristic function Control (approximation)

function [y]=Phi_u(t,B,e)

SGN = bool2s((e_min <= e) & (e<=e_max)) ;

y=0*SGN + 1/%eps *(1-SGN) ;

// if (e_min <= e) & (e<=e_max) then y=0;

// else y=exp(100);

// end

endfunction

// Grid state space x

x_min=0; x_max=10; delta_x=0.1 ;

grille_x=x_min: delta_x:x_max ;

S_x=size(grille_x) ;

NN=S_x(2) ;

// Grid control u

u_min=e_min; u_max=e_max; delta_u=0.01 ;

u=u_min:delta_u:u_max ;

S_u=size(u); MM=S_u(2) ;

function [z]=Projbis(x)

// projection of state on the grid

z=round(x./delta_x).*delta_x;

z=min(z,x_max);

z=max(z,x_min);

endfunction

function i=Indice(x)

i=int((x-x_min)./delta_x)+1;

endfunction

// controled dynamics on the grid

function [z]=dyna(x,e)

xsuiv=dynpop(x*(1-e));

P=Projbis(xsuiv);

z=Indice(P);

endfunction

for ii=1:NN

Etat_x(ii)=x_min+(ii-1)*delta_x;

end

for ii=1:MM

Control_u(ii)=u_min+(ii-1)*delta_u;

end;

///////////////////////////////////////////////

// Dynamic Programming Viability

///////////////////////////////////////////////

x=grille_x;

W=zeros(Horizon,NN); // W value function

// Initialization at final time T

for i=1:NN

xx=Etat_x(i);

W(Horizon,i)=-Phi_x(Horizon,xx);

end

// Bellman backward equation

for (t=Horizon-1:-1:1)

for (i=1:NN)

xx=Etat_x(i);

VV=[];

for (j=1:MM)

uu=Control_u(j);

VV=[VV; Phi_u(t,xx,uu)-Phi_x(t,xx)+W(t+1,dyna(xx,uu))];

end,

[Vopt,jopt]=max(VV) ;

W(t,i)=Vopt;

j_opt(t,i)=jopt;

end,

end,

////////////////////////////////////////////////////

// Simulations of some viable trajectories

////////////////////////////////////////////////////

xset("window",2); xbasc(2);

xtitle("Biomass",’time t’,’biomass B(t)’);

xset("window",3); xbasc(3);

xtitle("Catch effort",’time t’,’effort e(t)’);

if (max(W(1,:))>=0) then

for k=[0.8 2.2 3.5 4.5]

i(1)=Indice(k);

traj_x(1)=Etat_x(i(1));

for (t=1:Horizon-1)

e_viab(t)=Control_u(j_opt(t,i(t)));

i(t+1)=dyna(traj_x(t),e_viab(t));

traj_x(t+1)=Etat_x(i(t+1));

end

Tempx=1:Horizon;

Bin=B_min*(R*(1-e_min))^(Tempx-Horizon) ;

Bax=B_max*(R*(1-e_max))^(Tempx-Horizon) ;

xset("window",2);

plot2d(Tempx,[traj_x Bax’ Bin’ ],...

[1,2,3],rect=[1,x_min,Horizon,x_max],...

nax=[0,Horizon,1,11]);

plot2d(Tempx,[traj_x Bax’ Bin’ ],-[1,2,3]);

legends(["Viable state trajectories",...

"Upper boundaries of viability kernels",...

"Lower boundaries of viability kernels"],...

-[1,2,3],"ul");

//

Tempu=1:Horizon-1;

ein=e_min*ones(Tempu); eax=e_max*ones(Tempu);

xset("window",3);

plot2d(Tempu,[e_viab ein’ eax’],...

[1,2,3],rect=[1,0,Horizon,1],...

nax=[0,Horizon,1,11]);

plot2d(Tempu,[e_viab ein’ eax’],-[1,2,3]);

legends(["Viable control trajectories",...

"Upper boundary of control constraints",...

"Lower boundaries of control constraints"],...

-[1,2,3],"ul");

end

else "empty kernel"

end

//
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Fig. 4.3. The increasing curves are the baseline co2 emissions Ebau(t) = Ebau(Q(t))
and concentrations Mbau(t) over the period [2000, 2100]. Viable emissions Ebau(t)

(
1−

a(t)
)

and concentrations M(t) are trajectories that coincide with the baseline until

they decrease to reach the different concentration targets M � = 450, 550 and 650
ppm.

Let us now consider the problem introduced in Subsect. 4.2.2. Using vi-
able dynamic programming, we compute explicitly the feasible solutions of
the problem and, in particular, a viable concentration ceiling. We need to
introduce the following maximal concentration values:

M �(t) := (M � − M∞)(1 − δ)t−T + M∞ . (4.25)

These induced M �(t) thresholds play the role of a tolerable ceiling.

Result 4.11 An effective (viable) policy exists if, and only if, the initial
concentration M(t0) is smaller than M �(t0). In this case, the whole policy
a(t0), a(t0 + 1), . . . , a(T − 1) is effective if and only if associated concentra-
tions M(t) remain smaller than M �(t). In other words, we have:

Viab(t) =] −∞,M �(t)] × R+ .

Viable feedback abatement rates belong to the interval

Aviab(t,M,Q) =

[
max

{
0,

(1 − δ)
(
M − M �(t)

)
+ Ebau(Q)

Ebau(Q)

}
, 1

]
.
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The proof of this result is provided in Sect. A.2 in the Appendix.
Let us observe that we always have M �(T ) = M �, which means that

the terminal tolerable concentration is M �, as expected. As illustrated by
Fig. 4.3, the expression (4.25) of the safety thresholds M �(t) indicates that,
whenever natural removal occurs (δ > 0), the thresholds M �(t) are strictly
larger than terminal target M �: this allows for exceeding the target during
time. Conversely, whenever the natural removal term disappears (δ = 0),
the induced safety thresholds coincide with final M � along the whole time
sequence and the effectiveness mitigation policies make it necessary to stay
below the target at every period.

4.7 A bioeconomic precautionary threshold

Let us consider some regulating agency aiming at the sustainable use and
harvesting of a renewable resource. The biomass of this resource at time t
is denoted by B(t) while the harvesting level is h(t). We assume that the
natural dynamics is described by some growth function g as in Sect. 2.2.
Under exploitation, the following controlled dynamics is obtained

B(t + 1) = g
(
B(t) − h(t)

)
(4.26)

with the admissibility constraint

0 ≤ h(t) ≤ B(t) . (4.27)

The policy goal is to guarantee at each time t a minimal harvesting

hlim ≤ h(t) , (4.28)

together with a non extinction level for the resource

Blim ≤ B(t) . (4.29)

The combination of constraints (4.27) and (4.28) yields the state constraint

hlim ≤ B(t) . (4.30)

For the sake of simplicity, we assume that hlim > Blim > 0, so that (4.29) is
useless. We need to recall equilibrium concepts and notations already intro-
duced in Chap. 3.

• We take the sustainable yield function σ already defined by (3.6), giving

h = σ(B) ⇐⇒ B = g(B − h) and 0 ≤ h ≤ B . (4.31)
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• The maximum sustainable biomass Bmse and maximum sustainable yield
hmse are defined by

hmse = σ(Bmse) = max
B≥0

σ(B) . (4.32)

It turns out that when hlim ≤ hmse, the viability kernel Viab depends on
a floor level Bpa which is the solution of

Bpa = min
B, hlim=σ(B)

B . (4.33)

Result 4.12 Assuming that g is an increasing continuous function on R+,
the viability kernel is given by

Viab =

{
[Bpa,+∞[ if hlim ≤ hmse

∅ otherwise.
(4.34)

For any stock B ∈ Viab, the viable catch feedbacks h(B) lie within the set

H viab(B) = [hlim, hpa(B)]

where the ceiling catch hpa(B) is

hpa(B) = hlim + B − Bpa . (4.35)

The complete proof of this result is provided in Sect. A.2 in the Appendix.
The Scilab code 8 makes it possible to examine and illustrate the conse-
quences of this result with population dynamics governed by Beverton-Holt
recruitment

g(B) =
RB

1 + bB
.

Let us notice that, in this case, the ceiling guaranteed catch given by (3.14)
and (3.15) is

hmse =
(R −

√
R)2

Rb
.

The unsustainable case: Viab = ∅.

In the following simulations, we choose a guaranteed harvesting hlim strictly
larger than hmse. Then, for several initial conditions B(t0), we compute differ-
ent trajectories for the smallest admissible harvesting, namely h(t) = hlim. As
displayed by Fig. 4.4, it can be observed that the viability constraint (4.30)
is violated in such a case. The situation is even more catastrophic with se-
quences of harvesting h(t) larger than the guaranteed one hlim. We illustrate
this with the admissible feedbacks7 h(t, B) = α(t)hlim + (1 − α(t))B, where
(α(t))t∈N is an i.i.d. sequence of uniform random variables in [0, 1].
7 One may also try h(t, B) = B or h(t, B) = αhlim + (1 − α)B with α ∈ [0, 1].
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(a) Biomass B(t) for stationary harvest-
ing h(t) = h0
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Viability threshold

Biomass trajectories violating the constraint

time t

biomass B(t)

(b) Biomass B(t) for random harvesting
h(t)

Fig. 4.4. Unsustainable case where hlim > hmse. Biomass trajectories B(t) violating
the viability constraint (horizontal line at hlim) in finite time whatever the initial
condition B0. Trajectories have been generated by Scilab code 8.

The sustainable case: Viab �= ∅.

Now we choose a guaranteed harvesting hlim strictly smaller than hmse. The
value Bpa is the smallest equilibrium solution of σ(B) = hlim, namely:

B =
R(B − hlim)

1 + b(B − hlim)
.

Hence, the value of Bpa is

Bpa =
(K + bhlim)

b
−

√
Δ

2b
,

with Δ = (R − 1 + bhlim)2 − 4Rbhlim and K = R−1
b .

From (4.35), we know that any viable feedback h(B) lies within the set
[hlim, hpa(B)] where hpa(B) = hlim + B − Bpa. In the simulations shown in
Fig. 4.5, we compute different trajectories for a harvesting feedback of the
form h(t, B) = α(t)hlim + (1 − α(t))hpa(B). The viability constraint (4.30) is
now satisfied.
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(b) Viable catch h(t) ≥ hlim

Fig. 4.5. Sustainable case where hlim ≤ hmse. Harvest trajectories satisfying the
viability constraint (horizontal line at hlim). Biomass trajectories violating or satis-
fying the viability constraint, depending on whether the original biomass is lower
or greater than the viability barrier (horizontal line at Bpa). Trajectories have been
generated by Scilab code 8.
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Scilab code 8.

//
// exec bioeconomic_viability.sce

/////////////////////////////////////////////

// Population dynamics

/////////////////////////////////////////////

// Population dynamics parameters

R=1.5;

b=0.01;

function [y]=g(B)

y=R*B./(1+b*B)

endfunction

function h=SY(B)

h= B-(B./(R-b*B))

endfunction

B_MSE=(R-sqrt(R))/b

h_MSE=SY(B_MSE)

K=(R-1)/b

xset("window",0); xbasc();

B=[0:1:K]; plot2d(B,SY(B))

xtitle(’Sustainable yield curve associated to ...

Beverton-Holt dynamics’,’biomass B’)

// number of random initial conditions

nbsimul=30;

/////////////////////////////////////////////

// The unsustainable case

/////////////////////////////////////////////

h_min= h_MSE +0.5 // for instance

Horizon=60;

B=zeros(1,Horizon+1);

// // Stationary harvesting

xset("window",11); xbasc();

for i=1:nbsimul

B(1)=K*rand(1);

for t=1:Horizon

B(t+1)=max(0,g(B(t)-h_min));

end,

plot2d(1:(Horizon+1),B);

end,

plot2d(1:(Horizon+1),h_min * ones(1:(Horizon+1)),style=-4)

legends("Viability threshold",-4,’ur’)

xtitle(’Biomass trajectories violating the constraint’,...

’time t’,’biomass B(t)’)

// // Random harvesting

function h=feedback(t,B,alpha)

h=max(h_min,alpha*h_min+(1-alpha)*B);

endfunction

Horizon=10;

alpha=rand(1,Horizon);

B=zeros(1,Horizon+1);

xset("window",12); xbasc();

for i=1:nbsimul

B(1)=K*rand(1);

for t=1:Horizon

h(t)=feedback(t,B(t),alpha(t));

B(t+1)=max(0,g(B(t)-h(t)));

end,

plot2d(1:(Horizon+1),B);

end,

plot2d(1:0.2:(Horizon+1),...

h_min*ones(1:0.2:(Horizon+1)),style=-4)

legends("Viability threshold",-4,’ur’)

xtitle(’Biomass trajectories violating the constraint’,...

’time t’,’biomass B(t)’)

/////////////////////////////////////////////

// The sustainable case

/////////////////////////////////////////////

h_min= h_MSE *0.5 // for instance

Horizon=10;

// numerical estimation of the viability barrier

function error=viabbarrier(B)

error=SY(B)-h_min

endfunction

B_V=fsolve(0,viabbarrier)

function h=h_max(B)

h= B- ( B_V / (R - b*B_V) )

endfunction

function h=viab(t,B,alpha)

h=max(h_min,alpha*h_min+(1-alpha)*h_max(B))

endfunction

Horizon=10;

xset("window",21); xbasc();

xtitle("Biomass trajectories",’time t’,’biomass B’);

xset("window",22);xbasc();

xtitle("Harvesting trajectories ...

satisfying the constraint",’time t’,’harvest h’);

alpha=rand(1,Horizon);

B=zeros(1,Horizon+1);

h=zeros(1,Horizon);

for i=1:nbsimul

B(1)=K*rand(1)/2;

for t=1:Horizon

h(t)=viab(t,B(t),alpha(t));

B(t+1)=max(0,g(B(t)-h(t)));

end,

xset("window",21);plot2d(1:(Horizon+1),B);

plot2d(1:0.2:(Horizon+1),...

B_V*ones(1:0.2:(Horizon+1)),style=-4)

legends("Viability barrier",-4,’ur’)

//

xset("window",22);plot2d(1:Horizon,h);

plot2d(1:0.2:Horizon,h_min*ones(1:0.2:Horizon),style=-4)

legends("Minimal harvest",-4,’ur’)

end

//
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4.8 The precautionary approach in fisheries management

Fisheries management agencies aim at driving resources on sustainable paths
that should conciliate both ecological and economic goals. To manage fisheries
and stocks, the ices (International Council for the Exploration of the Sea)
precautionary approach and advice rely on specific indicators and reference
points such as spawning biomass or mean fishing mortality. In [9], the viable
control approach is used to make the relationships between sustainability ob-
jectives and reference points for ices advice on stock management explicit.
It is shown how the age-structured dynamics can be taken into account for
defining appropriate operational reference points, making it possible to reach
the objective of keeping stock biomass above threshold Blim.

Definition Notation Anchovy Hake

Maximum age A 3 8
Mean weight at age (kg) (υa)a (16, 28, 36) × 10−3 (0.126, 0.2, 0.319, 0.583, 0.986, 1.366,

1.748, 2.42)
Maturity ogive (γa)a (1, 1, 1) (0, 0, 0.23, 0.60, 0.90, 1, 1, 1)
Natural mortality M 1.2 0.2
Fishing mortality at age (Fa)a (0.4, 0.4, 0.4) (0, 0, 0.1, 0.25, 0.22, 0.27, 0.42, 0.5, 0.5)
Presence of plus group π 0 1
fishing mortality precautionary RP Fpa 1 − 1.2 0.25
SSB precautionary RP (tons) Bpa 33 000 140 000
fishing mortality limit RP Flim / 0.35
SSB limit RP (tons) Blim 21 000 100 000

Table 4.1. Parameter definitions and values for anchovy and hake. RP is for refer-
ence point.

ICES indicators and reference points

Two indicators are used in the precautionary approach with associated limit
reference points. Let us underline here that using limit reference points implies
defining a boundary between unacceptable and admissible states, whereas it
would be better to define desirable states using target reference points. The
first indicator, denoted by SSB in (2.35), is the spawning stock biomass

SSB(N) =
A∑

a=1

γaυaNa ,

to which ices associates the limit reference point Blim > 0. For manage-
ment advice an additional precautionary reference point Bpa > Blim is used,
intended to incorporate uncertainty about the stock state.

The second indicator, denoted by F , is the mean fishing mortality over a
pre-determined age range from ar to Ar, that is to say:

F (λ) :=
λ

Ar − ar + 1

a=Ar∑

a=ar

Fa . (4.36)
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The associated limit reference point is Flim and a precautionary approach
reference point Fpa > 0. Acceptable controls λ, according to this reference
point, are those for which F (λ) ≤ Flim, as higher fishing mortality rates might
drive spawning stock biomass below its limit reference point.

Acceptable configurations

To define sustainability, it can now be assumed that the decision maker can
describe “acceptable configurations of the system,” that is acceptable cou-
ples (N,λ) of states and controls, which form a set D ⊂ X × U = R

A × R,
the acceptable set. In practice, the set D may capture ecological, economic
and/or sociological requirements. Considering sustainable management within
the precautionary approach, involving spawning stock biomass and fishing
mortality indicators, we introduce the following ices precautionary approach
configuration set:

Dlim :=
{
(N,λ) ∈ R

A
+ × R+ | SSB(N) ≥ Blim and F (λ) ≤ Flim

}
. (4.37)

Interpreting the precautionary approach in light of viability

The precautionary approach can be sketched as follows: an estimate of the
stock vector N is made; the condition SSB(N) ≥ Blim is checked; if valid, the
following usual advice (UA) is given:

λUA(N) = max{λ ∈ R+ | SSB(g(N,λ)) ≥ Blim and F (λ) ≤ Flim} .

Here, the dynamics g is the one introduced in (2.33), (2.34) and (2.36). How-
ever, the existence of such a fishing mortality multiplier for any stock vector
N such that SSB(N) ≥ Blim is tantamount to non-emptyness of a set of viable
controls. This justifies the following definitions. Let us define the precaution-
ary approach state set

Vlim :=
{
N ∈ R

A
+ | SSB(N) ≥ Blim

}
. (4.38)

We shall say that the precautionary approach is sustainable if the precau-
tionary approach state set Vlim given by (4.38) is a viability domain for the
acceptable set Dlim under dynamics g.

Whenever the precautionary approach is sustainable, the set of viable con-
trols is not empty. This observation implies the existence of a viable fishing
mortality multiplier that allows the spawning stock biomass of the popula-
tion to remain above Blim along time. When Vlim is not a viability domain
of the acceptable set Dlim under dynamics g, maintaining the spawning stock
biomass above Blim from year to year will not be sufficient to ensure the ex-
istence of controls which make it possible to remain indefinitely at this point.
For example, in a stock with high abundance in the oldest age class and low
abundances in the other age classes, spawning stock biomass would be above
Blim but would be at high risk of falling below Blim the subsequent year,
whatever the fishing mortality, if recruitment is low.
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Result 4.13 If we suppose that the natural mortality is independent of age,
that is Ma = M , and that the proportion γa of mature individuals and the
weight υa at age are increasing with age a, the precautionary approach is
sustainable if, and only if, we obtain

inf
B∈[Blim,+∞[

[
πe−MB + γ1υ1ϕ(B)

]
≥ Blim . (4.39)

Notice that, when γ1 = 0 (the recruits do not reproduce) condition (4.39)
is never satisfied and the precautionary approach is not sustainable, whatever
the value of Blim. That is, to keep spawning stock biomass above Blim for
an indefinite time, it is not enough to keep it there from year to year. Other
conditions based upon more indicators have to be checked.

Condition (4.39) involves biological characteristics of the population and
the stock recruitment relationship ϕ, as well as the threshold Blim. However,
it is worth pointing out that condition (4.39) does not depend on the stock
recruitment relationship ϕ between 0 and Blim. It does not depend on Flim,
either.

A constant recruitment is generally used for fishing advice, so the following
simplified condition can be used. Assuming a constant recruitment R, the
precautionary approach is sustainable if, and only if, we have πe−MBlim +
γ1υ1R ≥ Blim, that is if, and only if,

R ≥ R where R :=
1 − πe−M

γ1υ1
Blim , (4.40)

making thus of R a minimum recruitment required to preserve Blim.
The previous condition is easy to understand when there is no plus-group

π = 0. Assuming a constant recruitment R and no plus group, the precau-
tionary approach is sustainable if, and only if,

γ1υ1R ≥ Blim . (4.41)

Hence, in the worst case, where the whole population would spawn and die in
a single time step, the resulting recruits would be able to restore the spawning
biomass at the required level.

stock recruitment relationship Condition Parameter values Threshold Sustainable
Constant (mean) Rmean ≥ R 14 016 ×106 1 312 ×106 yes
Constant (geometric mean) Rgm ≥ R 7 109 ×106 1 312 ×106 yes
Constant (2002) R2002 ≥ R 3 964 ×106 1 312 ×106 yes
Constant (2004) R2004 ≥ R 696 ×106 1 312 ×106 no
Linear γ1υ1r ≥ 1 0.84 1 no
Ricker inf

B≥Blim

[· · · ] ≥ Blim 0 21 000 no

Table 4.2. Bay of Biscay anchovy: sustainability of advice based on the spawning
stock biomass indicator for various stock recruitment relationships. The answer is
given in the last column of the table.
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Case study: Northern hake

For hake, the precautionary approach is never sustainable because γ1 = 0.

Case study: Bay of Biscay anchovy

Because the first age class of Bay of Biscay anchovy accounts for ca. 80%
of spawning stock biomass, the sustainability of the precautionary approach
will depend on the relationship between the biomass reference point and the
stock dynamics, mainly determined by the stock recruitment relationship as
there is no plus-group. Assuming various stock recruitment relationships, and
taking π = 0, since no plus group is present, it is determined whether the
precautionary approach based on the current value of Blim is sustainable. The
answer is given in the last column of Table 4.8. The second column contains
an expression whose value is given in the third, and has to be compared,
according to condition (4.39), to the threshold in the fourth.

4.9 Viable forestry management

Now we consider the problem introduced in Subsect. 4.2.4. For the sake of
simplicity, we assume here that mortality and fertility parameters coincide in
the sense that m = γ in (4.9). In this case, we can verify that the total surface
of the forest remains stationary:

n∑

i=1

Ni(t) = S .

As described and proved in [20], the following felling threshold hlim is
deciding to characterize the viability kernel:

hlim :=

⎧
⎪⎪⎨

⎪⎪⎩

S
m(1 − m)n−1

1 − (1 − m)n−1
if m �= 0 ,

S

n − 1
if m = 0 .

(4.42)

The following result related to the vacuity of the viability kernel can be
obtained.

Result 4.14 For any minimal harvesting level h� greater than hlim, the via-
bility kernel is empty:

h� > hlim =⇒ Viab = ∅ .

Whenever it is not empty, the viability kernel Viab is characterized as
follows.
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Result 4.15 Consider h� ∈ [0, hlim]. Then the viability kernel is given by

Viab =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N ∈ R
n
+

∣∣∣∣∣∣∣∣∣∣

n∑

l=1

Nl = S

n∑

l=n−i

Nl ≥ 1−(1−m)i

m(1−m)i h� i = 1, . . . , n − 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

The linear additional inequalities contained in the conditions advocate for the
anticipation of potential crisis Nn(t) < h�. Indeed, these additional inequal-
ities impose other constraints on N(t) to maintain sustainability in the long
term horizon.

The viability kernel exhibits the states of the forest compatible with the
constraints. The present step is to compute the sustainable management op-
tions (decisions or controls) associated with it. At any surface vector N in
viability kernel Viab, we know that the viable regulation set is not empty.

Result 4.16 When h� ∈ [0, hlim] and for N ∈ Viab,

Hviab(N) =

[
h� , min

i=0,...,n−2

{
(1 − m)

n∑

l=n−i−1

Nl −
1 − (1 − m)i

m(1 − m)i
h�

}]
. (4.43)

Two kinds of viable regulations have been used in the simulations hereafter.

• Maximal viable harvesting. The feedback hM consists in choosing at any
N ∈ Viab the largest value h allowed by the viability conditions:

hM (N)= max
h∈Hviab(N)

h= min
i=0,...,n−2

{
(1−m)

n∑

l=n−i−1

Nl−
1 − (1 − m)i

m(1 − m)i
h�

}
.

• Inertial viable harvesting. Given the resource state N ∈ Viabh� and a
current felling level hc, the inertial viable regulation hI consists in choosing
a viable control h minimizing decision’s change |h − hc|:

hI(N) = arg min
h∈Hviab(N)

|h − hc| .

The interest of such a policy is to take into account rigidity of decisions or
behaviors. Indeed, as long as the current decision is relevant, this policy is
not modified.

Now the viability analysis is illustrated for five age classes n = 5,
guaranteed catch h� = 4, total surface S = 20 and the initial conditions
N(t0) = (2, 6, 5, 3, 4)′. Two cases for m are distinguished.

i) m = 7%. The largest sustainable value, computed from (4.42), is hlim �
4.2. Maximal viable harvesting, provided by (4.43) is computed.
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t 0 1 2 3 4 5 6 7 8 9 10 · · · +∞
N5 2.0 2.7 2.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 → 0.0
N4 6.0 4.6 2.6 3.2 5.0 4.3 4.3 4.3 4.8 4.4 4.4 → 4.5
N3 5.0 2.8 3.5 5.3 4.7 4.7 4.7 5.2 4.7 4.7 4.7 → 4.8
N2 3.0 3.7 5.7 5.0 5.0 5.0 5.5 5.0 5.0 5.0 5.5 → 5.2
N1 4.0 6.1 5.4 5.4 5.4 6.0 5.4 5.4 5.4 5.9 5.5 → 5.6
hM 4.7 4.0 4.0 4.0 4.6 4.0 4.0 4.0 4.5 4.0 4.0 → 4.2

We notice that viable trajectories converge asymptotically towards a sta-
tionary state.

ii) Again m = 7%. This time, the inertial viable harvesting that fulfills (4.43)
is applied.

t 0 1 2 3 4 5 6 7 8 9 10
N5 2.0 3.0 2.9 1.0 0.0 0.41 0.56 0.56 0.56 0.56 0.56
N4 6.0 4.6 2.6 3.2 4.7 4.5 4.3 4.3 4.3 4.3 4.3
N3 5.0 2.8 3.5 5.1 4.8 4.7 4.7 4.7 4.7 4.7 4.7
N2 3.0 3.7 5.5 5.2 5.0 5.0 5.0 5.0 5.0 5.0 5.0
N1 4.0 6.0 5.6 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4
hI 4.5 4.2 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

It has to be noticed that these viable trajectories become stationary in
finite time.

iii) m = 0. The largest sustainable value is now hlim = 5. The maximal viable
harvesting hM is chosen.

t 0 1 2 3 4 5 6 7 8 9 10
N5 2.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N4 6.0 5.0 3.0 4.0 8.0 4.0 4.0 4.0 8.0 4.0 4.0
N3 5.0 3.0 4.0 8.0 4.0 4.0 4.0 8.0 4.0 4.0 4.0
N2 3.0 4.0 8.0 4.0 4.0 4.0 8.0 4.0 4.0 4.0 8.0
N1 4.0 8.0 4.0 4.0 4.0 8.0 4.0 4.0 4.0 8.0 4.0
hM 8.0 4.0 4.0 4.0 8.0 4.0 4.0 4.0 8.0 4.0 4.0

It has to be stressed that these viable trajectories become (n − 1)-cyclic
in finite time.

4.10 Invariance or strong viability

It may happen that, for some initial states, the constraints do not really
influence the evolution. This is the idea of invariance or strong viability.

4.10.1 Invariance kernel

The invariance kernel refers to the set of states from which any state tra-
jectory generated by any a priori admissible decision sequence satisfies the
constraints.
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Definition 4.17. The invariance kernel at time s ∈ {t0, . . . , T} for the dy-
namics (4.1) and the constraints (4.2a)–(4.2b)-(4.2c) is the set denoted by
Inv(s) defined by:

Inv(s) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for every decision u(·)
and state x(·) starting from x at time s
satisfying for any time t ∈ {s, . . . , T − 1}
dynamics (4.1) and constraint (4.2a)
the constraints (4.2b) are satisfied
for t ∈ {s, . . . , T − 1}
and (4.2c) at final time T.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4.44)

Notice that
Inv(s) ⊂ A(s) ,

because the constraint (4.2b) is satisfied at time s, and that the invariance
kernel at horizon T is the target set A(T ):

Inv(T ) = A(T ) .

4.10.2 Invariance and viability

Of course, the invariance requirement is more stringent than the viability one
and the invariance kernel is contained in the viability kernel:

Inv(t) ⊂ Viab(t) .

Let us point out that the viability and invariance kernels coincide whenever
the set of possible decisions or controls B(t, x) is reduced to a singleton and
only one decision is available:

B(t, x) = {u(t, x)} =⇒ Inv(t) = Viab(t) .

Moreover, once the “true constraints” B
viab(t, x) in (4.14) and the viability

kernels Viab(t) associated to the dynamics (4.1) and the constraints (4.2a)–
(4.2d) are known, the same dynamics can be considered but under these new
constraints, namely:

⎧
⎪⎪⎨

⎪⎪⎩

x(t0) = x0 ∈ Viab(t0) ,
x(t + 1) = F

(
t, x(t), u(t)

)
, t = t0, . . . , T − 1 ,

u(t) ∈ B
viab
(
t, x(t)

)
, t = t0, . . . , T − 1 ,

x(t) ∈ Viab(t) , t = t0, . . . , T .

(4.45)

It happens then that the domains Viab(t) are the invariant kernels for this
new problem related to the property of viable controls which ensure that the
above problem is equivalent to:
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⎧
⎨

⎩

x(t0) = x0 ∈ Viab(t0) ,
x(t + 1) = F

(
t, x(t), u(t)

)
, t = t0, . . . , T − 1 ,

u(t) ∈ B
viab
(
t, x(t)

)
, t = t0, . . . , T − 1 .

(4.46)

This situation may be useful in case of optimal intertemporal selection, as
in Sect. 5. This case occurs in a cost-effectiveness perspective. In this case, ex
post admissible decisions B

viab(t, x) are used instead of B(t, x) in the dynamic
programming method.

4.10.3 Maximality and Bellman properties

We also recover Bellman properties and the dynamics programming principle
for invariance. This principle holds true through both geometrical and func-
tional formulations. We distinguish the infinite and finite horizons. The proofs
of the following Propositions follow the ones given for viability in Sect. A.2 in
the Appendix. A geometric characterization in the finite horizon case is given
by the following Proposition.

Proposition 4.18. The invariance kernel satisfies the backward induction,
where t runs from T − 1 down to t0:
{

Inv(T ) = A(T ) ,

Inv(t) = {x ∈ A(t) | ∀u ∈ B(t, x) , F (t, x, u) ∈ Inv(t + 1)} .
(4.47)

Similarly, we obtain a functional dynamics programming characterization in
the finite horizon case.

Proposition 4.19. The extended function V : (t, x) �→ ΨInv(t)(x) is the so-
lution of the Bellman equation, or dynamic programming equation, where t
runs from T − 1 down to t0:

⎧
⎪⎨

⎪⎩

V (T, x) = ΨA(T )(x) ,

V (t, x) = sup
u∈B(t,x)

(
ΨA(t)(x) + V

(
t + 1, F (t, x, u)

))
.

(4.48)

The autonomous case and infinite horizon framework provide the simplest
characterization since time disappears from the statements. In this case, the
invariance kernel does not depend on t and we write it Inv.

Proposition 4.20. In the autonomous case (4.19) and with T = +∞, the
extended function V : x �→ ΨInv(x) is the largest solution of the Bellman
equation, or dynamic programming equation,

{
V (x) = sup

u∈B(x)

V
(
F (x, u)

)
,

V (x) ≥ ΨA(x) .
(4.49)
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A geometric characterization is given using invariant domains as follows.

Definition 4.21. In the autonomous case (4.19), a subset V ⊂ X is said to
be an invariant (or strongly invariant) domain if

∀x ∈ V , ∀u ∈ B(x) , F (x, u) ∈ V . (4.50)

An equivalent functional characterization is ΨV(x) = sup
u∈B(x)

ΨV

(
F (x, u)

)
.

Proposition 4.22. In the autonomous case (4.19) and with T = +∞, the
invariance kernel Inv of A is the largest invariant domain contained in A.
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5

Optimal sequential decisions

Many decision problems deal with the intertemporal optimization of some cri-
teria. Achieving a co2 concentration target in minimal time, maximizing the
sum of discounted utility of consumption along time in an economic growth
model, minimizing the cost of recovery for an endangered species, maximizing
the discounted rent of a fishery are all examples of dynamic optimal control
problems. Basic contributions for the optimal management or conservation
of natural resources and bioeconomic modeling can be found in [3, 4, 5] to-
gether with [2] that contains optimality methods and models especially for
the management of animal populations. Optimality approaches to address
the sustainability issues and, especially, intergenerational equity and conser-
vation issues, are exposed for instance in [8] in the continuous case. It includes
in particular the maximin, Green Golden and Chichilnisky approaches.

An important debate for the optimal management of natural resources and
the environment relates to the method of economic valuation of ecological or
environmental outcomes. Such concerns have fundamental connections with
“price versus quantity” issues pointed out by [14]. The usual economic ap-
proach of Cost-Benefit (cb) relies on the monetary assessment of all outcomes
and costs involved in the management process. However some advantages or
outputs are not easy to assess in monetary units. This is the case for non-use
values or indicators of ecological services of biodiversity [13] such as aesthetic
or existence values. Such is also the case for costs relying on damages of global
changes [7] whose pricing turns out to be highly uncertain and controversial.
Such difficulties advocate for the use of Cost-Effectiveness (ce) analysis which
also measures costs but with outputs expressed in quantity terms. In mathe-
matical terms, ce deals with optimal control under constraints. In the case of
cb, the quantity constraints are directly taken into account in the criterion to
optimize through adjoint variables including prices, shadow prices or existence
values. Contingent valuation methods aim at pricing such non-use values.

For relevant mathematical references in the discrete time optimal control
context, we refer to [1, 15]. In this textbook, we especially support the use
of the dynamic programming method and Bellman equation since it turns
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out to be a relevant approach for many optimal control problems including
additive and maximin criterion as well as viability and invariance problems.
Moreover, it is shown that the other well known approach termed Pontryagin
maximum principle to cope with optimal control can be derived from the
Bellman equation in a variational setting under an appropriate hypothesis.
Furthermore, the dynamic programming can be expanded to the uncertain
case as will be exposed in the chapters to come. By dynamic programming,
the dynamic optimality decision problem is solved sequentially: one starts at
the final time horizon and then applies some backward induction mechanism
at each time step. We detail this process and ideas in what follows.

The chapter is organized as follows. Section 5.1 provides the general prob-
lem formulation for several intertemporal optimality criteria. The dynamic
programming method for the additive criterion case is exposed in Sect. 5.2.
Then various examples illustrate the concepts and results for natural resource
management. The so-called “maximum principle” is presented in Sect. 5.8,
with an application to the Hotelling rule in Sect. 5.9. Section 5.11 focuses
on the final payoff problem related to the Green Golden issues. Section 5.14
presents the maximin case, with an illustration of the management of an ex-
haustible resource in Sect. 5.15.

5.1 Problem formulation

Let us briefly recall the mathematical material already introduced in Sect. 2.9
for optimal and feasible sequential decisions in discrete time.

5.1.1 Dynamics and constraints

We consider again the following nonlinear dynamical system, as in Sect. 2.9,

x(t + 1) = F
(
t, x(t), u(t)

)
, t = t0, . . . , T − 1 , with x(t0) = x0 , (5.1)

where x(t) ∈ X = R
n is the state, u(t) ∈ U = R

p is the control or decision, T
corresponds to the time horizon which may be finite or infinite, while x0 and
t0 stand for the initial state and time conditions.

In addition, some admissibility or effectiveness constraints are to be sat-
isfied as underlined in Chap. 4 focusing on invariance and viability. These
constraints include state and control constraints respected at any time

{
x(t) ∈ A(t) ⊂ X , t = t0, . . . , T ,

u(t) ∈ B
(
t, x(t)

)
⊂ U , t = t0, . . . , T − 1 .

(5.2)
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5.1.2 The criterion and the evaluation of the decision

Now, one may aim at ranking the different feasible decision paths u(·) accord-
ing to some specific indicator of performance or criterion π, representing the
total gain, payoff, utility, cost or cost-benefit over T + 1 stages. Of particular
interest is the selection of a policy optimizing (minimizing or maximizing) this
performance or criterion π. We shall consider maximization problems where
the criterion is a payoff.

A criterion π is a function

π : X
T+1−t0 × U

T−t0 → R (5.3)

which assigns a real number to a state and control trajectory. Different criteria
have been detailed in Sect. 2.9.4 and we shall here concentrate on two main
cases.

• General additive criterion. The additive criterion with final payoff in
the finite horizon is

π
(
x(·), u(·)

)
=

T−1∑

t=t0

L
(
t, x(t), u(t)

)
+ M

(
T, x(T )

)
. (5.4)

Function L is referred to as the system’s instantaneous performance (or
profit, benefit, payoff, etc.) while M is the final performance. Such pay-
off includes usual discounted cases as well as Green Golden Rule or
Chichilnisky performances. In our discrete time framework when the hori-
zon T is finite, we shall label Green Golden a criterion of the form

π
(
x(·), u(·)

)
= M

(
T, x(T )

)
. (5.5)

• The Maximin. The Rawlsian or maximin form in the finite horizon is

π
(
x(·), u(·)

)
= min

t=t0,...,T−1
L
(
t, x(t), u(t)

)
, (5.6)

and, with a final payoff, the expression is somewhat heavier to write:

π
(
x(·), u(·)

)
= min

(
min

t=t0,...,T−1
L
(
t, x(t), u(t)

)
,M
(
T, x(T )

)
)

. (5.7)

5.1.3 The general problem of optimal control under constraints

The constraint (5.2) specified beforehand combined with the dynamic (5.1)
settle the set of all possible and feasible state and decision trajectories. Such
a feasibility set, denoted by T ad(t0, x0) ⊂ X

T+1−t0 ×U
T−t0 , has already been

introduced in Subsect. 2.9.5 and studied in Chap. 4:
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T ad(t0, x0) =

⎧
⎪⎪⎨

⎪⎪⎩

(
x(·), u(·)

)

∣∣∣∣∣∣∣∣

x(t0) = x0 ,
x(t + 1) = F

(
t, x(t), u(t)

)
, t = t0, . . . , T − 1

u(t) ∈ B
(
t, x(t)

)
, t = t0, . . . , T − 1

x(t) ∈ A(t) , t = t0, . . . , T

⎫
⎪⎪⎬

⎪⎪⎭
.

(5.8)

This is the set of admissible trajectories which visit x0 at time t0 while re-
specting both the constraints and the dynamics after time t0.

When the assessment π measures payoff (or profit, benefit, utility, etc.),
the problem reads1

π�(t0, x0) := sup(
x(·),u(·)

)
∈T ad(t0,x0)

π
(
x(·), u(·)

)
. (5.9)

Abusively, we shall in practice abbreviate (5.9) in

π�(t0, x0) := sup
u(·)

π
(
x(·), u(·)

)
. (5.10)

Whenever feasibility is impossible, i.e. T ad(t0, x0) = ∅, by convention we
set the optimal criterion to minus infinity: π�(t0, x0) = −∞.

Definition 5.1. The optimal value π�(t0, x0) in (5.9) is called the optimal
performance. Any path

(
x�(·), u�(·)

)
∈ T ad(t0, x0) such that

π�(t0, x0) = max(
x(·),u(·)

)
∈T ad(t0,x0)

π
(
x(·), u(·)

)
= π
(
x�(·), u�(·)

)
(5.11)

is a feasible optimal trajectory or an optimal path.

In fact, the feasible set T ad(t0, x0) is related to the viability kernel Viab(t0)
in (4.10) and to viable decisions examined in Chap. 4 (see Definition 4.1
and (4.14)). As pointed out in that chapter (Proposition 4.4), the “true” state
constraints are captured by the viability kernels and T ad(t0, x0) ⊂ X

T+1−t0 ×
U

T−t0 is given equivalently by

(
x(·), u(·)

)
∈ T ad(t0, x0) ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

x(t0) = x0

x(t + 1) = F
(
t, x(t), u(t)

)
, t = t0, . . . , T − 1

u(t) ∈ B
viab(t, x(t)), t = t0, . . . , T − 1

x(t) ∈ Viab(t), t = t0, . . . , T ,

⇐⇒

⎧
⎨

⎩

x(t0) = x0 ∈ Viab(t0)
x(t + 1) = F

(
t, x(t), u(t)

)
, t = t0, . . . , T − 1

u(t) ∈ B
viab(t, x(t)), t = t0, . . . , T − 1 .

1 We shall only consider maximization problems. To cope with the minimization
problem inf(

x(·),u(·)
)
∈T ad(t0,x0)

π
(
x(·), u(·)

)
, one should simply change the sign of

π since infz∈Z f(z) = − supz∈Z(−f(z)).
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Let us stress the fact that, whenever the viability kernel Viab(t0) is empty,
it is worthwhile to put a hold on the computation of any optimal solution as
no feasible solution exists:

Viab(t0) = ∅ ⇐⇒ T ad(t0, x0) = ∅ , ∀x0 ∈ X .

Let us also point out that an interesting case corresponds to an invariant
state constraint set as explained in detail in Sect. 4.10. An invariant state
constraint set means that, for any time t, the invariance kernel Inv(t) of Defi-
nition 4.17 coincides with the initial state constraint set A(t0), thus revealing
that every a priori admissible state x(·) and all decision u(·) trajectories will
satisfy the constraints along time. In other words, the constraints do not really
reduce the choice of the decisions and only the initial state constraint A(t0)
prevails. Such a convenient configuration occurs in the special case without
state constraint, namely when A(t) = X.

5.1.4 Cost-Benefit versus Cost-Effectiveness

Two specific classes of problems are worth distinguishing: Cost-Benefit versus
Cost-Effectiveness. Such concerns have connections with “price versus quan-
tity” debates. The usual economic approach of Cost-Benefit (cb) relies on
the monetary assessment of all outcomes and costs involved in the manage-
ment process. However some advantages or outputs are not easy to assess in
monetary units. This is the case for non-use values of ecological services of bio-
diversity such as aesthetic or existence values. Such is also the case for costs
relying on damages of global changes whose pricing turns out to be highly
unknown. Such difficulties justify the use of Cost-Effectiveness (ce) analysis
which also measures costs but with outputs expressed in quantity terms. In
mathematical terms, ce deals with optimal control under constraints. In the
case of cb, the quantity constraints are directly taken into account in the
criterion to optimize through adjoint variables including prices, shadow prices
or existence values.

Cost-Benefit

In this case, no state constraints bind the optimal solution and, generally, the
objective is the intertemporal discounted profit, namely the difference between
benefits B and costs C in monetary units

π�(t0, x0) = sup(
x(·),u(·)

)
∈T ad(t0,x0)

T−1∑

t=t0

ρt
(
B
(
x(t), u(t)

)
− C

(
x(t), u(t)

))
,

(5.12)
where ρ ∈ [0, 1] is a discount factor.
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Cost-Effectiveness

In this case, there is generally an additional state-control constraint, in vecto-
rial form Y

(
x(t), u(t)

)
≥ 0, capturing the effectiveness of the decisions, and

replacing, in a sense, the monetary evaluation of benefits. For this reason the
objective is now intertemporal discounted costs minimization:

π�(t0, x0) = inf⎧
⎨

⎩

(
x(·), u(·)

)
∈ T ad(t0, x0)

Y
(
x(t), u(t)

)
≥ 0

T−1∑

t=t0

ρtC
(
x(t), u(t)

)
. (5.13)

5.2 Dynamic programming for the additive payoff case

The additive payoff case plays a prominent role in optimal control for the
separable form which allows for the classical Bellman equation and for its
economic interpretation as an intertemporal sum of payoffs.

5.2.1 The optimization problem

In this section, we focus on the maximization problem for additive and sepa-
rable forms in the finite horizon. A general form is considered which combines
an instantaneous payoff L together with a final requirement M :

π�(t0, x0) = sup(
x(·),u(·)

)
∈T ad(t0,x0)

T−1∑

t=t0

L
(
t, x(t), u(t)

)
+ M

(
T, x(T )

)
. (5.14)

We shall display that the following value function is the solution of a
backward induction equation by observing that we can split the maximization
operation into two parts for the following reasons: the criterion π is additive2,
the dynamic is a first order difference equation and, finally, constraints at time
t depend only on time t and state x(t).

5.2.2 Additive value function

The additive value function V at time t and for state x represents the optimal
value of the criterion over T − t periods, given that the state of the system
x(t) at time t is x.

2 This is a traditional assumption. However, it is not essential for dynamic pro-
gramming to apply it in the deterministic case, as pointed out in [15]. See the
proofs in Sect. A.3.
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Definition 5.2. For the maximization problem (5.14) with dynamic (5.1)
and under constraints (5.2), we define a function V (t, x) of time t and
state x, named additive value function or Bellman functionas follows: for
t = t0, . . . , T − 1, for x ∈ Viab(t)

V (t, x) := sup(
x(·),u(·)

)
∈T ad(t,x)

T−1∑

s=t

L
(
s, x(s), u(s)

)
+ M

(
T, x(T )

)
, (5.15)

with the convention that V (t, x) := −∞ for x �∈ Viab(t).

Therefore, given the initial state x0, the optimal sequential decision prob-
lem (5.1)-(5.2)-(5.14) refers to the particular value V (t0, x0) of Bellman func-
tion:

V (t0, x0) = π�(t0, x0) .

5.2.3 Dynamic programming equation

We shall now see the principle of dynamic programming which consists
in replacing the optimization problem (5.14) over the trajectories space
X

T+1−t0 × U
T−t0 by a sequence of T + 1 − t0 interconnected optimization

problems (5.17) over the decision space U.
The common proof of the three following Propositions 5.3, 5.4 and 5.5 can

be found in Sect. A.3 in the Appendix.

Case without state constraint

We first distinguish the case without state constraints, which is simpler to
formulate.

Proposition 5.3. In the case without state constraint where A(t) = X in (5.2),
the value function in (5.15) is the solution of the following backward dynamic
programming equation (or Bellman equation), where t runs from T −1 down
to t0:

⎧
⎪⎨

⎪⎩

V (T, x) = M(T, x) ,

V (t, x) = sup
u∈B(t,x)

(
L(t, x, u) + V

(
t + 1, F (t, x, u)

))
.

(5.16)

Thus, the value function is given by a backward induction, starting from the
final term M in (5.14) and proceeding with a sequence of maximizations over
u ∈ U, for all (t, x). This approach generally renders dynamic programming
numerically untractable for high dimensions of the state (curse of dimension-
ality).
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Case with state constraints

Now, the case taking into account state constraints is presented. Of course,
it is more complicated than the previous one since viability and optimality
conditions are combined.

Proposition 5.4. The value function defined in (5.15) is the solution of the
following backward dynamic programming equation (or Bellman equation),
where t runs from T − 1 down to t0,

⎧
⎪⎨

⎪⎩

V (T, x) = M(T, x) , ∀x ∈ Viab(T ) ,

V (t, x) = sup
u∈Bviab(t,x)

(
L(t, x, u) + V

(
t + 1, F (t, x, u)

))
, ∀x ∈ Viab(t) ,

(5.17)

where Viab(t) is given by the backward induction (4.11)

⎧
⎨

⎩
Viab(T ) = A(T ) ,

Viab(t) = {x ∈ A(t) | ∃u ∈ B(t, x) , F (t, x, u) ∈ Viab(t + 1)} ,
(5.18)

and where the supremum in (5.17) is over viable controls in B
viab(t, x) given

by (4.14), namely

B
viab(t, x) = {u ∈ B(t, x) | F (t, x, u) ∈ Viab(t + 1)} . (5.19)

5.2.4 Optimal feedback

As we have seen, the backward equation of dynamic programming (5.17) en-
ables us to compute the value function V (t, x) and, thus, the optimal payoff
π�. In fact, a stronger result is obtained since Bellman induction optimization
reveals relevant feedback controls. Indeed, assuming the additional hypothesis
that the supremum is achieved in (5.17) for at least one decision, if we denote
by u�(t, x) a value3 u ∈ B(t, x) which achieves the maximum in (5.17), then
u�(t, x) defines an optimal feedback for the optimal control problem in the
following sense.

The following Proposition 5.5 claims that the dynamic programming equa-
tion exhibits optimal viable feedbacks.

Proposition 5.5. For any time t and state x ∈ Viab(t), assume the existence
of the following feedback decision

3 See the footnote 13 in Sect. 2.10.



5.3 Intergenerational equity for a renewable resource 115

u�(t, x) ∈ arg max
u∈Bviab(t,x)

(
L(t, x, u) + V

(
t + 1, F (t, x, u)

))
. (5.20)

Then u is an optimal viable feedback for the maximization problem (5.14)
under constraints (5.8) in the sense that, when x0 ∈ Viab(t0), the trajectory(
x�(·), u�(·)

)
generated by

x�(t0) = x0 , x�(t + 1) = F (t, x�(t), u�(t)) , u�(t) = u�(t, x(t)) , (5.21)

for t = t0, . . . , T − 1, belongs to T ad(t0, x0) given by (5.8) and is an optimal
feasible trajectory, that is,

max(
x(·),u(·)

)
∈T ad(t0,x0)

π
(
x(·), u(·)

)
= π
(
x�(·), u�(·)

)
. (5.22)

Notice that the feedback found is appropriate for any initial time t0 and initial
state x0 ∈ Viab(t0).

5.3 Intergenerational equity for a renewable resource

Let us return to the renewable resource management problem presented in
Sect. 2.2

sup
h(·)

( T−1∑

t=t0

ρtL
(
h(t)
)

+ ρT L
(
B(T )

))
,

under the dynamic and constraints

B(t + 1) = R
(
B(t) − h(t)

)
, 0 ≤ h(t) ≤ B(t) .

For the sake of simplicity, we consider the particular case of T = 2 periods
and we suppose as well that the discount factor ρ equals the growth rate of
the resource

ρ =
1
R

with R > 1 . (5.23)

The utility function L is supposed sufficiently smooth (twice continuously
differentiable, for instance), and strictly concave, that is to say L′′ < 0. The
Bellman equation (5.16) implies

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

V (2, B) = ρ2L(B)

V (1, B) = sup
0≤h≤B

{ρL(h) + V (2, RB − h))}

= sup
0≤h≤B

{
ρL(h) + ρ2L(R(B − h))

}

= sup
0≤h≤B

υ(h)
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where υ(h) = ρL(h) + ρ2L
(
R(B − h)

)
. Assuming that the last supremum

is achieved for an interior solution h� ∈]0, B[, it must necessarily satisfy the
so-called first order optimality condition

dυ

dh
(h�) = 0 .

We then have L′(h�) = ρRL′(R(B − h�)
)

= L′(R(B − h�)
)
, by (5.23). Thus,

as L′ is a strictly decreasing function, hence injective, one has h� = R(B−h�)
so that the optimal feedback is linear in B

h�(1, B) =
R

1 + R
B

and we check that 0 < h� = R
1+RB < B. The value function is of the same

form as L:

V (1, B) = ρL(
R

1 + R
B) + ρ2L(

R

1 + R
B) = ρ(1 + ρ)L(

R

1 + R
B) .

Likewise, we check that

V (0, B) = sup
0≤h≤B

{
L(h) + V

(
1, R(B − h)

)}

= sup
0≤h≤B

{
L(h) + ρ(1 + ρ)L

( R

1 + R
R(B − h)

)}
.

The first order optimality condition now implies

L′(h�) = L′(
R

1 + R
R(B − h�)) .

Thus, h� =
R

1 + R
R(B − h�), so that the optimal feedback is still linear

h�(0, B) =
R2

1 + R + R2
B

and the value function is of the same form as L. Going forward with h�(0) =
h�(0, B0) and B�(1) = R(B0 − h�(0)), we easily find that the optimal catches
h�(0) = h�(0, B0) and h�(1) = h�(1, B�(1)) are stationary:

h�(0) = h�(1) =
R2

1 + R + R2
B0 .

In this sense, the optimal harvests promote intergenerational equity as may
be seen in Fig. 5.3. This is closely related to the assumption ρR = 1 as shown
by the following example of an exhaustible resource management.
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Fig. 5.1. Biomass B(t) and “equity” catch h(t) trajectories for a linear dynamic
model of whale growth with yearly growth rate R = 1.05. Time is measured in years
while population and catches is in blue whale unit. Trajectories are computed with
the Scilab code 9.

Scilab code 9.

//
// exec intergen_equity.sce

R_whale=1.05 ;

// per capita productivity

R=R_whale ;

K_whale = 400000;

// carrying capacity (BWH, blue whale unit)

K=K_whale ;

// LINEAR DYNAMICS

function [y]=linear(B), y=R*B , endfunction;

Horizon= 10;

years=1:Horizon;

yearss=1:(Horizon+1);

Binit= K/2 ;

// initial condition

trajectory_whale=zeros(yearss) ;

// vector will contain the trajectory B(1),...,B(Horizon+1)

catch_whale=zeros(years) ;

// vector will contain the catches h(1),...,h(Horizon)

trajectory_whale(1)=Binit ;

// initialization of vector B(1),...,B(Horizon+1)

for t=years

catch_whale(t)=R^{Horizon-t+1}/ ...

sum(R.^{Horizon-years(t:$)+1})*...

trajectory_whale(t);

trajectory_whale(t+1)=...

linear(trajectory_whale(t)-catch_whale(t));

end

// Graphic display

xset("window",20+1); xbasc(20+1);

plot2d2(yearss,[trajectory_whale ; [catch_whale 0]]’ );

xtitle(’Trajectories under linear growth with...

R=’+string(R_whale),’year (t)’,...

’biomass B(t) in blue whale unit’)

plot2d2(yearss,[trajectory_whale ; [catch_whale 0]]’,...

style=-[3,4]);

legends([’Biomass trajectory’;’Catch trajectory’],-[3,4],’ur’)

//

5.4 Optimal depletion of an exhaustible resource

Consider the model presented in Sect. 2.1

S(t + 1) = S(t) − h(t) , 0 ≤ h(t) ≤ S(t)

for the optimal management of an exhaustible resource
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sup
h(·)

( T−1∑

t=t0

ρth(t)η + ρT S(T )η
)

in the particular case of an isoelastic utility function

L(h) = hη with 0 < η < 1 .

By dynamic programming equation (5.16), the value function is the solution
of the backward induction:

⎧
⎨

⎩

V (T, S) = ρT Sη ,

V (t, S) = sup
0≤h≤S

{
ρthη + V (t + 1, S − h)

}
.

Notice the “existence” or “inheritance” term M(T, S(T )) = ρT S(T )η enhanc-
ing the resource.

Result 5.6 Using dynamic programming, one can prove by induction that
{

V (t, S) = ρtb(t)η−1Sη ,

h�(t, S) = b(t)S ,

where
b(t) =

a − 1
a − at−T

with a := ρ
1

η−1 .

Thus, by stock dynamic S�(s + 1) = S�(s) − h�(s, S�(s)) as in (5.21), we
get the optimal paths in open-loop terms from initial time t0 = 0 as follows:

⎧
⎨

⎩
S�(t) = aT+1−t−1

aT+1−1
S0 ,

h�(t) = a−1
a−at−T

aT+1−t−1
aT+1−1

S0 .

Let us also deduce that the profile of optimal consumptions basically depends
on the discount factor ρ through a = ρ

1
η−1 since

h�(t + 1) = a−1h�(t) .

In particular, the optimal extractions strictly decrease with time for usual
values of the discount factor strictly smaller than 1. This fact illustrates the
preference for the present of such a discounted framework. How does this al-
ter sustainability of both the exploitation and the resource? At a first glance,
some sustainability remains since the optimal final stock is strictly positive,
S�(T ) > 0, contributing to the final inheritance or existence value of the re-
source ρT L(S�(T )) = ρT (S�(T ))η > 0. However, let us stress the fact that, for
an infinite horizon T = +∞, the final optimal stock S�(T ) and consumption
h�(T ) vanish for usual values of the discount factor ρ ∈ [0, 1[, thus pointing
out how sustainability is threatened in such an optimality context.
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Result 5.7 Assume that the discount factor ρ is strictly smaller than 1 (0 <
ρ < 1). Then sustainability disappears in the sense

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h�(t + 1) < h�(t) ,

lim
T→+∞

S�(T ) = 0 ,

lim
T→+∞

h�(T ) = 0 .

Furthermore, the optimal control problem

sup
h(·)

T−1∑

t=t0

ρth(t)η

under the same dynamics and constraints is the same as the previous one,
except for the absence of an inheritance value of the stock. A similar com-
putation shows that V (T − 1, S) = ρT−1Sη and that all results above may
be used with T replaced by T + 1. We find that S�(T ) = 0: without “inheri-
tance” value of the stock, it is optimal to totally deplete the resource at the
final period. Hence, not surprisingly, sustainability of the resource is altered
more in such a case.

5.5 Over-exploitation, extinction and inequity

Here we follow the material introduced in Sect. 2.2. Let us consider the ex-
ploitation of a renewable resource whose growth is linear g(B) = RB. It is
assumed that the utility function is also linear L(h) = h, which means that
price is normalized at p = 1 while harvesting costs are not taken into account,
that is to say C(h,B) = 0. Hence, the optimality problem over T periods
corresponds to

sup
h(t0),h(t0+1),...,h(T−1)

T−1∑

t=t0

ρth(t) ,

under the dynamics and constraints

B(t + 1) = R(B(t) − h(t)) , B(t0) = B0 and 0 ≤ h(t) ≤ B(t) .

By dynamic programming equation (5.16), it can be proved that the optimal
catches h�(t) are computed for any initial state B0 as follows.

Result 5.8 Optimal catches depend on ρR as follows.

1. If ρR > 1, then 0 = h�(t0) = h�(t0 +1) = · · · = h�(T −2) and h�(T −1) =
B0R

T−1−t0 .
2. If ρR < 1, then B0 = h�(t0) and 0 = h�(t0 + 1) = · · · = h�(T − 1).
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3. If ρR = 1, many solutions exist. One optimal solution is given by h�(t0) =
h�(t0 + 1) = · · · = h�(T − 1) = B0/(T − t0).

The sustainability issues captured by such an assertion are the following
and depend critically upon the product

ρ︸︷︷︸
economic discount factor

× R︸︷︷︸
biological growth factor

(5.24)

which mixes economic and biological characteristics of the problem.

• Intergenerational equity is a central problem: whenever ρR �= 1, no guar-
anteed harvesting occurs. Either the resource is completely depleted at the
first period and thus catches vanish along the remaining time (case when
ρR < 1), or catches are maintained at zero until the last period when the
whole biomass is harvested (ρR > 1).

• It can be optimal to destroy the resource. Especially if biomass growth R
is weak, it is efficient to destroy the whole biomass at the initial date. An
extinction problem occurs as pointed out by [3].

• The discount factor ρ plays a basic role in favoring the future or the present
or providing equity through ρR = 1.

An illustrative example is provided by blue whales whose growth rate is
estimated to be lower than 5% a year [10]. Such a low rate might explain the
overexploitation of whales during the twentieth century that led regulating
agencies to a moratorium in the sixtees [3].

Another example with the utility function L(h) = 1 − e−h is examined in
Scilab code 10. The solutions are displayed in Fig. 5.2. Although the optimal
paths are smoother, the intergenerational equity problems again occur in a
similar qualitative way depending on the critical value ρR. Preference for the
future or present basically depends on ρR.
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(a) Sustainable case R = 1.1
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(b) Unsustainable case R = 1.04
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(c) “Limit” sustainable case R = 1.05: constant catches

Fig. 5.2. Optimal biomass B�(t) (in �) and optimal catches h�(t) (in ⊕) for
different productivity R of the resource B(t) with T = 100, initial biomass B0 = 10
and discount factor ρ = 1/1.05 for the utility function L(h) = 1 − e−h. Figures are
generated by Scilab code 10.
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Scilab code 10.

//
// exec opti_certain_resource.sce

Horizon=100; // time Horizon

r0=0.05;rho=1/(1+r0);

// discount rate r0=5%

R=1/rho; // limit between sustainable and unsustainable

R=1.04; // unsustainable

R=1.1; // sustainable

growth=[1.04 1/rho 1.1];

for i=1:3

R=growth(i);

// Construction of b and f through dynamic programming

b=[];

b(Horizon+1)=1;

for t=Horizon:-1:1

b(t)=R*b(t+1)/(1+ R*b(t+1));

end;

f=[];

f(Horizon+1)=0;

for t=Horizon:-1:1

f(t)=(f(t+1)-log(rho*R))/(1+R*b(t+1));

end;

// Optimal catches and stocks

opt=[];

hopt=[];

P0=10; // initial biomass

Popt(1)=P0;

for t=1:Horizon

hopt(t)=min(Popt(t),max(0,b(t)*Popt(t)+f(t)));

Popt(t+1)=max(0,R*(Popt(t)-hopt(t)));

end

// Graphics

xset("window",10+i);xbasc();

plot2d2(0:(Horizon)’,[[hopt; Popt($)] Popt],...

rect=[0,0,Horizon*1.1,max(Popt)*1.2]);

// drawing diamonds, crosses, etc. to identify the curves

abcisse=linspace(1,Horizon,20);

plot2d(abcisse,[ hopt(abcisse) Popt(abcisse) ],style=-[3,4]);

legends([’Catch trajectory’;’Biomass trajectory’],-[3,4],’ur’)

xtitle(’Trajectories under linear growth with...

R=’+string(R),’year (t)’,’biomass B(t)’)

end

//

5.6 A cost-effective approach to CO2 mitigation

Consider a cost effectiveness approach for the mitigation of a global pollutant
already introduced in Sect. 2.3. Here, however, we do not consider the pro-
duction level Q(t) as a state variable, and we have cost function C(t, a) and
baseline emissions Ebau(t) directly dependent upon time t. The problem faced
by a social planner is an optimization problem under constraints. It consists in
minimizing4 the discounted intertemporal abatement cost

∑T−1
t=t0

ρtC
(
t, a(t)

)
,

where ρ stands for the discount factor, while achieving the concentration tol-
erable window M(T ) ≤ M �. The problem can be written

inf
a(t0),a(t0+1),..,a(T−1)

T−1∑

t=t0

ρtC
(
t, a(t)

)
, (5.25)

under the dynamic

M(t + 1) = M(t) + αEbau(t)
(
1 − a(t)

)
− δ(M(t) − M−∞) , (5.26)

and constraint
M(T ) ≤ M � . (5.27)

4 This differs from the general utility maximization approach followed thus far in
the book.
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We denote by a�(t0), a�(t0 + 1), .., a�(T − 1) an effective optimal solution
of this problem whenever it exists. We assume that bau emissions increase
with time, namely, when Ebau is regular enough

dEbau(t)
dt

> 0 . (5.28)

For the sake of simplicity, we assume that the abatement costs C(t, a) are
linear with respect to abatement rate a in the sense that

C(t, a) = c(t)a . (5.29)

We do not specify the marginal cost function, allowing again for non linear
processes. We just assume that the abatement cost C(t, a) increases with a
which implies

∂C(t, a)
∂a

= c(t) > 0 . (5.30)

Furthermore, following for instance [7], we assume that growth lowers marginal
abatement costs. This means that the availability and costs of technologies
for fuel switching improve with growth. Thus if the marginal abatement cost
c(·) is regular enough, it decreases with time in the sense

∂2C(t, a)
∂t∂a

=
dc(t)
dt

< 0 . (5.31)

As a result, the costs of reducing a ton of carbon decline.
Using backward dynamic programming equation (5.16), the optimal and

feasible solutions of the cost-effectiveness problem can be computed explicitly
as in [6]. However, let us mention that the proofs are not obvious and require
the use of a generalized gradient. Indeed, the value function and feedback
controls display some non smooth shapes because of kink solutions and active
constraints. Numerical solutions are displayed in Fig. 5.3 and can also be
obtained using any scientific software with optimizing routines.

As explained in detail in Sect. 4.6 of Chap. 4, a viability result brings the
following maximal concentration values to light:

M �(t) := (M � − M∞)(1 − δ)t−T + M∞ . (5.32)

It turns out that an optimal cost-effective policy exists if and only if the
initial concentration M0 is smaller than M �(t0). In this case, the whole abate-
ment rates sequence a(t0), a(t0 + 1), . . . , a(T − 1) is effective if and only if
associated concentrations M(t) remain lower than M �(t).

Now, under the previous existence and effectiveness assumption, we obtain
the optimal policy in terms of feedback depending on the current state M of
the system. A proof based on Bellman dynamic programming under constraint
can be found in [6].
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Fig. 5.3. Cost-effective concentration trajectories M�(t) over the time window
[2000, 2120]. The bau emission function is sigmoid and the optimal concentrations
are plotted for different concentration targets. The baseline concentrations Mbau(t),
and the tolerable concentrations M�(t) for a 550 ppm target are also shown.
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Result 5.9 Consider a tolerable initial situation M(t0) ≤ M �(t0). If assump-
tions for emissions and cost functions (5.28) and (5.31) hold true, then the
optimal effective mitigation policy is defined by the feedback abatement

a�(t,M) = max
(

0,
(1 − δ)(M − M �(t)) + Ebau(t)

Ebau(t)

)
.

Let us point out that the abatement a�(t,M) reduces to zero when condi-
tion (1 − δ)

(
M − M �(t)

)
+ Ebau(t) is negative which corresponds to the case

where the violation of the tolerable threshold M �(t) is not at risk even with
bau emissions. We also emphasize that the case of total abatement where
a�(t,M) = 1 occurs when the current concentration M coincides with maxi-
mal tolerable concentration M �(t).

Using the optimal feedback abatement above, we obtain the following
monotonicity result which favors a non precautionary policy in the sense that
the reduction of emissions is more intensive at the end of period than at the
beginning.

Result 5.10 Consider a tolerable situation M(t0) ≤ M �(t0). If assumptions
for emissions and cost functions (5.28) and (5.31) hold true, then the optimal
abatement rates sequence a�(t) = a�(t,M�(t)) is increasing with time in the
sense that

a�(t0) ≤ a�(t0 + 1) ≤ · · · ≤ a�(T − 1) .

At this stage, let us point out that the previous qualitative results depend
on neither the discount factor ρ ≤ 1 nor the specific form of the emission
and marginal abatement cost functions. This fact emphasizes the generality
of the assertions. In other words, only a change in the described behavior of
the emission function or the use of a non linear cost function could justify
another abatement decision profile on the grounds of this simple optimality
model.

5.7 Discount factor and extraction path of an open pit
mine

Consider an open pit mine supposed to be made of blocks of ore with dif-
ferent values [11]. Each block is a two-dimensional rectangle identified by its
horizontal position i ∈ {1, . . . , N} and by its vertical position j ∈ {1, . . . , H}
(see Fig. 5.4). In the sequel, it will also be convenient to see the mine as a
collection of columns indexed by i ∈ {1, . . . , N}, each column containing H
blocks.

We assume that blocks are extracted sequentially under the following hy-
pothesis:

• it takes one time unit to extract one block;
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Fig. 5.4. An extraction profile in an open pit mine

• only blocks at the surface may be extracted;
• a block cannot be extracted if the slope made with one of its two neighbors

is too high, due to physical requirements;
• a retirement option is available where no block is extracted.

States and admissible states

Denote discrete time by t = 0, 1, . . . , T , where an upper bound for the number
of extraction steps is obviously the number N×H of blocks (it is in fact strictly
lower due to slope constraints). At time t, the state of the mine is a profile
x(t) =

(
x1(t), . . . , xN (t)

)
∈ X = R

N where xi(t) ∈ {1, . . . , H + 1} is the
vertical position of the top block with horizontal position i ∈ {1, . . . , N} (see
Fig. 5.4). The initial profile is x(0) = (1, 1, . . . , 1) while the mine is totally
exhausted in state x = (H + 1,H + 1, . . . , H + 1).

An admissible profile is one that respects local angular constraints at each
point, due to physical requirements. A state x = (x1, . . . , xN ) is said to be
admissible if the slope constraints are respected in the sense that
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 = 1 or 2 (border slope)

|xi+1 − xi| ≤ 1 , for i = 1, . . . , N − 1

xN = 1 or 2 (border slope).

(5.33)

Denote by A ⊂ {1, . . . , H + 1}N the set of admissible states satisfying the
above slope constraints (5.33).

Controlled dynamics

A decision is the selection of a column in {1, . . . , N} whose top block will
be extracted, or the retirement option that we shall identify with a column
N + 1. Thus a decision u is an element of the set B = {1, . . . , N,N + 1} ⊂
U = R. At time t, if a column u(t) ∈ {1, . . . , N} is chosen at the surface
of the open pit mine, the corresponding block is extracted and the profile
x(t) =

(
x1(t), . . . , xN (t)

(
) becomes

xj(t + 1) =
{

xj(t) − 1 if j = u(t)
xj(t) else.

In case of retirement option u(t) = N +1, then x(t+1) = x(t) and the profile
does not change. In other words, the dynamics is given by x(t + 1) = F (x, u)
where

Fj(x, u) =
{

xj − 1 if j = u ∈ {1, . . . , N}
xj if j �= u or j = N + 1 .

(5.34)

Indeed, the top block of column j is no longer at altitude xj(t) but at xj(t)−1,
while all other top blocks remain. Of course, not all decisions u(t) = j are
possible either because there are no blocks left in column j (xj = H + 1) or
because of slope constraints.

Intertemporal profit maximization

The optimal mining problem consists in finding a sequence of admissible blocks
which maximizes an intertemporal discounted extraction profit. It is assumed
that the value of blocks differs in altitude and column because richness of the
mine is not uniform among the zones as well as costs of extraction. For instance
Figs. 5.5 (a) and (b) display high value levels in darker (black and red) blocks.
The net value a each block is denoted by R(i, j). By convention R(i,N+1) = 0
when the retirement option is selected. Selecting a square u(t) ∈ B at the
surface of the open pit mine, and extracting the corresponding block5 at depth
xu(t)(t) yields the value R

(
xu(t)(t), u(t)

)
. With discounting 0 < ρ < 1, the

5 When u(t) = N + 1, there is no corresponding block and the following notation
xu(t)(t) = xN+1(t) is meaningless, but this is without incidence since the value
R
(
xN+1(t), N + 1

)
= 0.
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optimization problem is supu(·)
∑+∞

t=0 ρtR
(
xu(t)(t), u(t)

)
. Notice that the sum

is in fact finite, bounded above by the number of blocks. Thus, we shall rather
consider6

sup
u(0),...,u(T−1)

T−1∑

t=0

ρtR
(
xu(t)(t), u(t)

)
. (5.35)

Dynamic programming equation

The value function V (t, x) solves V (T, x) = 0 and7

V (t, x) = max
u∈B

(
ρtR(xu, u) − ΨA

(
F (x, u)

)
+ V

(
t, F (x, u)

))
. (5.36)

The maximization problem (5.35) is solved by a numerical dynamic pro-
gramming corresponding8 to Scilab codes 11-12. Figs. 5.5 exhibit optimal
extraction mine profiles for t = 1, t = 18 and final time for two discount
values. The left column is for discount factor ρ = 0.95, while the right one
is for ρ = 0.99. It is shown how a large discount factor ρ = 0.99 leads to a
larger exploitation of the mine than a lower ρ = 0.95. The high preference
for present neglects potential use of the mine at stronger depths while a com-
plete admissible exploitation occurs with a more important account of future
incomes through a larger discount factor.

6 If we account for transportation costs, we may subtract to R a term proportional
to δ(u(t), u(t − 1)), measuring the distance between two subsequent extraction
columns.

7 We have −ΨA(F (x, u)) = 0 if F (x, u) ∈ A, while −ΨA(F (x, u)) = −∞ if F (x, u) 	∈
A. This is how we capture the fact that a decision u is admissible.

8 However, due to numerical considerations and curse of dimensionality, a more
parsimonious state is introduced in the Scilab code 11 before applying the
dynamic programming algorithm. Indeed, to give a flavor of the complexity of
the problem, notice that 4 columns (N = 4) each consisting of nine blocks
(H = 9) give 10 000 states ((H + 1)N = 104), while this raises to 1010 000

if we assume that the surface consists of 100 × 100 columns (N = 10 000).
However, the set A of acceptable states has a cardinal card(A) which is gen-
erally much smaller than (H + 1)N . To see this, let us introduce the map-
ping x = (x1, . . . , xN ) → ϕ(x) = (x1, x2 − x1, . . . , xN − xN−1). Let x ∈ A

and y = ϕ(x). Since x satisfies the admissibility condition (5.33), y necessar-
ily satisfies y1 ∈ {1, 2} and supi=2,...,N |yi| ≤ 1. Hence, card(A) ≤ 2 × 3N−1

and the dynamic programming algorithm will be released with the new state
y = (y1, . . . , yN ) ∈ {1, 2} × {−1, 0, 1}N−1 corresponding to the increments of the
state x.
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(d) t = 18, ρ = 0.99

0 2 4 6 8 10 12

−5

−4

−3

−2

−1

0

Optimal extraction profile at ultimate time t=20 for discount rate 0.95

(e) t = T , ρ = 0.95
0 2 4 6 8 10 12

−5

−4

−3

−2

−1

0

Optimal extraction profile at ultimate time t=30 for discount rate 0.99

(f) t = T , ρ = 0.99

Fig. 5.5. Optimal extraction mine profiles for t = 1, t = 18 and final time. The left
column is for discount factor ρ = 0.95, while the right one is for ρ = 0.99. The darker
the zone, the more valuable. Trajectories are computed with the Scilab codes 11-12.
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Scilab code 11.

//
stacksize(2*10^8);

// -----------------------------------------

// LABELLING STATES AND DYNAMICS

// -----------------------------------------

MM=3^{NN} ; // number of states

Integers=(1:MM)’ ; // labelled states

State=zeros(MM,NN);

// Will contain, for each integer z in Integers,

// a sequence s=(s_1,...,s_NN) with

// s_1 \in \{1,2\}

// and s_k \in \{0,1,2\} for k \geq 2, such that

// 1) z = s_1 + s_2*3^{1} + ... + s_NN*3^{NN-1}

// 2) a mine profile p_1,...,p_NN is given by

// p_k = y_1 + ... + y_k where y_1= s_1-1 \in \{0,1\}

// and y_j = s_j - 1 \in \{-1,0,1\} for j>1.

Increments=zeros(MM,NN);

// Will contain, for each integer z in Integers,

// the sequence y=(y_1,...,y_NN).

// The initial profile is supposed to be p(0)=(0,0,...,0)

// to which corresponds y(0)=(0,0,...,0) and

// s(0)=(1,1,...,1) and z(0)=1+ 3^{1} + ... + 3^{NN-1}.

Partial_Integer=zeros(MM,NN);

// Will contain, for each integer z in Integers,

// a lower aproximation of z in the basis

// 1, 3^{1},..., 3^{NN-1}

// Partial_Integer(z,k)=s_1 + s_2*3^{1} +...+ s_k*3^{k-1}.

Future_Integer=zeros(MM,NN);

// Will contain, for each integer z in Integers,

// the image by the dynamics under the control consisting in

// extracting block in the corresponding column.

State(:,1)=pmodulo(Integers, 3^{1}) ;

// State(z,1)=s_1

Partial_Integer(:,1)=State(:,1) ;

// Partial_Integer(z,1)=s_1

Future_Integer(:,1)= maxi(1,Integers+1-3^{1}) ;

// Dynamics (with a "maxi" because some integers in

// Integers+1-3^{1} do not correspond to "mine profiles").

Increments(:,1)=State(:,1)-1;

for k=2:NN

remainder= ( Integers-Partial_Integer(:,k-1) ) / 3^{k-1} ;

// s_{k} + s_{k+1}*3 + ...

State(:,k)=pmodulo(remainder, 3) ;

// State(:,k)=s_{k}

Increments(:,k)=State(:,k)-1;

Partial_Integer(:,k)=Partial_Integer(:,k-1)+3^{k-1}*State(:,k);

// Partial_Integer(z,k)=s_1+s_2*3^{1}+...+s_k*3^{k-1}

Future_Integer(:,k)= maxi(1,Integers+3^{k-1}-3^{k}) ;

// Dynamics (with a "maxi" because some integers

// in Integers+3^{k-1}-3^{k}

// do not correspond to "mine profiles")

end

Future_Integer(:,NN)= mini(MM,Integers+3^{NN-1}) ;

// Correction for the dynamics

// when the last column NN is selected.

// Dynamics (with a "mini" because some integers in

// Integers+3^{NN-1} do not correspond to "mine profiles").

// -----------------------------------------

// FROM PROFILES TO INTEGERS

// -----------------------------------------

function z=profile2integer(p)

// p : profile as a row vector

yy= p-[ 0 p(1:($-1)) ] ;

ss=yy+1 ;

z=sum( ss .* [1 3.^{[1:(NN-1)]}] ) ;

endfunction

// -----------------------------------------

// ADMISSIBLE INTEGERS

// -----------------------------------------

// Mine profiles are those for which

// HH \geq p_1 \geq 0,..., HH \geq p_NN \geq 0

// that is, HH \geq y_1 + ... + y_k \geq 0 for all k

// Since, starting from the profile p(0)=(0,0,...,0)), the

// following extraction rule will always give "mine profiles",

// we shall not exclude other unrealistic profiles.

Admissible=zeros(MM,NN);

Profiles= cumsum (Increments , "c" ) ;

// Each line contains a profile, realistic or not.

adm_bottom=bool2s(Profiles<HH) ;

// A block at the bottom cannot be extracted:

// an element in adm_bottom is one if and only if

// the top block of the column is not at the bottom.

// Given a mine profile, extracting one block at the surface

// is admissible if the slope is not too high.

//

// Extracting block in column 1 is admissible

// if and only if p_1=0.

//

// Extracting block in column j 1<j<NN) is not admissible

// if and only if y_j=1 or y_{j+1}=-1 that is,

// (s_j-1)=1 or (s_{j+1}-1)=-1.

// Extracting block in column j is admissible

// if and only if s_j < 2 and s_{j+1} > 0.

//

// Extracting block in column NN is admissible

// if and only if p_{NN}=0.

Admissible(:,1)=bool2s(Profiles(:,1)==0);

Admissible(:,NN)=bool2s(Profiles(:,NN)==0);

// Corresponds to side columns 1 and NN, for which only the

// original top block may be extracted:

// an element in columns 1 and NN of Admissible is one

// if and only if the pair (state,control) is admissible.

Admissible(:,2:($-1))=...

bool2s( State(:,2:($-1))<2 & State(:,3:$)>0 ) ;

// An element in column 1<j<NN of AA is one if and only

// s_j < 2 and s_{j+1} > 0.

Admissible=Admissible .* adm_bottom ;

// An element in column j of admissible is zero

// if and only if

// extracting block in column j is not admissible,

// else it is one.

Stop_Integers=Integers( prod(1-Admissible,"c") ==1 ) ;

// Labels of states for which no decision is admissible,

// hence the decision is the retirement option

// -----------------------------------------

// INSTANTANEOUS GAIN

// -----------------------------------------

Forced_Profiles= mini(HH, maxi(1, Profiles) ) ;

// Each line contains a profile, forced to be realistic.

// This trick is harmless and useful

// to fill in the instantaneous gain matrix.

instant_gain=zeros(MM,NN);

for uu=1:NN

instant_gain(:,uu)= Admissible(:,uu) .* ...

richness(Forced_Profiles(Future_Integer(:,uu),uu) , uu )...

+ (1-Admissible(:,uu)) *bottom;

end

// When the control uu is admissible,

// instant_gain is the richness of the top block of column uu.

// When the control uu is not admissible, instant_gain

// has value "bottom", approximation of -infinity.

//
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Scilab code 12.

//

// -----------------------------------------

// DYNAMIC PROGRAMMING ALGORITHM

// -----------------------------------------

VV=zeros(MM,T); // value functions in a matrix

// The final value function is zero.

UUopt=(NN+1)*ones(MM,T); // optimal controls in a matrix

for t=(T-1):(-1):1 // backward induction

loc=[];

// will contain the vector to be maximized

loc_bottom=mini(VV(:,t+1));

// The value attributed to the value function VV(:,t)

// when a control is not admissible.

//

for uu=1:NN // columns 1 to NN selected

loc=[loc, Admissible(:,uu) .* ( ...

discount^t * instant_gain(:,uu) + ...

VV( Future_Integer(:,uu) , t+1 ) ) +...

+ (1-Admissible(:,uu)) .* (discount^t * bottom + loc_bottom) ] ;

end

// When the control uu is admissible,

// loc is the usual DP expression.

// When the control uu is not admissible,

// loc is the DP expression

// with both terms at the lowest values.

//

loc=[loc, VV(:,t+1) + discount^t *0] ;

// Adding an extra control/column which provides zero

// instantaneous gain and does not modify the state:

// retire option.

//

[lhs,rhs]= maxi(loc,"c") ; // DP equation

VV(:,t)=lhs;

UUopt(:,t)=rhs;

//

UUopt(Stop_Integers,t)=(NN+1)*ones(Stop_Integers) ;

// retire option

end

// -----------------------------------------

// OPTIMAL TRAJECTORIES

// -----------------------------------------

xx=zeros(T,NN);

zz=zeros(T,1);

uu=(NN+1)*ones(T,1);

vv=0;

xx(1,:)=zeros(1,NN);

// initial profile

xset("window",1) ;

xset("colormap",hotcolormap(64));

// table of colors

xbasc();plot2d2(-0.5+0:(NN+2),-[0 xx(1,:) 0 0],...

rect=[0,-HH-0.5,NN+1,0.5])

Matplot1(rich_color,[0,-HH-0.5,NN+1,0.5]);

t=1 ; last_control=0 ;

//

while last_control<NN+1 do

zz(t)=profile2integer(xx(t,:)) ;

uu(t)=UUopt(zz(t),t) ;

xx(t+1,:)=xx(t,:);

if uu(t)<NN+1 then

xx(t+1,uu(t))=xx(t,uu(t))+1;

vv=vv+discount^t*richness(xx(t+1,uu(t)),uu(t)) ;

end

// halt()

xbasc();plot2d2(-0.5+0:(NN+2),-[0 xx(t+1,:) 0 0],...

rect=[0,-HH-0.5,NN+1,0.5]); xpause(400000);

last_control=uu(t);

t=t+1 ;

end

xtitle("Optimal extraction profile for discount rate "...

+string(discount))

function []=display_profile(time)

// Displays graphics of mine profiles

xset("window",time) ;

xset("colormap",hotcolormap(64));

xbasc();

plot2d2(-0.5+0:(NN+2),-[0 xx(time,:) 0 0],...

rect=[0,-HH-0.5,NN+1,0.5]);

// Just to to set the frame

Matplot1(rich_color,[0,-HH-0.5,NN+1,0.5]);

// The value of the mine blocks in color.

// Will be in background.

plot2d2(-0.5+0:(NN+2),-[0 xx(time,:) 0 0],...

rect=[0,-HH-0.5,NN+1,0.5]);

xtitle("Optimal extraction profile at ultimate time t="...

+string(time) +" for discount rate "+string(discount))

endfunction

time=t;

display_profile(time)

time=1;

display_profile(time)

time=ceil(T/3);

display_profile(time)

//

5.8 Pontryaguin’s maximum principle for the additive
case

A dual approach to solve intertemporal optimization problems emphasizes the
role played by the adjoint state, Lagrangian or Kuhn and Tucker multipliers
in optimal control problems. We present this so-called Pontryaguin’s maxi-
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mum principle9 using a Hamiltonian formulation. The maximum principle is
a necessary condition for optimality. Here, we basically deduce the maximum
principle from the Bellman backward induction equation. We could as well de-
duce the principle from the existence of Lagrange multipliers in optimization
problems with constraints on R

N , as is often introduced in the literature.

5.8.1 Hamiltonian formulation without control and state
constraints

We assume here the absence of control and state constraints:

B(t, x) = U = R
p and A(t) = X = R

n . (5.37)

The maximum principle may be expressed in a compact manner introducing
the so-called Hamiltonian of the problem.

Definition 5.11. The Hamiltonian associated to the maximization problem
(5.14) is the following function10

H(t, x, q, u) :=
n∑

i=1

qiFi(t, x, u) + L(t, x, u)

= F (t, x, u)′q + L(t, x, u) .

(5.38)

The new variable q is usually called adjoint state, adjoint variable, or multi-
plier.

Thus, to form the Hamiltonian, simply multiply the dynamics by the adjoint
variable (scalar product in dimension more than one), and subtract the in-
stantaneous payoff.

The Hamiltonian conditions involving the so-called optimal adjoint state
q�(·) together with the optimal state x�(·) and decision u�(·) are described
in the following Proposition, called the maximum principle. It basically stems
from first order optimality conditions under constraints involving first order
derivatives. One proof can be derived from a Lagrangian formulation. The
other way that we have chosen is to apply the Bellman principle in a marginal
version as exposed in Proposition 5.13. The proof can be found in Sect. A.3
in the Appendix.

Proposition 5.12. Consider the maximization problem (5.14) under con-
straints (5.8) without state constraints as in (5.37). Assume that instanta-
neous utility L, final utility M and dynamic F are continuously differentiable
9 This is an abuse of language. Indeed, in the discrete time case, the optimality

condition is not necessarily a maximum but may be a minimum or neither of
both, which is not the case in continuous time.

10 Recall the notations for transpose vectors: if p and q are two column vectors of R
n,

the scalar product of p and q is denoted indifferently 〈p, q〉 = p′q = q′p = 〈q, p〉,
where ′ denotes the transpose operator.
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in the state variable x. Let the trajectory
(
x�(·), u�(·)

)
∈ X

T+1−t0 × U
T−t0 be

a solution of the maximization problem (5.14). Then, there exists a sequence
q�(·) = (q�(t0), . . . , q�(T − 1)) ∈ X

T−t0 , called adjoint state, such that, for
any i = 1, . . . , n and j = 1, . . . , p, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x�
i (t + 1) =

∂H
∂qi

(
t, x�(t), q�(t), u�(t)

)
, t = t0, . . . , T − 1 ,

q�
i (t − 1) =

∂H
∂xi

(
t, x�(t), q�(t), u�(t)

)
, t = t0 + 1, . . . , T − 1 ,

0 =
∂H
∂uj

(
t, x�(t), q�(t), u�(t)

)
, t = t0, . . . , T − 1 ,

(5.39)

together with boundary conditions
⎧
⎪⎪⎨

⎪⎪⎩

x�
i (t0) = xi0 ,

q�
i (T − 1) =

∂M

∂xi

(
t, x�(t)

)
.

(5.40)

Writing the previous Hamiltonian conditions, we may hope to simulta-
neously reveal the optimal state, decisions and adjoints. For this reason the
principle proves useful and is applied for the analysis of many optimal control
problems. Conditions (5.39) can be equivalently depicted in a more compact
form using vectors and transposed as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x�(t + 1) = (
∂H
∂q

)′
(
t, x�(t), q�(t), u�(t)

)
,

q�(t − 1) = (
∂H
∂x

)′
(
t, x�(t), q�(t), u�(t)

)
,

0 = (
∂H
∂u

)′
(
t, x�(t), q�(t), u�(t)

)
.

(5.41)

5.8.2 The adjoint state as a marginal value

The adjoint state can be interpreted in terms of prices and marginal value: it
appears indeed as the derivative of the value function with respect to the state
variable along an optimal trajectory. Similarly, the adjoint state is also related
to the Lagrangian multipliers associated with the dynamics seen here as an
equality constraint between state trajectory, control trajectory and time.

Proposition 5.13. Suppose that the value function V (t, x) associated to the
maximization problem (5.14) is smooth with respect to x. Assume that there
exists an optimal trajectory x�(·) such that u�

(
t, x�(t)

)
in (5.20) is unique for

all t = t0, . . . , T − 1. Then, the sequence q�(·) defined by
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q�
i (t) :=

∂V

∂xi

(
t + 1, x�(t + 1)

)
, t = t0, . . . , T − 1 , (5.42)

is a solution of (5.39) and (5.40).

In a more vectorial form, we write (5.42) equivalently as

q�(t) :=
(∂V

∂x

)′(
t + 1, x�(t + 1)

)
. (5.43)

5.9 Hotelling rule

Let us now apply the maximum principle to a simple example. Let us handle
the “cake-eating” model coping with an exhaustible resource presented at
Sect. 2.1, where we ignore the constraints, giving

sup
h(t0),...,h(T−1)

T−1∑

t=t0

ρtL
(
h(t)
)

+ ρT L
(
S(T )

)
(5.44)

with dynamics S(t + 1) = S(t) − h(t) and S(t0) given. We define the Hamil-
tonian as in (5.38)

H(t, S, h, q) := ρtL(h) + q(S − h) .

From Proposition 5.12, a trajectory
(
S�(·), h�(·)

)
is the solution of the opti-

mization problem (5.44) if there exists an adjoint state trajectory q�(·) such
that the following conditions are satisfied

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H
∂h

(
t, S�(t), h�(t), q�(t)

)
= 0

∂H
∂q

(
t, S�(t), h�(t), q�(t)

)
= S�(t + 1)

∂H
∂S

(
t, S�(t), h�(t), q�(t)

)
= q�(t − 1)

∂M

∂S

(
T, S�(T )

)
= q�(T − 1)

giving ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρtL′(h�(t)
)
− q�(t) = 0

S�(t) − h�(t) = S�(t + 1)

q�(t) = q�(t − 1)

ρT L′(S�(T )
)

= q�(T − 1) .

(5.45)

Thus, the multiplier q�(t) is stationary and we obtain the following interesting
result that
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L′(h�(t)
)

= q�(t0)ρt0−t . (5.46)

We may write the above relation as

L′(h�(t + 1)
)

L′
(
h�(t)

) =
1
ρ

. (5.47)

The marginal utility L′(h�(t)
)

is interpreted as the price of the resource at
time t, that we denote by

p(t) := L′(h�(t)
)

.

From (5.47), we derive that the price of the resource grows as

p(t + 1) = (1 + rf )p(t) with rf :=
1
ρ
− 1 ,

where the discount factor ρ is usually related to the interest rate rf through
the relation ρ(1 + rf ) = 1. Thus the price growth rate coincides with the
interest rate: this is the so-called Hotelling rule [9].

Moreover, writing

log
(L′(h�(t + 1)

)

L′
(
h�(t)

)
)

=
∫ h�(t+1)

h�(t)

L′′

L′ (h)dh

and introducing the elasticity of the marginal utility of consumption

η(h) := −hL′′(h)
L′(h)

,

equation (5.47) becomes11

∫ h�(t+1)

h�(t)

η(h)
h

dh = log ρ .

Thus, the greater the rate of discount ρ, the greater the rate of extraction, and
a decrease in the elasticity of the marginal utility of consumption increases
the rate of extraction. From (5.46), we obtain that

h�(t) = (L′)−1(q�(t0)ρt0−t) ,

and the optimal extraction h�(t) is stricly decreasing with time t if marginal
utility L′ is taken to be stricly decreasing (L stricly concave) and since ρ ≤ 1.

When T → +∞ and the marginal utility at zero is infinite L′(0) = +∞,
we observe that the extraction h�(t) goes toward zero. Since the stock S�(t)

11 In continuous time, the Hotelling rule is stated as ḣ
h

= − rf

η
, where rf = − log ρ

is the discount rate.
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decreases and is nonnegative, it also goes down to a limit. By the equality
ρT L′(S�(T )) = q�(t0), we see that S�(T ) ↘ (L′)−1(+∞) = 0. Hence, both
the extraction h�(t) and the stock S�(t) go toward zero under reasonable
assumptions.

Let us summarize these results as follows.

Result 5.14 Assume that the concave utility L satisfies L′′ < 0 and the in-
terest rate rf is strictly positive. Then

• the rate of return (financial) of the resource is the interest rate;
• optimal consumption decreases along time h�(t + 1) < h�(t);
• optimal stock and extraction are exhausted in the long term:

lim
T→+∞

S�(T ) = lim
T→+∞

h�(T ) = 0 .

Optimal depletion without existence value

We have ignored the constraints 0 ≤ h(t) ≤ S(t) above. However, one should
be cautious in doing so. Consider indeed the same problem but without “in-
heritance” value:

sup
h(t0),...,h(T−1)

T−1∑

t=t0

ρtL
(
h(t)
)

.

The optimality equations are the same as in (5.45) except for q�(T − 1) =
L′(S�(T )

)
ρT which now would become q�(T − 1) = 0, giving q�(t) = 0 and a

contradiction with L′(h�(t)
)
ρt = q�(t) = 0 and L′ > 0 in general.

5.10 Optimal management of a renewable resource

We first present a sustainable exploitation when ρR = 1, then expose the so
called fundamental equation of renewable resource.

5.10.1 Sustainable exploitation

Let us return to the management problem presented at Sect. 2.2

sup
h(t0),...,h(T−1)

( T−1∑

t=t0

ρtL
(
h(t)
)

+ ρT L
(
B(T )

))

with dynamic B(t + 1) = R
(
B(t) − h(t)

)
. We illustrate the maximum ap-

proach, temporarily ignoring the constraints 0 ≤ h(t) ≤ B(t); we shall verify
afterwards that the optimal solution is an interior solution in the sense that
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it satisfies 0 < h�(t) < B(t). For the sake of simplicity, we consider the par-
ticular case of T = 2 periods and we suppose that the discount factor satisfies
relation (5.23) namely, ρR = 1.

The utility function L is taken to be sufficiently regular (twice continuously
differentiable, for instance), and strictly concave (L′′ < 0).

Using the general notations of Sect. 5.1, we have M(2, B) = ρ2L(B). The
Hamiltonian as in (5.38) is given by

H(t, B, q, h) = qR(B − h) + ρtL(h) .

The maximum principle (5.39) implies q�(1) = ρ2L′(B�(2)
)

and

q�(t − 1) = q�(t)R, t = 1, 2 and 0 = q�(t)R + ρtL′(h�(t)
)
, t = 0, 1, 2 .

This yields

q�(1) = ρ2L′(B�(2)
)

, q�(0) = ρL′(B�(2)
)

, L
(
h�(0)) = L′(h�(1)

)
= L′(B�(2)

)
.

Since L is a strictly concave function, its derivative is strictly decreasing and
one can deduce that we are dealing with stationary optimal consumptions
h�(0) and h�(1), both equal to B�(2). According to the dynamic equation, we
deduce that

B�(2) = R
(
B�(1)−h�(1)

)
= R

(
R
(
B0−h�(0)

)
−h�(1)

)
= R

(
R
(
B0−B�(2)

)
−B�(2)

)
,

implying that optimal catches are

h�(0) = h�(1) =
R2

1 + R + R2
B0 .

We check that 0 < h�(t) < B�(t).

5.10.2 A new bioeconomic equilibrium

Following [4], we may derive from the maximum principle at equilibrium a
well known relationship displaying a new bioeconomic equilibrium based on
a long term steady state. Such equilibrium accounts for the interest rate rf

or risk free asset, the growth of the resource g(B), the sustainable yield σ(B)
defined in (3.6) of Chap. 3 and the rent R in marginal terms, namely

gB

(
B − σ(B)

)
= (1 + rf )

Rh(σ(B), B) + RB(σ(B), B)
Rh(σ(B), B)

. (5.48)

Such equilibrium has to be compared with characterizations of mse or ppe

equilibria in Subsect. 3.3.1 of Chap. 3.
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To achieve assertion (5.48), we consider the dynamic optimization problem

max
h(t0),...,h(T−1)

( T−1∑

t=t0

ρtR
(
h(t), B(t)

)
+ ρT M

(
B(T )

))
,

where the discount ρ refers to the interest rate through ρ(1 + rf ) = 1, under
the dynamic

B(t + 1) = g
(
B(t) − h(t)

)
.

The Hamiltonian is

H(t, B, q, h) := qg(B − h) + ρtR(h,B) .

Under regularity assumptions on the functions R and g, the maximum prin-
ciple reads

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = −q(t)gB

(
B(t) − h(t)

)
+ ρtRh

(
h(t), B(t)

)
,

B(t + 1) = g
(
B(t) − h(t)

)
,

q(t − 1) = q(t)gB

(
B(t) − h(t)

)
+ ρtRB

(
h(t), B(t)

)
.

Setting l(t) := q(t)ρ−t, the conditions become
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 = Rh

(
h(t), B(t)

)
− l(t)gB

(
B(t) − h(t)

)
,

B(t + 1) = g
(
B(t) − h(t)

)
,

l(t − 1) = ρ
(
RB

(
h(t), B(t)

)
+ l(t)gB

(
B(t) − h(t)

))
.

A steady state (B�, h�, l�) associated with these two dynamics satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = Rh(h�, B�) − l�gB(B� − h�) ,

h� = σ(B�) ,

l� = ρ
(
RB(h�, B�) + l�gB(B� − h�)

)
.

Combining the equations yields the desired result (5.48).
Despite the numerous assumptions underlying such reasoning, this equa-

tion has been called the fundamental equation of renewable resource. It has
an interesting economic interpretation. On the left hand side, the first term
gB

(
B� − σ(B�)

)
is the marginal productivity of the resource (at equilib-

rium) while the second term involving the marginal stock effect measures
the marginal value of the stock relative to the marginal value of harvest.

Such equilibrium questions the long term sustainability of an optimal man-
agement. In particular, we may wonder whether this equilibrium can take
negative values. Let us consider the illustrative case where
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• the resource dynamic is of the Beverton-Holt type g(B) = RB
1+bB ;

• rent is of the form R(h,B) = ph − c.

It has been already shown that

gB(B) =
R

(1 + bB)2
and σ(B) = B

(
1 − 1

R − bB

)
.

Moreover we obtain

RB(h,B) = 0 and Rh(h,B) = p .

Thus, the long term equilibrium satisfies

1 + rf =
R

(
1 + b

(
B�

R − bB�

))2 =
(R − bB�)2

R
.

Thus, whenever Rρ ≤ 1, the unique solution B� is a negative biomass.

Result 5.15 Consider the Beverton-Holt dynamics and fixed harvesting costs.
If Rρ ≤ 1 then extinction is optimal in the sense that the long term equilibrium
is negative B� ≤ 0.

More general conditions for “optimal extinction” are exposed in [3]. Again,
such assertions stress the fact that major economic rationales exist for non
conservation and non sustainability of renewable resources.

5.11 The Green Golden rule approach

As already been pointed out in the introduction, the Green Golden criterion
sheds interesting light on the sustainability issue from the point of view of the
future preferences. Indeed, by focusing on the decisions that favor the final
payoff, this approach promotes the distant future. For the management of nat-
ural resources, it turns out that such an approach may reduce consumption to
zero along time and promote the stock resource. In this sense, it constitutes a
dictatorship of the future. From the methodological viewpoint, this framework
turns out to be a particular instance of the additive case of Sect. 5.2 without
instantaneous payoff. Thus, both the dynamic programming and maximum
principle apply with major simplifications.

Again, the Green Golden rule value function or Bellman function V (t, x)
at time t and for state x represents the optimal value of the criterion over
T − t remaining periods, given that the state of the system at time t is x,
namely

V (t, x) := sup(
x(·),u(·)

)
∈T ad(t,x)

M
(
T, x(T )

)
, (5.49)

where T ad(t, x) is given by (5.8).
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An induction equation appears for the Green Golden rule value function
V (t, x). The proof of the following assertion is a particular instance of the
additive case of Sect. 5.2. We describe it in the case with the state constraint
involving viability conditions.

The value function defined by (5.49) is the solution of the following dy-
namic programming equation (or Bellman equation), where t runs from T −1
down to t0,

⎧
⎪⎨

⎪⎩

V (T, x) = M(T, x) , ∀x ∈ Viab(T ) ,

V (t, x) = sup
u∈Bviab(t,x)

V
(
t + 1, F (t, x, u)

)
, ∀x ∈ Viab(t) ,

(5.50)

where Viab(t) is again given by the backward induction (5.18) and where the
supremum in (5.50) is over viable controls in B

viab(t, x) as in (5.19).
As in the additive case, Bellman induction optimization in the Green

Golden rule case also reveals relevant feedback controls. Indeed, assuming the
additional hypothesis that the supremum is achieved in (5.50) for at least one
decision, if we denote by u�(t, x) a value u ∈ B(t, x) which achieves the maxi-
mum in equation (5.50), then u�(t, x) is an optimal feedback for the optimal
control problem.

5.12 Where conservation is optimal

Now, let us examine an application of the Green Golden rule for the following
renewable resource management problem

B(t + 1) = g
(
B(t) − h(t)

)
, 0 ≤ h(t) ≤ B(t) ,

with criterion
sup

h(t0),...,h(T−1)

M
(
T,B(T )

)
,

where M is some payoff function with respect to resource state B and g
represents the resource dynamic. The case where g(B) = B stands for the ex-
haustible issue. It can be proved that, under general and simple assumptions,
the optimal catches are reduced to zero.

Result 5.16 Assume that the final payoff M and resource productivity g are
increasing functions. Then, the value function and optimal feedbacks are given
by

V (t, B) = M
(
T, g(T−t)(B)

)
, u�(t, B) = 0 , (5.51)

where g(i)(B) =

i times︷ ︸︸ ︷
g(g(· · · g(B) · · · )) denotes the i-th composition of function g

(g(1) = g, g(2) = g ◦ g, etc.).
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Notice that such an optimal viable rule provides zero extraction or catches
along time and thus favors the resource which takes its whole value from the
final payoff. In this sense, such an approach promotes ecological and envi-
ronmental dimensions. Although such a Green Golden rule solution displays
intergenerational equity since depletion is stationary along time and favors
the resource, it is not a satisfying solution for sustainability as soon as con-
sumption is reduced to zero along the generations.

Why is it so mathematically? From (5.50), the inductive relation (5.51)
holds true at final time T . Assume now that the relation (5.51) is satisfied at
time t + 1. From dynamic programming equation (5.50), we infer that

V (t, B) = sup
0≤h≤B

V
(
t + 1, g(B − h)

)

= sup
0≤h≤B

ρT M
(
T, gT−t−1

(
g(B − h)

))
.

Since payoff M and dynamic g increase with resource B, we deduce that
the optimal feedback control is given by its lower admissibility boundary
u�(t, B) = 0 and consequently

V (t, B) = M
(
T, gT−t−1

(
g(B)

))
= M

(
T, gT−t(B)

)
,

which is the desired statement.

5.13 Chichilnisky approach for exhaustible resources

The optimality problem proposed by Chichilnisky to achieve sustainability
relies on a mix of the Green Golden rule and discounted approaches. The
basic idea is to exhibit a trade-off between preferences for the future and
the resource underlying the Green Golden approach and preferences for the
present and consumption generated by the discounted utility criterion. The
general problem of Chichilnisky performance can be formulated as a specific
case of additive performance with a scrap payoff where the discount is time
dependent. We focus here on the case of exhaustible resource S(t + 1) =
S(t) − h(t) as in Sect. 2.1 with criterion

max
h(·)

(
θ

T−1∑

t=t0

ρtL
(
h(t)
)

+ (1 − θ)L
(
S(T )

))
. (5.52)

Here, θ ∈ [0, 1] stands for the coefficient of present preference. Note that the
extreme case where θ = 1 corresponds to the usual sum of discounted utility of
consumptions, while θ = 0 is the Green Golden rule payoff. Hence comparison
of the three contexts can be achieved only by changing θ, the coefficient of
present preference. Applying dynamic programming, the following assertions
can be proved.
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Result 5.17 Using dynamic programming, one can prove by induction that
{

V (t, S) = ρ(t)b(t)η−1Sη ,

h�(t, S) = b(t)S ,
(5.53)

where b(·) is the solution of backward induction

b(t) =
ρ(t + 1)μb(t + 1)

ρ(t)μ + ρ(t + 1)μb(t + 1)
, b(T ) = 1 ,

with μ = 1
η−1 and ρ(t) =

{
θρt if t = t0, . . . , T − 1 ,

(1 − θ) if t = T .

At final time t = T , the relation holds true as

V (T, S) = (1 − θ)Sη = ρ(T )b(T )η−1Sη .

Now, assume that (5.53) is satisfied at time t + 1. By dynamic programming
equation (5.16), the value function is the solution of the backward induction

V (t, S) = sup
0≤h≤S

{
θρthη + V (t + 1, S − h)

}
,

= sup
0≤h≤S

{
θρthη + ρ(t + 1)b(t + 1)η−1(S − h)η

}
.

Applying first order optimality conditions, we deduce that

ρtθ(h�)η−1 = ρ(t + 1)b(t + 1)η−1(S − h�)η−1 .

Consequently, the optimal feedback is linear in S,

h�(t, S) =
ρ(t + 1)μb(t + 1)

ρ(t)μ + ρ(t + 1)μb(t + 1)
S ,

which is similar to the desired result. Inserting the optimal control h�(t, S)
into the Bellman relation, it can be claimed that V (t, S) = ρ(t)b(t)η−1Sη.
Indeed, we derive that for any time t = t0, . . . , T

V (t, S) = θρth�(t, S)η + V (t + 1, S − h�(t, S))
= θρt(b(t)S)η + ρ(t + 1)b(t + 1)η−1(S − b(t)S)η

= Sη
(
ρ(t)b(t)η + ρ(t + 1)b(t + 1)η−1(1 − b(t))η

)

= Sη ρ(t)ρ(t + 1)μηb(t + 1)η + ρ(t + 1)b(t + 1)η−1ρ(t)μη

(ρ(t)μ + ρ(t + 1)μb(t + 1))η

= Sη ρ(t)ρ(t + 1)1+μb(t + 1)η + ρ(t + 1)b(t + 1)η−1ρ(t)1+μ

(ρ(t)μ + ρ(t + 1)μb(t + 1))η

= Sηρ(t)ρ(t + 1)b(t + 1)η−1 ρ(t + 1)μb(t + 1) + ρ(t)μ

(ρ(t)μ + ρ(t + 1)μb(t + 1))η

= Sηρ(t)
(ρ(t + 1)μb(t + 1))η−1

(ρ(t)μ + ρ(t + 1)μb(t + 1))η−1

= Sηρ(t)b(t)η−1 .
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It is worth pointing out that the feedback control h(t, S) is smaller than the
stock S since coefficient b(t) remains smaller than 1.

By stock dynamics S�(s + 1) = S�(s) − h�(s, S�(s)) as in (5.21), we get
the optimal paths in open-loop terms from initial time t0. The behavior of
optimal consumption h�(t) = h�(t, S�(t)) can be described as follows:

h�(t + 1)
h�(t)

=
b(t + 1)S�(t + 1)

b(t)S�(t)

=
b(t + 1)S�(t)(1 − b(t))

b(t)S�(t)

= b(t + 1)
ρ(t)μ

ρ(t + 1)μb(t + 1)

=
(

ρ(t)
ρ(t + 1)

)μ

.

Hence, we recover the discounted case for periods before final time since op-
timal consumptions for t = t0, . . . , T − 1 change at a constant rate

h�(t + 1) = τh�(t) with τ = ρ−μ for t = t0, . . . , T − 1 .

Now, let us compute the final resource level S�(T ) generated by optimal
extractions h�(t). From Result 5.17, it can be claimed by induction that

S�(T ) = S0

T−1∏

t=t0

(1 − b(t)) .

Since 1 − b(t) = b(t)
(

1
b(t) − 1

)
and 1

b(t) =
(

ρ(t)
ρ(t+1)

)μ
1

b(t+1) + 1, we deduce
that

1 − b(t) =
(

ρ(t)
ρ(t + 1)

)μ
b(t)

b(t + 1)
.

Consequently,
T−1∏

t=t0

(1 − b(t)) =
(

ρ(t0)
ρ(T )

)μ
b(t0)
b(T )

.

Moreover, by virtue of the relation 1
b(t) =

(
ρ(t)

ρ(t+1)

)μ
1

b(t+1) +1 and by b(T ) = 1,
we also obtain that

1
b(t0)

=
T∑

t=t0

(
ρ(t0)
ρ(t)

)μ

.

Combining these results, we write

T−1∏

t=t0

(1 − b(t) =
(

ρ(t0)
ρ(T )

)μ
(

T∑

t=t0

(
ρ(t0)
ρ(t)

)μ
)−1

=

(
T∑

t=t0

(
ρ(T )
ρ(t)

)μ
)−1

.
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Therefore, the optimal final resource state is characterized by

S�(T ) = S0

(
T∑

t=t0

(
ρ(T )
ρ(t)

)μ
)−1

.

Replacing the discount factors ρ(t) by their specific value for the Chichilnisky
performance gives

S�(T ) = S0

(
1 +

(
1 − θ

θ

)μ T−1∑

t=t0

ρ−μt

)−1

= S0

(
1 +

(
1 − θ

θ

)μ
ρ−μ(T−t0) − 1

ρ−μ − 1

)−1

.

Therefore, whenever the discount factor is strictly smaller than one ρ < 1,
the Chichilnisky criterion exhibits a guaranteed resource S�(+∞) > 0 to-
gether with a decreasing consumption that vanishes with the time horizon.

Result 5.18 Assume the utility function is isoelastic in the sense that L(h) =
hη with 0 < η < 1. If the discount factor is strictly smaller than unity (ρ <
1) and the present preference coefficient is strictly positive, θ > 0, then the
Chichilnisky criterion yields

• guaranteed stock: lim
T→+∞

S�(T ) = S0

(
1 +
(

1 − θ

θ

)μ 1
1 − ρ−μ

)−1

> 0;

• consumption decreasing toward zero: h�(t+1)<h�(t) and lim
T→+∞

h�(T ) = 0.

At this stage, a comparison can be achieved between the DU (discounted),
GGR (Green Golden rule) and CHI (Chichilnisky) approaches as shown by
Fig. 5.6. Each criterion can be characterized through the parameter θ. It
is worth noting that for DU (θ = 1) and CHI frameworks, consumptions
h�(t) are decreasing toward 0 while it remains zero along time for GGR (θ =
0). This observation emphasizes the unsustainable feature of such optimal
solutions. However, as far as resource S(t) is concerned, it turns out that both
CHI and GGR provide conservation of the resource. In this sense, the CHI
framework represents an interesting trade-off for sustainability as it allows
both for consumption and conservation.

5.14 The “maximin” approach

As already pointed out in Subsect. 5.1.2, the maximin or Rawls criterion sheds
an interesting light on the sustainability issue. Indeed, by focusing on the
worst output of decisions along generations and time, this approach promotes
more intergenerational equity than the additive criterion which often yields
strong preferences for the present. From the methodological point of view,
this framework turns out to be more complicated to handle because a “max”
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Fig. 5.6. A comparison between discounted (�, θ = 1), Green Golden rule (⊕, θ =
0) and Chichilnisky (�, θ = 0.2) approaches for optimal stock S(t) and consumption
h(t). Here the utility parameter is η = 0.5, the discount factor is ρ = 0.9 and the
final horizon is T = 20.

operator is less regular than an addition (in an algebraic sense that we do
not treat here). For instance, the maximum principle no longer holds for the
maximin framework, at least in simple formulations. However, the dynamic
programming principle and Bellman equation still hold true, although some
adaptations are needed. Strong links between maximin and viability or weak
invariance approaches are worth being outlined.

5.14.1 The optimization problem

In this section, we focus on the maximization of the worst result along time
of an instantaneous payoff in the finite horizon (T < +∞)

π�(t0, x0) = sup(
x(·),u(·)

)
∈T ad(t0,x0)

min
t=t0,...,T−1

L
(
t, x(t), u(t)

)
(5.54)
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and under feasibility constraints (5.8). We can also address the final payoff
case with

π
(
x(·), u(·)

)
= min

(
min

t=t0,...,T−1
L
(
t, x(t), u(t)

)
,M
(
T, x(T )

))
.

Actually, by changing T in T + 1 and defining

L(T, x, u) = M
(
T, x
)

,

the minimax with final payoff may be interpreted as one without, but on a
longer time horizon.

5.14.2 Maximin value function

Again, the maximin value function V at time t and for state x represents the
optimal value of the criterion over T − t periods, given that the state at time
t is x.

Definition 5.19. For the maximization problem (5.54) with dynamics (5.1)
and under feasibility constraints (5.2), we define a function V : {t0, . . . , T} ×
X → R, named maximin value function or Bellman function as follows: for
t = t0, . . . , T − 1, for x ∈ Viab(t)

V (t, x) := sup(
x(·),u(·)

)
∈T ad(t,x)

(
min

s=t,...,T−1
L
(
s, x(s), u(s)

))
, (5.55)

with the convention that, for x ∈ Viab(T ) = A(T ),

V (T, x) := +∞ . (5.56)

Therefore, given the initial state x0, the optimal sequential decision prob-
lem (5.1)-(5.2)-(5.54) refers to the particular value V (t0, x0) of the Bellman
function:

V (t0, x0) = π�(t0, x0) .

5.14.3 Maximin dynamic programming equation

As in the additive case of Sect. 5.2, a backward induction equation appears
for the maximin value function V (t, x) when we note that the maximization
operation can again be split up into two parts. However, this separation has to
be adapted to the maximin case. The proof of the following Proposition 5.20
can be found in Sect. A.3 in the Appendix.

Proposition 5.20. The value function defined by (5.55)–(5.56) is the solu-
tion of the following backward dynamic programming equation (or Bellman
equation), where t runs from T − 1 down to t0,
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⎧
⎪⎨

⎪⎩

V (T, x) = +∞ , ∀x ∈ Viab(T ) ,

V (t, x) = sup
u∈Bviab(t,x)

min
(
L(t, x, u), V

(
t + 1, F (t, x, u)

))
, ∀x ∈ Viab(t) ,

(5.57)

where Viab(t) is again given by the backward induction (5.18) and where the
supremum in (5.57) is over viable controls in B

viab(t, x) as in (5.19).

Thus, as in the additive case of Sect. 5.2, to compute the maximin value
V (t, x), we begin with final payoff V (T, x) = +∞ and then apply a backward
induction.

5.14.4 Optimal feedback

As in the additive case, Bellman induction optimization (5.57) in the maximin
case also reveals relevant feedback controls. Indeed, assuming the additional
hypothesis that the supremum is achieved in (5.57) for at least one decision,
if we denote by u�(t, x) a value u ∈ B(t, x) which achieves the maximum in
equation (5.57), then u�(t, x) is an optimal feedback for the optimal control
problem in the following sense. The proof of the following Proposition 5.21
follows from the proof of Proposition 5.20 in Sect. A.3 in the Appendix.

Proposition 5.21. For any time t and state x, assume the existence of the
following maximin feedback decision

u�(t, x) ∈ arg max
u∈Bviab(t,x)

min
(
L(t, x, u), V

(
t + 1, F (t, x, u)

))
, (5.58)

where the maximin value function V is given in (5.55). Then an optimal
trajectory

(
x�(·), u�(·)

)
for the maximization problem (5.54) is given for any

t = t0, . . . , T − 1 by

x�(t + 1) = F
(
t, x�(t), u�(t)

)
, u�(t) = u�

(
t, x�(t)

)
. (5.59)

5.14.5 Are maximin and viability approaches equivalent?

Here we examine the links between the maximin framework and viability ap-
proaches. Such a connection has already been emphasized in [12] in the context
of exhaustible resource management. In particular, it turns out that the max-
imin value function corresponds to a static optimality problem involving the
viability kernel. We need to consider a specific viability kernel associated with
the additional constraint requiring a guaranteed payoff L, namely:
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L
(
t, x(t), u(t)

)
≥ L� .

Hence, we introduce the viability kernel

Viab(t, L�) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ∈ X

∣∣∣∣∣∣∣∣∣∣

∃
(
x(·), u(·)

)
such that ∀s = t, . . . , T

x(s + 1) = F
(
s, x(s), u(s)

)

x(t) = x
x(s) ∈ A(s), u(s) ∈ B(s, x(s))
L(s, x(s), u(s)) ≥ L�

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

which depends on the guaranteed payoff L�. The main result is a character-
ization of the maximin value function V (t, x) through a static optimization
problem involving the viability kernel.

The proof of the following Proposition 5.22 can be found in in Sect. A.3
in the Appendix.

Proposition 5.22. The maximin value function V in (5.55) satisfies:

V (t, x) = sup{L� ∈ R | x ∈ Viab(t, L�)} .

Such a result points out, on the one hand, the interest of the viable control
framework to deal with equity issues and, on the other hand, the viability
property related to the maximin approach.

5.15 Maximin for an exhaustible resource

Consider the exhaustible resource management

S(t + 1) = S(t) − h(t) , 0 ≤ h(t) ≤ S(t) , S(t0) = S0 ,

in the maximin perspective

sup
h(t0),...,h(T−1)

min
t=t0,..,T−1

L
(
h(t)
)

,

where L is an increasing utility function. We shall show that the value function
and optimal feedbacks are given by

V (t, S) = L
( S

T − t

)
, h�(t, S) =

S

T − t
, t = t0, . . . , T − 1 .

From (5.56), we have V (T, S) = +∞ since there is no M
(
T, x(T )

)
final term

and, thus, the above formula holds true at final time T . Assume that it is
satisfied at time t + 1. From dynamic programming equation (5.57), we infer
that
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V (t, S) = sup
0≤h≤S

min
(
L(h), L(

S − h

T − t − 1
)
)

= max

{
sup

S
T−t≤h≤S

min
(
L(h), L(

S − h

T − t − 1
)
)
,

sup0≤h≤ S
T−t

min
(
L(h), L( S−h

T−t−1 )
)}

= max

{
sup

S
T−t≤h≤S

L
( S − h

T − t − 1
)
, sup
0≤h≤ S

T−t

L(h)

}

= max
{

L(
S− S

T−t

T−t−1 ), L( S
T−t )

}

= L( S
T−t ) ,

and that the optimal feedback control is unique and given by h�(t, S) = S
T−t .

Therefore the solution at time t0 is given by

V (t0, S0) = L
( S0

T − t0

)

and we deduce the optimal path as follows.

Result 5.23 Assume that the instantaneous payoff L is increasing. Then the
maximin optimal extraction path h�(·) is stationary and

S�(t) =
S0(T − t + t0)

T
, h�(t) = h�

(
t, S�(t)

)
=

S0

T − t0
.

Such a maximin solution promotes intergenerational equity in the sense
that depletion h�(t) is stationary. The “cake” S0 is shared in equal parts eaten
along time.
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6

Sequential decisions under uncertainty

The issue of uncertainty is fundamental in environmental management prob-
lems. Decision makers have to take sequential decisions without precise knowl-
edge about phenomena that can affect the system state and evolution [3, 4].
Such uncertainties are involved, for instance, in natural mechanisms in-
cluding demographic or environmental stochasticity for population dynamics
[10, 12, 14], or the natural removal rate in the carbon cycle. Uncertainties
also occur at more anthropic stages, as for example with scenarios such as the
global economic growth rate or demographic evolution along with the uncon-
trollability of catches for harvesting of renewable resources, to name a few.
Errors in measurement and data also constitute sources of uncertainty.

By fundamental, we mean that the issue of uncertainty is inherent to envi-
ronmental problems in the sense that it cannot be easily removed by scientific
investigation, although it can be reduced by it. For instance, the scientific
resolution of uncertainty for global warming will, if it is ever achieved, occur
much later than the date at which decisions must be taken. For fish harvest-
ing, stock evaluations will remain poor, although recognizing this problem in
no way negates the necessity of taking decisions. We simply underline here
that such irreducible uncertainties open the way for controversies.

In this context, the methods of decision-making under uncertainty are
useful [11]. We can distinguish several kinds of uncertainty. First, there is
risk, which covers events with known probabilities. To deal with risk, policy
makers may refer to risk assessment, which can be useful when the probability
of an outcome is known from experience and statistics. In the framework of
dynamic decision-making under uncertainty, the usual approach applied is
the expected or mean value of utility or cost-benefits. The general method is
stochastic control [1, 2, 15].

On the other hand, there are cases presenting ambiguity or “Knightian”
uncertainty [9] with unknown probability or with no probability at all. Most
precaution and environmental problems involve ambiguity in the sense of con-
troversies, beliefs, irreducible scientific uncertainties. In this sense, by dealing
with ambiguity, multiprior models [7] may appear relevant alternatives for the
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precaution issue. Similarly, pessimistic, worst case, total risk-averse or guar-
anteed and robust control frameworks may also shed interesting light. As an
initial step in these directions, the present textbook proposes to introduce
ambiguity through the use of “total” uncertainty and robust control [6].

This chapter is devoted to the extension of the concepts and results of
deterministic control to the uncertain framework. Dynamics, constraints and
optimality have to be carefully expanded. The principal difficulties stem from
the fact that we are still manipulating states and controls, but they are now
dependent on external variables (disturbance, noise, etc.). As a first conse-
quence, the open loop approach – consisting in designing control laws depen-
dent only upon time – is no longer relevant: now, the decision at each point in
time must rely at least on the uncertain available information (current state
for instance) to display required adaptive properties. Assuming perfect infor-
mation, in the sense that the state is observed by the decision maker, we shall
focus on state feedback policies. Another difficulty lies in optimal criterion.
Since states and controls are now uncertain, the criterion also becomes uncer-
tain. This fact opens the door to different options: taking the mathematical
expectation leads to stochastic control, while minimax operations lead to ro-
bust control. A similar type of difficulty arises for constraints in stochastic or
robust viability that will be handled in Chap. 7.

For the sake of simplicity, we consider control dynamical systems with
perturbations. This is a natural extension of deterministic control systems
which cover a large class of situations. This context makes it possible to treat
robust and stochastic approaches simultaneously. In both cases, the interest
of dynamic programming is emphasized.

The chapter is organized as follows. The notion of dynamics introduced in
Chap. 2 is extended to the uncertain case in Sect. 6.1. Then, due to uncertain-
ties, trajectories are no longer unique in contrast to the deterministic case, and
we are led to define solution maps and feedback strategies in Sect. 6.2. Spe-
cific treatment is devoted to the probabilistic or stochastic case in Sect. 6.3.
Different options for the criteria are presented in Sect. 6.4. The remaining
Sections are devoted to examples.

6.1 Uncertain dynamic control system

Now, the dynamic control system which has been the basic model in the previ-
ous chapters is no longer deterministic. For instance, some parameters are not
under direct control in the dynamics and may vary along time. Perturbations
disturb the system and yield uncertainties on the state paths whatever the
decision applied. In this context, decisions and controls are now to be selected
to display reasonable performance for the system despite these uncertainties.
The assessments rely on mean performance in the stochastic case while worst
case criteria are adapted to the robust perspective.
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Uncertain dynamics

Extending the state equation (2.48), the uncertain dynamic model is described
in discrete time by the state equation:

x(t+1) = F
(
t, x(t), u(t), w(t)

)
, t = t0, . . . , T − 1 with x(t0) = x0 (6.1)

where again F is the so-called dynamics function representing the system’s
evolution, the horizon T ∈ N

∗ or T = +∞ stands for the term, x(t) ∈ X = R
n

represents the system’s state vector at time t, x0 ∈ X is the initial condition
at initial time t0 ∈ {0, . . . , T − 1}, u(t) ∈ U = R

p represents the decision or
control vector. The new element w(t) in the dynamic stands for the uncertain
variable1, or disturbance, noise, taking its values from a given set W = R

q.

Scenarios

We assume that
w(t) ∈ S(t) ⊂ W , (6.2)

so that the sequences

w(·) :=
(
w(t0), w(t0 + 1), . . . , w(T − 1), w(T )

)
(6.3)

belonging to
Ω := S(t0) × · · · × S(T ) ⊂ W

T+1−t0 (6.4)

capture the idea of possible scenarios for the problem. A scenario is an un-
certainty trajectory. The deterministic or certain case is recovered as soon
as the alternatives are reduced to one choice, namely when Ω is a singleton
Ω = {w(·)}.

Probabilistic assumptions on the uncertainty w(·) may also be added as
we shall see in Sect. 6.3.

Constraints and viability

As in the certain case, we may require state and decision constraints to be
satisfied. However, since state trajectories are no longer unique, the following
requirements depend upon the scenarios w(·) ∈ Ω in a way that we shall
specify later, in Chap. 7. In particular, it is worth distinguishing robust and
stochastic approaches for handling such invariance or viability issues. The
assertions below are thus to be taken in a loose sense at this stage.

• The control constraints are respected at any time t:

u(t) ∈ B
(
t, x(t)

)
⊂ U . (6.5a)

1 Notice that we do not include here the initial condition in the uncertain variables.
This issue is addressed in Chap. 9.
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• The state constraints are respected at any time t:

x(t) ∈ A(t) ⊂ X . (6.5b)

• The final state achieves a fixed target A(T ) ⊂ X:

x(T ) ∈ A(T ) . (6.5c)

Criteria to optimize

The criterion π of Subsect. 5.1.2 now depends upon the scenarios w(·): this
point raises issues as to how to turn this family of values (one per scenario) into
a single one to be optimized. A criterion π is a function π : X

T+1−t0×U
T−t0×

W
T+1−t0 → R which assigns a real number to a state, control and uncertainty

trajectory. Extending the different forms exposed for the deterministic case
in Sect. 2.9.4, we distinguish the following cases.

• The additive and separable form in finite horizon is

π
(
x(·), u(·), w(·)

)
=

T−1∑

t=t0

L
(
t, x(t), u(t), w(t)

)
+ M

(
T, x(T ), w(T )

)
(6.6)

in which the function L again specifies the instantaneous payoff (or gain,
profit, benefit, utility, etc.) when the criterion π is maximized. The final
performance is measured through function M which can depend on time
and terminal uncertainty w(T ). Such a general additive framework encom-
passes more specific performance as the Green Golden or the Chichilnisky
form.
The so-called Green Golden form focuses on the final performance:

π
(
x(·), u(·), w(·)

)
= M

(
T, x(T ), w(T )

)
. (6.7)

An intermediary form (Chichilnisky type) may be obtained by adding
instantaneous and scrap performances (with 0 ≤ θ ≤ 1):

π
(
x(·), u(·), w(·)

)
= θ

T−1∑

t=t0

L
(
t, x(t), u(t), w(t)

)
+(1−θ)M

(
T, x(T ), w(T )

)
. (6.8)

• The Rawls or maximin form in the finite horizon is (without final term)

π
(
x(·), u(·), w(·)

)
= min

t=t0,...,T−1
L
(
t, x(t), u(t), w(t)

)
, (6.9)

and, with a final payoff, the expression is somewhat heavier to write:

π
(
x(·), u(·), w(·)

)
= min

(
min

t=t0,...,T−1
L
(
t, x(t), u(t), w(t)

)
, M
(
T, x(T ), w(T )

))
.
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These distinct ways2 of taking time into account for assessing the inter-
temporal performance have major impacts on sustainability (equity, conser-
vation. . . ) as previously discussed in the deterministic case.

6.2 Decisions, solution map and feedback strategies

Decision issues are much more complicated than in the certain case. In the
uncertain context, we must drop the idea that the knowledge of decisions
u(·) induces one single path of sequential states x(·). Open loop controls u(t)
depending only upon time t are no longer relevant, in contrast to closed loop or
feedback controls u

(
t, x(t)

)
which display more adaptive properties by taking

the uncertain state evolution x(t) into account.
We shall assume in the present chapter that, at time t, the whole state

x(t) is observed and available for control design. This perfect information
case corresponds to state feedback controls u : N × X → U which may be
any mapping apart from general measurability assumptions in the stochastic
case. Extensions to the context of imperfect information are partly handled
in Chap. 9.

We define a feedback as an element of the set of all functions from the
couples time-state towards the controls:

U := {u : (t, x) ∈ N × X �→ u(t, x) ∈ U} . (6.11)

At this level of generality, no measurability assumptions are made. However, in
the probabilistic setting, σ-algebras will be introduced with respect to which
feedbacks will be supposed measurable.

Let us mention that, in the stochastic context, a feedback decision is also
termed a pure Markovian strategy3. Markovian means that the current state
contains all the sufficient information of past system evolution to determine
the statistical distribution of future states. Thus, only current state x(t) is
needed in the feedback loop among the whole sequence of past states x(t0),. . . ,
x(t).

Hereafter, for the sake of clarity, we restrict the notation u(t) for a control
variable belonging to U, u(t) ∈ U, while we denote by u ∈ U a feedback

2 For the mathematical proofs, the multiplicative form is also used:

π
(
x(·), u(·), w(·)

)
=

T−1∏

t=t0

L
(
t, x(t), u(t), w(t)

)
× M

(
T, x(T ), w(T )

)
. (6.10)

3 A pure strategy (or policy) at time t is a rule which assigns to (x(t0),. . . , x(t),
u(t0),. . . , u(t−1)) a control u(t) ∈ U. Such a policy is said to be pure by opposition
to a mixed strategy that assigns to (x(t0),. . . , x(t), u(t0),. . . , u(t−1)) a probability
law on U: in a mixed strategy, the decision maker draws randomly a decision u(t)
on U according to this latter law.
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mapping, with u(t, x) ∈ U (see the footnote 13 in Sect. 2.10). The terminology
unconstrained case covers the situation where all feedbacks in U are allowed.
The control constraints case restricts feedbacks to admissible feedbacks as
follows

Uad = {u ∈ U | u(t, x) ∈ B(t, x) , ∀(t, x)} , (6.12)

corresponding to control constraints (6.5a).
The viability case covers control and state constraints as in (6.5a)-(6.5b)-

(6.5c). However, its definition depends upon the context, either robust or
stochastic. Specific definitions are given hereafter accordingly.

At this stage, we need to introduce some notations which will appear
quite useful in the sequel: the state map xF [t0, x0, u, w(·)] and the control
map uF [t0, x0, u, w(·)].

Given a feedback u ∈ U, a scenario w(·) ∈ Ω and an initial state x0 at
time t0 ∈ {0, . . . , T − 1}, the solution state xF [t0, x0, u, w(·)] is the state path
x(·) = (x(t0), x(t0 + 1), . . . , x(T )) solution of dynamic

x(t + 1) = F
(
t, x(t), u

(
t, x(t)

)
, w(t)

)
, t = t0, . . . , T − 1 with x(t0) = x0

starting from the initial condition x(t0) = x0 at time t0 and associated with
feedback control u and scenario w(·). The solution control uF [t0, x0, u, w(·)]
is the associated decision path u(·) = (u(t0), u(t0 + 1), . . . , u(T − 1)) where
u(t) = u

(
t, x(t)

)
.

It should be noticed that, with straightforward notations,
⎧
⎪⎨

⎪⎩

xF [t0, x0, u, w(·)](t0) = x0 ,

xF [t0, x0, u, w(·)](t) = xF [t0, x0, u, (w(t0), . . . , w(t − 1))](t)
for t ≥ t0 + 1 ,

(6.13)

thus expressing a causality property: the future state xF [t0, x0, u, w(·)](t) de-
pends upon the disturbances (w(t0), . . . , w(t − 1)) and not upon all w(·) =
(w(t0), . . . , w(T − 1), w(T )). This property will be used in Sect. A.4 in the
Appendix.

Once a state feedback law is selected, state and control variables are func-
tions of the disturbances w(·) and in this sense they become uncertain vari-
ables4. Thus, what characterizes uncertain systems is the non uniqueness of
trajectories.

6.3 Probabilistic assumptions and expected value

Probabilistic assumptions on the uncertainty w(·) ∈ Ω may be added, pro-
viding a stochastic nature to the problem. Mathematically speaking, we equip
4 We reserve the term random variable to the case where the set W

T+1−t0 is
equipped with a σ-field and a probability measure, and w(·) is identified with
identity mapping.
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the domain of scenarios Ω ⊂ W
T+1−t0 = R

q × · · · ×R
q with a σ-field5 F and

a probability P: thus, (Ω,F , P) constitutes a probability space. The sequences

w(·) = (w(t0), w(t0 + 1), . . . , w(T − 1), w(T )) ∈ Ω

now become the primitive random variables.6

The notation E refers to the mathematical expectation over Ω under prob-
ability P. To be able to perform mathematical expectations, we are led to
consider measurability assumptions. In the stochastic setting, all the objects
considered will be implicitly equipped with appropriate measurability prop-
erties7. Once a feedback u is picked up in Uad defined in (6.11), the state and
control variables x and u become random variables8 defined over (Ω,F , P) by
means of the relations

x(t) = xF [t0, x0, u, w(·)](t) and u(t) = u
(
t, x(t)

)
,

which refer to state and control solution maps introduced in Sect. 6.2. Thus,
any quantity depending upon states, controls and disturbances is now a ran-
dom variable and, hence, when bounded or nonnegative, admits an integral
with respect to probability P.

Let A : Ω → R be a measurable function. In such a probabilistic con-
text, we use the notation Ew(·)[A

(
w(·)

)
] for the expected value of the random

variable A
(
w(·)

)
, when integrable.

• For discrete probability laws (products of Bernoulli, binomial. . . ), this
means that:

Ew(·)[A
(
w(·)

)
] =

∑

w(·)∈Ω

A
(
w(·)

)
P
(
w(·)

)
.

• For continuous probability laws (Gaussian, uniform, exponential, beta. . . )
on W = R

q, this gives

Ew(·)[A
(
w(·)

)
] =
∫

Ω

A
(
w(·)

)
q
(
w(·)

)
dw(t0)dw(t0+1) . . . , dw(T−1)dw(T ) ,

with q the density of P on Ω.

We shall generally assume that the primitive random process w(·) is
made of independent and identically distributed (i.i.d.) random variables(
w(t0), w(t0 + 1), . . . , w(T − 1), w(T )

)
under P. In this configuration, all ran-

dom variables w(t) take values from the same domain S, and the probability
P on the domain of scenarios is Ω = S

T+1−t0 is chosen as the product of
T − t0 + 1 copies of a probability μ over S.
5 For instance the usual Borelian σ-field F =

⊗T
t=t0

B(Rq).
6 Recall that a random variable is a measurable function on (Ω,F). Here, w(·) is

identified with the identity mapping on (Ω,F).
7 Thus, the sets X = R

n and U = R
p are assumed to be equipped with the Borel σ-

fields B(Rn) and B(Rp) respectively, the dynamic F is assumed to be measurable
and, by feedback, we mean a measurable feedback.

8 See the previous footnote 6.
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6.4 Decision criteria under uncertainty

In this textbook, we focus on robust and expected criteria. However, other
approaches for decision-making under uncertainty exist. To quote a few, we
here expose optimistic, Hurwicz criteria and multi-prior approaches. We also
mention the quadratic case which is connected to mean-variance analysis. Let
us pick up a criterion π among the discounted, maximin or Chichilnisky forms
as in Sect. 6.1.

• Robust or pessimistic. Robust control sheds interesting light on decision-
making under uncertainty by adopting a pessimistic, worst case or totally
risk-averse point of view. It aims at maximizing the worst payoff

sup
u∈Uad

inf
w(·)∈Ω

π
(
x(·), u(·), w(·)

)
, (6.14)

where the last expression is abusively used, even if convenient and tradi-
tional, in which x(·) and u(·) need to be replaced by x(t) = xF [t0, x0, u,
w(·)](t) and u(t) = u

(
t, x(t)

)
, referring to solution state and control in-

troduced in Sect. 6.2. Such a pessimistic approach does not require any
probabilistic hypothesis on uncertainty w(.) as only the set of possible
scenarios Ω is involved.

• Stochastic or expected. The most usual approach to handle decision
under uncertainty corresponds to optimizing the expected payoff

sup
u∈Uad

E

[
π
(
x(·), u(·), w(·)

)]
, (6.15)

where again in the last expression x(·) and u(·) refer to solution state and
control introduced in Sect. 6.2.
Of course, this requires a probabilistic structure for the uncertainties. One
weakness of such an approach is to promote means, hence to neglect rare
events which may generate catastrophic paths. This situation may be espe-
cially critical for environmental concerns where irreversibility is important.

• Optimistic. Instead of maximizing the worst cost as in a robust approach,
the optimistic perspective focuses on the most favorable payoff, namely:

sup
u∈Uad

sup
w(·)∈Ω

π
(
x(·), u(·), w(·)

)
.

• Hurwicz criterion. This approach adopts an intermediate attitude be-
tween optimistic and pessimistic approaches. A proportion α ∈ [0, 1] grad-
uates the level of prudence as follows:

sup
u∈Uad

{
α inf

w(·)∈Ω
π
(
x(·), u(·), w(·)

)
+ (1 − α) sup

w(·)∈Ω

π
(
x(·), u(·), w(·)

)}
.
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• Quadratic and variance approach. We consider a quadratic function
L(z) = az−z2 to assess the performance of the payoff π within a stochastic
context:

sup
u∈Uad

Ew(·)

[
L

(
π
(
x(·), u(·), w(·)

))]
.

The criterion is connected to mean-variance analysis since, denoting tem-
porarily π = π

(
x(·), u(·), w(·)

)
, we have:

E[L(π)] = var[π] + E[π]2 − aE[π] .

Hence, if the expected payoff is a fixed E[π
(
x(·), u(·), w(·)

)
] = π, the prob-

lem reads:
inf

u∈Uad
var[π

(
x(·), u(·), w(·)

)
] .

Since the variance is a well-known measure of dispersion and volatility, its
minimization captures the idea of reduction of risks.

• Multi-prior approach. It is assumed that different probabilities P,
termed as beliefs or priors and belonging to a set P of admissible prob-
abilities on Ω, are relevant for the uncertain scenarios w(·) ∈ Ω. The
multi-prior approach combines robust and expected criterion by taking
the worst beliefs in terms of expected9 payoff, namely [7]:

sup
u∈Uad

inf
P∈P

E
P

[
π
(
x(·), u(·), w(·)

)]
.

6.5 Management of multi-species harvests

For different species i = 1, . . . , n, the population dynamic gi in Sect. 2.2 is
submitted to random factors w(·) including fluctuations in recruitment and
mortality parameters imposed by demographic or environmental changes

Ni(t + 1) = gi

(
N(t) − h(t), w(t)

)
,

where N(t) =
(
N1(t), . . . , Nn(t)

)
is the vector of abundances and h(t) =(

h1(t), . . . , hn(t)
)

the vector of catches. All possible ecological scenarios10 are
described by w(·) ∈ Ω. For aggregated and compact models, instances of such
population uncertainties can be depicted by a combination of the uncertain
intrinsic growth rate ri(t) and the carrying capacity ki(t):

Ni(t + 1) = gi

(
N(t) − h(t), ri(t), ki(t)

)
.

9 The following notation E
P stresses the dependency of the mathematical expecta-

tion upon the probability P.
10 Other instances of uncertainty are of an anthropic feature. Uncontrollability of

catches suggests uncertain efforts which impact the harvests.
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In that case, the uncertain variables for species i is wi(t) = (ri(t), ki(t)) which
takes its values from some given set Si(t).

In this context, robust optimal criteria and worst case approach for dis-
counted profit maximization are given by

sup
h(·)

inf
w(·)∈Ω

T−1∑

t=t0

ρt
n∑

i=1

(
pihi(t) − Ci

(
hi(t), Ni(t)

))
,

where p = (p1, . . . , pn) stands for unitary prices and Ci(hi(t), Ni(t)) for costs,
i = 1, . . . , n. Similarly, whenever a probability P equips Ω, optimal expected
discounted profit is:

sup
h(·)

Ew(·)

[T−1∑

t=t0

ρt
n∑

i=1

(
pihi(t) − Ci

(
hi(t), Ni(t)

))]
,

Whether diversification of catches among the targeted species is more efficient
than specialization in harvesting in one species constitutes a basic issue in such
a context.

From a conservation and ecological viewpoint, the regulating agency may
also aim at ensuring non extinction of the populations at final time T with a
confidence level β in the sense that:

P

(
N1(T ) ≥ N �

1 , . . . , Nn(T ) ≥ N �
n

)
≥ β .

This last requirement corresponds to a stochastic viability problem. Chap-
ter 7 gives insights into this issue.

6.6 Robust agricultural land-use and diversification

When an environment has unknown features or when it is constantly changing,
diversification of production assets can be a way of dealing with uncertainty.
Diversification means retaining assets currently thought to be of little value
when it is known that circumstances may change and alter that valuation.
This issue is well known in finance and portfolio theory and a basic concern for
biodiversity and environmental conservation problems. In agriculture, where
uncertainty and risk are pervasive, diversification is clearly an important topic.

Here is displayed a dynamic model dealing with wealth allocation strate-
gies through land-use. The modeled system is made up of a finite number
of agricultural uses where each use accounts for total household wealth. It
takes into account biological processes: each use is characterized by its own
return rate which fluctuates with climatic situations. Economic processes ap-
pear through decisions of land-use allocation in order to guarantee a final
wealth.
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The natural productivity of the land-uses described through their biomass
Bi(t), i = 1,. . . ,n, are represented by an intrinsic growth rate Ri(w) depending
on a climatic parameter w as follows

Bi(t + 1) = Ri

(
w(t)

)
Bi(t) ,

where we assume that the climatic parameter w(t) can fluctuate along time
within a given set S(t) (for instance between two extremal values).

If we introduce fixed prices (sales and purchases) pi for each resource i,
the wealth of the farm is given by:

υ(t) =
n∑

i=1

piBi(t) .

The wealth evolution is then described by

υ(t + 1) = υ(t)

(
n∑

i=1

ui(t)Ri

(
w(t)

)
)

,

where

ui(t) :=
piBi(t)

υ(t)

stands for the proportion of wealth generated by use i (
∑n

i=1 ui(t) = 1, ui(t) ≥
0). Consequently, the allocation u = (u1, . . . , un) ∈ Sn, belonging to the
simplex Sn of R

n, among the different land-uses appears as a decision variable
representing the land-use structure (the “portfolio”).

In a viability approach, the farmer may aim at ensuring a minimal wealth
at final time T in the following sense:

υ(T ) ≥ υ� .

Another way of formulating the problem is to consider the stochastic optimal
problem

max
u(·)

E[L(υ(t))] ,

where L is some utility function linked to risk-aversion [8]. In fact, as explained
in the general case, the maximization of utility of the final wealth occurs with
respect to feedback strategies. Here again, such models raise the following
question: How do mixed and diversified strategies, compared with strategies
of specialization in one use, improve overall performance?

6.7 Mitigation policies for uncertain carbon dioxyde
emissions

Following the stylized model described in Sect. 2.3, we consider a climate-
economy system depicted by two variables: the aggregated economic produc-
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tion level, such as gross world product, gwp, denoted by Q(t) and the at-
mospheric co2 concentration level, denoted by M(t). The decision variable
related to mitigation policy is the emission abatement rate denoted by a(t).

The description of the carbon cycle is similar to [13], namely a highly
simple dynamical model

M(t + 1) = M(t) + αEbau(t)
(
1 − a(t)

)
− δ
(
M(t) − M−∞

)
, (6.16)

where

• M(t) is the co2 atmospheric concentration, measured in ppm, parts per
million (379 ppm in 2005);

• M−∞ is the pre-industrial atmospheric concentration (about 280 ppm);
• Ebau(t) is the baseline for the co2 emissions, and is measured in GtC,

Gigatonnes of carbon (about 7.2 GtC per year between 2000 and 2005);
• the abatement rate a(t) corresponds to the applied reduction of co2 emis-

sions level (0 ≤ a(t) ≤ 1);
• the parameter α is a conversion factor from emissions to concentration;

α ≈ 0.471 ppm.GtC−1 sums up highly complex physical mechanisms;
• the parameter δ stands for the natural rate of removal of atmospheric co2

to unspecified sinks (δ ≈ 0.01 year−1).

The baseline Ebau(t) can be taken under the form Ebau(t) = Ebau(Q(t)),
where the function Ebau stands for the emissions of co2 resulting from the eco-
nomic production Q in a “business as usual” (bau) scenario and accumulating
in the atmosphere.

The global economics dynamic is represented by an uncertain rate of
growth g

(
w(t)

)
≥ 0 for the aggregated production level Q(t) related to gross

world product, gwp:

Q(t + 1) =
(
1 + g

(
w(t)

))
Q(t) . (6.17)

We consider a physical or environmental requirement through the limita-
tion of concentrations of co2 below a tolerable threshold M � at a specified
date T > 0:

M(T ) ≤ M � . (6.18)

The cost effectiveness problem faced by the social planner is an optimiza-
tion problem under constraints. It consists in minimizing the expected dis-
counted intertemporal abatement cost E[

∑T−1
t=t0

ρtC
(
a(t), Q(t)

)
] while reach-

ing the concentration tolerable window M(T ) ≤ M �. The parameter ρ ∈ [0, 1]
stands for a discount factor. Therefore, the problem can be written as

inf
a(t0),...,a(T−1)

E

[
T−1∑

t=t0

ρtC
(
a(t), Q(t)

)
]

, (6.19)

under the dynamic constraints (6.16) and (6.17) and target constraint (6.18).
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Some projections are displayed in Fig. 6.1 together with the ceiling target
M � = 550 ppm. They are built from Scilab code 13 with scenarios of eco-
nomic growth g

(
w(t)

)
following a uniform probability law on [0%, 6%]. The

“business as usual” no abatement path abau(t) = 0% does not display sat-
isfying concentrations since the ceiling target is exceeded at time t = 2035.
Another abatement path corresponding here to stationary a(t) = 90% pro-
vides some viable or non viable paths. In the robust sense, this is not a viable
reduction strategy.
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Fig. 6.1. Projections of co2 concentration M(t) and economic production Q(t)
at horizon 2100 for different mitigation policies a(t) together with ceiling target
M � = 550 ppm in �. In black, the non viable ’business as usual’ path abau(t) = 0%
and, in blue, a reduction a(t) = 90%. The path in ⊕ relies on a total abatment
a(t) = 100%.
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Scilab code 13.

//
// PARAMETERS //

// initial time

t_0=1990;

// final Time

t_F=2100;

// Time step

delta_t=1;

mean_taux_Q=0.03;

sig_taux_Q=0.03;

// mean and standard deviation of growth rate

alphaa=0.64;

// dynamics parameter: atmospheric retention

// (uncertain +- 0.15)

sigma=0.519;

deltaa=1/120;

// concentration target (ppm)

M_sup=550;

M_inf=274;

// Initial conditions

t=t_0;

M0=354; //in (ppm)

M_bau=M0; M_g=M0;

Q0 = 20.9; // in (T US$)

function E=emissions(Q,a)

E = sigma * Q * (1-a);

endfunction

function Mnext=dynamics(t,M,Q,a)

E = emissions(Q,a) ;

Mnext =M + alphaa* E -deltaa*(M-M_inf);

endfunction

// Distinct abatment policies

a = 1*ones(1,t_F-t_0+1);

// Strong mitigation

a = 0*ones(1,t_F-t_0+1);

// No mitigation (BAU)

a = 0.9*ones(1,t_F-t_0+1);

// medium mitigation

//a = 1*rand(1,t_F-t_0+1);

// random mitigation

xbasc(1);xbasc(2);xbasc(4)

// System Dynamics

N_simu=3;

for ii=1:N_simu

t=t_0;

M=M0; M_bau=M; M_g=M;

Q = Q0;

//Initialisation

L_t=[t_0];

L_M=[M0]; L_bau=[M0]; L_g=[M0];

L_Q=[];

L_E=[]; L_Ebau=[];L_Eg=[];

for (t=t_0:delta_t:t_F)

g_Q=sig_taux_Q*2*(rand(1,1)-0.5)+mean_taux_Q;

// random growth rate

E = emissions(Q,a(t-t_0+1));

M=dynamics(t,M,Q,a(t-t_0+1));

// Mitigation concentration

E_bau= emissions(Q,0);

M_bau=dynamics(t,M_bau,Q,0);

// Business as usual (BAU)

E_g = emissions(Q,1);

M_g=dynamics(t,M_g,Q,1);

// total abatement

Q=(1+g_Q)*Q;

L_Q=[L_Q Q];

L_t=[L_t t+1];

L_M=[L_M M];

L_E=[L_E E];

L_bau=[L_bau M_bau];

L_Ebau=[L_Ebau E_bau];

L_g=[L_g M_g];

L_Eg=[L_Eg E_g];

end,

// Results printing

long=prod(size(L_t));

step=floor(long/20);

abcisse=1:step:long;

xset("window",1);

plot2d(L_t(abcisse),[L_E(abcisse)’ L_Ebau(abcisse)’ ...

L_Eg(abcisse)’],style=-[4,5,3]) ;

legends(["Mitigation";"BAU";"green"],-[4,5,3],’ul’);

xtitle(’Emissions E(t)’,’t’,’E(t) (GtC)’);

xset("window",2);

plot2d(L_t(abcisse),[L_M(abcisse)’ L_bau(abcisse)’ ...

L_g(abcisse)’ ones(L_t(abcisse))’*M_sup],...

style=-[4,5,3,-1], rect=[t_0,0,t_F,2000]) ;

legends(["Mitigation";"BAU";"green";"threshold"],...

-[4,5,3,-1],’ul’);

xtitle(’Concentration CO2’,’t’,’M(t) (ppm)’);

xset("window",4);

plot2d(L_t(abcisse),L_Q(abcisse),style=-[8]);

xtitle(’Economie: Production Q(t)’,’t’,’Q(t) (T US$)’);

end

//

6.8 Economic growth with an exhaustible natural
resource

Let us expand to the uncertain context the stylized model introduced in
Sect. (2.7) dealing with an economy exploiting an exhaustible natural resource

⎧
⎨

⎩

S(t + 1) = S(t) − r(t) ,

K(t + 1) =
(
1 − δ

(
w(t)

))
K(t) + Y

(
K(t), r(t), w(t)

)
− c(t) ,

(6.20)



6.8 Economic growth with an exhaustible natural resource 167

where S(t) is the exhaustible resource stock, r(t) stands for the extraction
flow per discrete unit of time, K(t) represents the accumulated capital, c(t)
stands for the consumption and the function Y represents the technology of
the economy. Parameter δ is the rate of capital depreciation. The last two
parameters are now assumed to be uncertain in the sense that they both
depend on some uncertain variable w(t).

The controls of this economy are levels of consumption c(t) and extraction
r(t) respectively.

Again state-control constraints can be taken into account. The extraction
r(t) is irreversible in the sense that:

0 ≤ r(t) . (6.21)

We take into account the scarcity of the resource by requiring:

0 ≤ S(t) .

More generally, we can consider a stronger conservation constraint for the
resource as follows:

S� ≤ S(t) . (6.22)

The threshold S� > 0 stands for some guaranteed resource target, referring to
a strong sustainability concern whenever it has a strictly positive value.

We assume the investment in the reproducible capital K to be irreversible
in the sense that:

0 ≤ Y
(
K(t), r(t), w(t)

)
− c(t) . (6.23)

We also consider that the capital is non negative:

0 ≤ K(t) . (6.24)

A sustainability requirement can be imposed through some guaranteed con-
sumption level c� along the generations:

0 < c� ≤ c(t) . (6.25)

One stochastic optimality problem adapted from [5] is

sup
c(·),r(·)

E

[
+∞∑

t=t0

ρtL
(
S(t), c(t), w(t)

)
]

,

where ρ ∈ [0, 1[ is a discount factor. The uncertainty of the utility function
L(S, c, w) captures possible changes in environmental preferences.

A question that arises is whether the uncertainties w(t) affect the con-
sumption paths compared to the certain case.
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7

Robust and stochastic viability

Vulnerability, risks, safety and precaution constitute major issues in the man-
agement of natural resources and sustainability concerns. Regarding these
motivations, the role played by the acceptability constraints or targets (popu-
lation extinction threshold, co2 ceiling. . . ) is central but has to be articulated
with uncertainty. The present chapter addresses the issue of constraints in the
uncertain context and expands most of the concepts and mathematical and
numerical tools examined in Chap. 4 about viable control.

In the uncertain framework, robust and stochastic approaches deserve to
be distinguished although they are not disconnected. On the one hand, con-
straints “in the robust sense” rely on a worst case approach. The fundamen-
tal idea underlying such robust viability is to guarantee the satisfaction of
the constraints whatever the uncertainties which may be related to a pes-
simistic, totally risk averse context [5, 11, 7]. On the other hand, constraints
“in the probabilistic or stochastic sense” are basically related to risk assess-
ment and management. Such stochastic viability includes, in the field of con-
servation biology, the problems and methods of population viability analysis
(pva) [2, 8, 9, 10]. The idea of stochastic viability is basically to require the
respect of the constraints at a given confidence level (say 90%, 99%). It implic-
itly assumes that some extreme events render the robust approach irrelevant.
The robust approach is closely related to the stochastic one with a confidence
level of 100%.

Here, we adapt the notions of viability kernel and viable controls within the
probability and robust frameworks. Some mathematical materials of stochastic
viability can be found in [1, 3, 4] but they tend to focus on the continuous
time case.

The chapter is organised as follows. After briefly introducing the uncer-
tain viability problem in Sect. 7.1, it is detailed in the robust framework
in Sect. 7.2, and the stochastic case is treated in Sect. 7.5. We present the
dynamic programming method, and different examples illustrate the main
statements.
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7.1 The uncertain viability problem

The state equation introduced in (6.1) as the uncertain dynamic model is
considered:

x(t+1) = F
(
t, x(t), u(t), w(t)

)
, t = t0, . . . , T−1 with x(t0) = x0 . (7.1)

Here again, x(t) ∈ X = R
n represents the system state vector at time t, x0 ∈ X

is the initial condition at initial time t0, T > t0 is the horizon, u(t) ∈ U = R
p

represents the decision or control vector while w(t) ∈ S(t) ⊂ W = R
q stands

for the uncertain variable, or disturbance, noise. Possible scenarios, or paths
of uncertainties, w(·) are described by:

w(·) ∈ Ω := S(t0) × · · · × S(T ) ⊂ W
T+1−t0 .

As detailed in Sect. 6.1, the admissibility of decisions and states is re-
stricted by the non empty subset B(t, x) of admissible controls in U for all
(t, x)

u(t) ∈ B
(
t, x(t)

)
⊂ U , (7.2a)

together with a non empty subset A(t) of the state space X for all t

x(t) ∈ A(t) ⊂ X , (7.2b)

and a target
x(T ) ∈ A(T ) ⊂ X . (7.2c)

These control, state or target constraints may reduce the relevant paths of
the system. Such a feasibility issue can be addressed in a robust or stochastic
framework.

7.2 The robust viability problem

Here, we first deal with such a problem in a robust perspective. Namely we
consider the admissible feedbacks u in U defined in (6.11) such that the control
and state constraints (7.2a)-(7.2b)-(7.2c) hold true under the dynamics (7.1)
whatever the scenario w(·) ∈ Ω. In the sequel, Uad is the set of admissible
feedbacks as defined in (7.3). The control constraints case (7.2a) restricts
feedbacks to admissible feedbacks as follows:

Uad = {u ∈ U | u(t, x) ∈ B(t, x) , ∀(t, x)} . (7.3)

Robust viable controls and states

The viability kernel plays a basic role in viability analysis. In the robust case,
it is the set of initial states x0 such that the robust viability property holds
true.
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Definition 7.1. The robust viability kernel at time t0 is the set

Viab1(t0) :=

⎧
⎨

⎩x0 ∈ X

∣∣∣∣∣∣

there exists u ∈ Uad such that
for all scenario w(·) ∈ Ω

x(t) ∈ A(t) for t = t0, . . . , T

⎫
⎬

⎭ , (7.4)

where x(t) corresponds to the state map namely x(t) = xF [t0, x0, u, w(·)](t) as
defined in Sect. 6.2.

Notice that the final viability kernel is the whole target set, namely

Viab1(T ) = A(T ) .

Viable robust feedbacks are feedbacks u ∈ Uad such that the robust viability
property occurs.

Definition 7.2. Viable robust feedbacks are defined by

Uviab

1 (t0, x0) :=
{

u ∈ Uad

∣∣∣∣
for all scenario w(·) ∈ Ω

x(t) ∈ A(t) for t = t0, . . . , T

}
, (7.5)

where again x(t) equals xF [t0, x0, u, w(·)](t) as defined in Sect. 6.2.

By definition, the robust iability kernel represents the initial states x0

avoiding the emptiness of the set of robust viable feedbacks Uviab
1 (t0, x0), i.e.:

x0 ∈ Viab1(t0) ⇐⇒ Uviab
1 (t0, x0) �= ∅ . (7.6)

Thus, the viability problem consists in identifying the viability kernel Viab1(t0)
and the set of robust viable feedbacks Uviab

1 (t0, x0).

Robust dynamic programming equation

A characterization of robust viability in terms of dynamic programming can
be exhibited. To achieve this, it is convenient to use the indicator function1

1A(t) of the set A(t) ⊂ X.

Definition 7.3. The robust viability value function or Bellman function
V (t, x), associated with dynamics (7.1), control constraints (7.2a) state con-
straints (7.2b) and target constraints (7.2c) is defined by the following back-
ward induction, where t runs from T − 1 down to t0:

⎧
⎪⎨

⎪⎩

V (T, x) := 1A(T )(x) ,

V (t, x) := 1A(t)(x) sup
u∈B(t,x)

inf
w∈S(t)

V
(
t + 1, F (t, x, u, w)

)
.

(7.7)

This is the robust viability dynamic programming equation (or Bellman equa-
tion).
1 Recall that the indicator function of a set A is defined by 1A(x) = 1 if x ∈ A,

and 1A(x) = 0 if x 	∈ A.
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Notice that V (t, x) ∈ {0, 1}. It turns out that the robust viability value func-
tion V (t, ·) at time t is the indicator function of the robust viability kernel
Viab1(t) (Proposition 7.5).

Viable robust feedbacks

The backward equation of dynamic programming (7.7) makes it possible to
define the value function V (t, x) and reveals relevant viable robust feedbacks.

Definition 7.4. For any time t and state x, let us define robust viable con-
trols:

B
viab

1 (t, x) := {u ∈ B(t, x) | ∀w ∈ S(t) , F (t, x, u, w) ∈ Viab1(t + 1)} . (7.8)

The proof of the following Proposition 7.5 is given in the Appendix,
Sect. A.5.

Proposition 7.5. We have V (t, x) = 1Viab1(t)(x), that is:

V (t, x) = 1 ⇐⇒ x ∈ Viab1(t) . (7.9)

Robust viable controls exist at time t if and only if the state x belongs to the
robust viability kernel at time t:

B
viab

1 (t, x) �= ∅ ⇐⇒ x ∈ Viab1(t) . (7.10)

A solution to the viability problem is:

x0 ∈ Viab1(t0)

u(t, x) ∈ B
viab
1 (t, x) , ∀t = t0, . . . , T − 1 , ∀x ∈ Viab1(t)

⎫
⎬

⎭ ⇒ u ∈ U
viab
1 (t0, x0) .

Notice that the state constraints have now disappeared, being incorporated
in the new control constraints u(t) ∈ B

viab
1

(
t, x(t)

)
.

The previous result also provides a geometrical formulation of robust vi-
ability dynamic programming since the robust viability kernels satisfy the
backward induction, where t runs from T − 1 down to t0:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Viab1(T ) = A(T ) ,

Viab1(t) = {x ∈ A(t) | ∃u ∈ B(t, x) , ∀w ∈ S(t) ,

F (t, x, u, w) ∈ Viab1(t + 1)} .

(7.11)
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7.3 Robust agricultural land-use and diversification

Here we cope with the problem already introduced in Sect. 6.6 and inspired
by [11]. The annual wealth evolution of the farm is described by

υ(t + 1) = υ(t)

(
n∑

i=1

ui(t)Ri

(
w(t)

)
)

= υ(t)〈u(t), R(w(t)〉 ,

where

ui(t) :=
piBi(t)

υ(t)

stands for the proportion of wealth generated by use i (
∑n

i=1 ui(t) = 1, ui(t) ≥
0), and w(t) corresponds to environmental uncertainties evolving in a given
domain S. The allocation u = (u1, . . . , un) ∈ Sn, belonging to the simplex Sn

of R
n, among the different land-uses appears as a decision variable represent-

ing the land-use structure.
The farmer aims at ensuring a minimal wealth at final time T :

υ(T ) ≥ υ� .

Viability kernel

Result 7.6 The robust viability kernel turns out to be the set

Viab(t) = [υ�(t),+∞[ ,

with the viability threshold

υ�(t) =
υ�

(
sup

u∈Sn

inf
w∈S

〈u,R(w)〉
)T−t

.

To prove such is the case, we reason backward using the dynamic program-
ming method for indicator functions as in (7.7). The value function at final
time T is given by:

V (T, υ) = 1[υ�,+∞[(υ) .

Assume now that, at time t + 1, the robust viability kernel is Viab(t + 1) =
[υ�(t + 1),+∞[ with:

υ�(t + 1) = υ�(R�)t+1−T , R� = sup
u∈Sn

inf
w∈S

〈u,R(w)〉 .

Equivalently, the value function is V (t + 1, υ) = 1[υ�(t+1),+∞[(υ). Using the
Bellman equation (7.7) for robust viability, we deduce that:
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V (t, υ) = sup
u∈Sn

inf
w∈S

V
(
t + 1, υ(〈u,R(w)〉)

)

= sup
u∈Sn

inf
w∈S

1[υ�(t+1),+∞[

(
υ(〈u,R(w))〉

)

= 1[υ�(t+1),+∞[

(
υ( sup

u∈Sn

inf
w∈S

〈u,R(w)〉)
)

= 1[υ�(t+1),+∞[

(
υR�
)

= 1[υ�(t+1)(R�)−1,+∞[

(
υ
)

= 1[υ�(t),+∞[(υ) .

We conclude that Viab(t) = [υ�(t),+∞[.

Specialization versus diversification

Now we aim at comparing specialized and diversified land-use. The specialized
land-use in i ∈ {1, . . . , n} corresponds to:

ui(t) = 1 , uj(t) = 0 , ∀j �= i .

Hence we obtain the specialized robust viability kernel:

Viabi(t) = [υ�
i (t),+∞[ with υ�

i (t) =
υ�

(
infw∈S Ri(w)

)T−t
.

Of course, we have the inclusion
⋃n

i=1 Viabi(t) ⊂ Viab(t). The equality holds
true whenever no uncertainty occurs, namely with a fixed w. This means
that the viability of specialized and diversified strategies coincide in this case.
In the uncertain case, however, the equality does not hold in general. If the
growth functions are such that

max
i=1,...,n

inf
w∈S

Ri(w) < sup
u∈Sn

inf
w∈S

〈R(w), u〉 ,

then
⋃n

i=1 Viabi
� Viab. To capture the difference, it is enough to think of

the following example:
{

R1(w) = R − wσ,

R2(w) = R + wσ,
w ∈ [−1, 1] .

In this case, the worst growths are:
⎧
⎨

⎩

inf
w∈S

Ri(w) = R − σ ,

sup
u∈Sn

inf
w∈S

〈u,R(w)〉 = R .

Note that the diversified viable land-use is given by u� = (0.5; 0.5). See
Figs. 7.1 built with Scilab code 14.
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Fig. 7.1. Wealth υ(t) for diversified u� = (0.5; 0.5), specialized u = (0, 1) and
u = (1, 0) for different environmental scenarios with time horizon T = 9 and υ� =
50. Many catastrophic scenarios υ(T ) < υ� exist for specialized land-use, while
diversified land-use ensures guaranteed wealth υ(T ) ≥ υ�.
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Scilab code 14.

//
// exec robust_diversification.sce

////////////////////////////////////////////

// Land-use and diversification

////////////////////////////////////////////

function [y]=f(x,u,w)

// dynamics

y=x*(1+u’*retu(w));

endfunction

function r=retu(w)

// return of land-use

r=[r_0+sig*w;r_0-sig*w];

endfunction

xset("window",0);xbasc();

xtitle("Wealth",’time t’,’wealth x(t)’);

// diversified

xset("window",11);xbasc();

xtitle("Wealth",’time t’,’wealth x(t)’);

// specialized in use 1

xset("window",21);xbasc();

xtitle("Wealth",’time t’,’wealth x(t)’);

// specialized in use 2

xset("window",2);xbasc();xtitle("Allocation",’t’,’u(t)’);

xset("window",3);xbasc();xtitle("Uncertainty",’t’,’w(t)’);

w_min=-1; w_max=1;

// uncertainty margins

r_0=0.1;sig=0.5

// mean and variance return

Horizon=10;

// time horizon

x_min=50; x_max=100;

// wealth bounds // x_min safety constraint

r_star=r_0;

// Viable diversified return

x_prec=x_min/((1+r_star)^(Horizon-1));

// Viable initial state

u_viab=[0.5;0.5]*ones(1,Horizon-1);

// Diversified viable strategy

u_1=[1;0]*ones(1,Horizon-1);

u_2=[0;1]*ones(1,Horizon-1);

// Specialized strategies

N_simu=10;

// Number of simulations

for i=1:N_simu

// Simulations

x_viab=x_prec+rand(1,Horizon)*(x_max-x_min);

x_1=x_viab;

x_2=x_viab;

// precautionnary initial conditions

// x(0)>= x_min/(1+r_star)^(Horizon-1)

w_viab=w_min+(w_max-w_min)*rand(1,Horizon-1);

// Random climate along time

for (t=1:1:Horizon-1)

// Viable Trajectory x(.) u(.)

x_viab(:,t+1)=f(x_viab(:,t),u_viab(:,t),w_viab(:,t));

// Diversified wealth

x_1(:,t+1)=f(x_1(:,t),u_1(:,t),w_viab(:,t));

x_2(:,t+1)=f(x_2(:,t),u_2(:,t),w_viab(:,t));

// Specialized wealth

end

//

rect1=[0,0,Horizon-1,200];

rect2=[0,0,Horizon-2,1];

rect3=[0,w_min,Horizon-2,w_max];

xx=[0:1:Horizon-1];xu=[0:1:Horizon-2];

//

xset("window",0);

plot2d(xx,[x_viab’ x_min+zeros(1,Horizon)’ ],rect=rect1);

plot2d(xx,[x_viab’ x_min+zeros(1,Horizon)’ ],style=[1,-4])

legends([’Diversified strategy’;’Minimal wealth threshold’],...

[1,-4],’ul’)

//

xset("window",11);

plot2d(xx,[x_1’ x_min+zeros(1,Horizon)’ ],rect=rect1)

plot2d(xx,[x_1’ x_min+zeros(1,Horizon)’ ],style=[1,-4])

legends([’Strategy specialized in use 1’;...

’Minimal wealth threshold’],[1,-4],’ul’)

//

xset("window",21);

plot2d(xx,[x_2’ x_min+zeros(1,Horizon)’ ],rect=rect1)

plot2d(xx,[x_2’ x_min+zeros(1,Horizon)’ ],style=[1,-4])

legends([’Strategy specialized in use 2’;...

’Minimal wealth threshold’],[1,-4],’ul’)

//

xset("window",2);plot2d(xu,u_viab’,rect=rect2);

xset("window",3);plot2d(xu,w_viab’,rect=rect3);

end

//

7.4 Sustainable management of marine ecosystems
through protected areas: a coral reef case study

Over-exploitation of marine resources remains a problem worldwide. Many
works advocate the use of marine reserves as a central element of future stock
management in a sustainable perspective. In the present model detailed in [6],
the influence of protected areas upon the sustainability of fisheries within an
ecosystemic framework is addressed through a dynamic bioeconomic model in-
tegrating a trophic web, catches and environmental uncertainties. The model
is spatially implicit. It is inspired from data on the Aboré coral reef reserve in
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New Caledonia. The evaluation of the ecosystem is designed through the re-
spect along time of constraints of both conservation and guaranteed captures.

Hereafter, the time unit is assumed to be the day. Four trophic group
densities (g.m−2) and coral covers (percent) are considered in order to char-
acterize the state of the ecosystem. Piscivores N1(t) are predators of fish and
are often targeted by fishermen. Macrocarnivores N2(t) feed on macroinver-
tebrates and a few fish species. Herbivores N3(t) are represented by Scarus sp
parrot fish. Other fish (small) N4(t) include sedentary and territorial organ-
isms, microcarnivores (17 cm), coral feeders (16 cm) and zooplanktonophages
(13 cm). Coral cover is denoted as y1(t).

Trophodynamics of the ecosystem

Piscivores Macro Micro Coral Herbivores Microalgae Zooplankton
carnivores carnivores feeders Detritivores feeders

(Pi) (MC) (mC) (Co) (He) (mAD) (Zoo)

Group for the model N1 N2 N4 N4 N3 N3 N4
Species richness 46 112 50 26 10 73 54

Diet composition (%)
- Nekton 77 10 2 0 0 0.1 1
- Macroinvertebrates 21 82 20 2 0 2 1
- Microinvertebrates 0.3 6 67 11 3 5 6
- Zooplankton 1 0.4 3 2 0 3 79
- Other plankton 0 0 0 0 0 0 0.3
- Macroalgae 0 0.3 1 0 66 3 0.3
- Microalgae 0 1 5 7 28 80 11
- Coral 0 0.3 2 77 0 1 0.3
- Detritus 0 0.3 1 1 4 6 0.2

Maximum adult size (cm) 77 38 17 16 39 24 13

Table 7.1. Species richness, mean diet composition and adult size

The dynamics of the ecosystem rely on trophic interactions between groups
N1(t), . . . , N4(t) and coral y(t) evolutions. Based on diet composition in
Table 7.1 and a Lotka-Volterra structure, the dynamic of the trophic groups
i = 1, . . . , 4 is summarized in matrix form by

Ni(t + 1) = Ni(t)
(

R + exp
(
y�
1 − y1(t)

)
Sx(t)

)

i

,

where R = (R1, . . . , R4) and where the interaction matrix S reads:

S =

⎛

⎜⎜⎝

−0.093 0.013 0.013 0.013
−0.106 −0.012 0.002 0.002
−0.076 −0.01 0 0
−0.53 −0.069 0 0

⎞

⎟⎟⎠ .

The predation intensity depends on coral cover y1(t) through a refuge effect

exp
(
y�
1 − y1

)
Sij ,
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where the refuge parameter y�
1 corresponds to the maximal coral cover defined

later in (7.12). The intrinsic growth rate Rk includes mortality and recruit-
ment of each trophic group k, independently of interactions with other trophic
groups. Computed at the equilibrium, it reads:

R =

⎛

⎜⎜⎝

0.975
1.007
1.008
1.054

⎞

⎟⎟⎠ .

Habitat dynamics

Coral evolution over time is described through the equation:

y1(t + 1) = y1(t) ×

⎧
⎨

⎩
Rcor

(
1 − y1(t)

Kcor

)
with probability (1 − p) ,

0.3 with probability p .

• p is the probability of a cyclonic event. In the model, cyclonic events occur
randomly with probability p at each time step and bring coral cover to 30%
of its previous value. On average, a cyclone happens every 5 to 6 years and
setting p = 1/(6 × 365) corresponds to the present cyclonic situation. We
assume that the climatic change scenario corresponds to a rise of 50% in
p namely p = 1/(4 × 365).

• Rcor is the intrinsic productivity at low cover levels. After a cyclonic event,
the coral grows by 10% a year but not linearly: it takes 8 to 10 years to
reach the initial cover. Simulations show that Rcor = 1.002 is a plausible
value in this respect (recall that the time unit is assumed to be the day).

• Kcor is related to the so-called carrying capacity ȳ1 solution of:

1 = Rcor

(
1 − ȳ1

Kcor

)
.

We identify the maximal value of 80% with the carrying capacity:

y�
1 =

Rcor − 1
Rcor

Kcor = 0.8 . (7.12)

Exploited dynamics with a protected area

For the area under study, fishing is basically recreational and associated
mainly with spear gun technology. It is assumed to affect only piscivores
N1(t), carnivores N2(t) and (large) herbivores N3(t). Assuming a simple Gor-
don Schaefer production function where e(t) is the fishing effort, we write

hi(t) = qie(t)Ni(t)

with zero catchability q4 = 0. Unfortunately, quantitative information on
catches and effort in the area is not available. To overcome this difficulty, we



7.4 Sustainable management of marine ecosystems through protected areas 181

impose some simplifications hereafter. We first assume that the effort rate in
the overall area is targeted at some fixed level e:

e(t) = e , t = t0, . . . , T − 1 .

We further assume that catchabilities are equal for each fished group in the
sense:

q1 = q2 = q3 .

However we do not specify e and we study the results for a range e ∈ [0, 1].
Taking into account the protected area, it is assumed that only a part of

the stock is available for fishing. In other words, catches are defined by

hi(t) = qie(t)(1 − mpa)Ni(t) ,

where mpa is the proportion of the zone closed to fishing.

A direct use value

We assume that the ecosystem provides direct uses through harvests of preda-
tors N1 and N2 and herbivores N3. The direct use L is assumed to take the
form of total catch in weight

L(h1, h2, h3) = υ1h1 + υ2h2 + υ3h3 , (7.13)

where υi stands for the mean weight of group i. Weight values for each group
are given by υ = (0.5 0.5 0.7 0.1) in kg. The direct use constraint reads

L
(
h1(t), h2(t), h3(t)

)
≥ L� , (7.14)

where L� > 0 stands for some guaranteed satisfaction level.

A stronger conservation constraint

We adopt a stronger conservation point of view and introduce a biodiversity
constraint in the sense that trophic richness is guaranteed at a level B�:

B(N(t)) =
4∑

i=1

1{Ni(t)>0} ≥ B� . (7.15)

This guaranteed trophic threshold B� which takes its values from {1, 2, 3, 4}
ensures a minimal number of non exhausted groups.

The indicator of robust viability (co-viability) is given by the robust via-
bility kernel2 Viab defined by:

Viab(A,L�,B�) =

{
(N(t0), y(t0))

∣∣∣∣∣
sup
e(·)

P
(

(N(t), h(t)) satisfies (7.14), (7.15) ,

t = t0, . . . , T − 1
)
≥ 1

}
.

A protection effect should capture processes through which both the con-
servation and catch services are enhanced by the existence of a reserve.
2 See the following footnote 3 in this Chapter to explain the presence of P in the

robust viability kernel.
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Fig. 7.2. Projections of state (N(t), y(t)) in the case of current cyclonic frequency
p = 1/(6 × 365) for the moderate fishing effort e = 20%. In (a) without reserve,
i.e. mpa = 0%, no guaranteed capture of carnivores is achieved while in (b) under
the maximal reserve size mpa = 80%, guaranteed utility of catch resulting from all
trophic groups is exhibited.

Results

The results are based on simulations using the scientific software Scilab.
The initial time corresponds to year t0 = 1993 and the time horizon is set to
30 years ahead, namely T = t0 + 31. The initial state conditions derived from
data of 1993 are:

N(t0) = (0.04 0.48 1.17 0.49) g.m−2 .

We also set the initial habitat state y1(t0) at equilibrium in the sense that:

y(t0) = ȳ1 = 0.8 = 80% .

We assume that p = 1/(6 × 365) which is a current estimation of cyclonic
probability by day. A catch reserve effect is obtained as displayed in Figs 7.2.

It turns out that a catch reserve effect is significant for low positive ex-
ploitation rates e namely 10% ≤ e ≤ 60%. In Fig. 7.2(a), without reserve
(mpa = 0%), carnivores and herbivores are depleted because of fishing. In
other words, for some guaranteed capture level L�

0 > 0:

(N(t0), y(t0)) ∈ Viab(0,L�
0,2) .

In Fig. 7.2(b) the maximal reserve size (mpa = 80%) provides a larger guar-
anteed utility of captures L� > L�

0 resulting from every targeted trophic group
including carnivores, piscivores and herbivores. In other words:

(N(t0), y(t0)) ∈ Viab(0.80,L�,4) .

In this sense, a mpa catch effect is combined with a mpa biodiversity effect.
Thus, in this case, catch reserve effects are compatible with biodiversity per-
formance.
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7.5 The stochastic viability problem

Here we address the issue of state constraints in the probabilistic sense. This
is basically related to risk assessment which includes, in the field of conserva-
tion biology, the problems and methods of population viability analysis (pva)
and requires some specific tools inspired by the viability and invariance ap-
proach already exposed for the certain case in Chap. 4. In particular, within
the probabilistic framework, we adapt the notions of viability kernel and vi-
able controls. In the robust setting, the state constraints (7.2b)-(7.2c) were
assumed to hold whatever the disturbances. In the probabilistic setting, one
can relax the previous requirement by satisfying the state constraints along
time with a given confidence level:

P

(
w(·) ∈ Ω | x(t) ∈ A(t) for t = t0, . . . , T

)
≥ β .

Stochastic viable controls and state

Probabilistic notations and assumptions are detailed in Sect. 6.3. In the
stochastic setting, all the objects considered will be implicitly equipped with
appropriate measurability properties. Thus, for instance, Uad as defined in
(7.3) is now the set of measurable admissible feedbacks. The viability kernel
plays a basic role in the viability analysis. In the stochastic case, it is the set
of initial states x0 such that the stochastic viability property holds true.

For sake of simplicity, the primitive random process w(·) is assumed to
be a sequence of independent identically distributed (i.i.d.) random variables(
w(t0), w(t0 + 1), . . . , w(T − 1), w(T )

)
under probability P on the domain of

scenarios Ω = S
T+1−t0 .

Definition 7.7. The stochastic viability kernel at confidence level β ∈ [0, 1]
is3

Viabβ(t0) :=

{
x0 ∈ X

∣∣∣∣∣
there exists u ∈ Uad such that

P

(
w(·) ∈ Ω | x(t) ∈ A(t) for t = t0, . . . , T

)
≥ β

}

(7.16)

where x(t) corresponds to the solution map x(t) = xF [t0, x0, u, w(·)](t) defined
in Sect. 6.2.

Stochastic viable feedbacks are feedback controls that allow the stochastic
viability property to hold true.

3 Notice that the notation Viab1(t0) is consistent with that of the robust kernel
in (7.4) when Ω is countable and that every scenario w(·) has strictly positive
probability under P.



184 7 Robust and stochastic viability

Definition 7.8. Stochastic viable feedbacks are those u ∈ Uad for which the
above relations hold true4

U
viab
β (t0, x0) :=

{
u ∈ U

ad
∣∣∣ P

(
w(·) ∈ Ω | x(t) ∈ A(t) for t = t0, . . . , T

)
≥ β

}
,

(7.17)

where x(t) corresponds to the solution map x(t) = xF [t0, x0, u, w(·)](t) defined
in Sect. 6.2.

Similarly to the robust case, we have the following strong link between
viable stochastic feedbacks and the viability kernel:

x0 ∈ Viabβ(t0) ⇐⇒ Uviab
β (t0, x0) �= ∅ .

Stochastic dynamic programming equation

Consider state and target constraints as in (7.2b) and (7.2c). The stochastic
viability value function is the maximal viability probability defined as follows.

Definition 7.9. The stochastic viability value function or Bellman function
V (t, x), associated with dynamics (7.1), control constraints (7.2a) state con-
straints (7.2b) and target constraints (7.2c) is defined by the following back-
ward induction5, where t runs from T − 1 down to t0:
⎧
⎪⎨

⎪⎩

V (T, x) := 1A(T )(x) ,

V (t, x) := 1A(t)(x) sup
u∈B(t,x)

Ew(t)

[
V
(
t + 1, F

(
t, x, u, w(t)

))]
.

(7.18)

Stochastic viable feedbacks

The backward equation of dynamic programming (7.18) makes it possible
to define the value function V (t, x). It turns out that the stochastic viability
functions are related to the stochastic viability kernels, and that dynamic pro-
gramming induction reveals relevant stochastic feedback controls. The proof
of the following Proposition 7.10 is given in the Appendix, Sect. A.5.

Proposition 7.10. Assume that the primitive random process w(·) is made of
independent and identically distributed (i.i.d.) random variables

(
w(t0), w(t0+

4 See the previous footnote 3 in this Chapter for the case β = 1.
5 All random variables w(t) have the same distribution μ and take values from the

same domain S. Hence, we have the formula Ew(t)[V (t + 1, F (t, x, u, w(t)))] =∫
S
V (t + 1, F (t, x, u, w))dμ(w).
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1), . . . , w(T−1), w(T )
)
. The viability kernel at confidence level β is the section

of level β of the stochastic value function:

V (t0, x0) ≥ β ⇐⇒ x0 ∈ Viabβ(t0) . (7.19)

For any time t and state x, let us assume that

B
viab(t, x) := arg max

u∈B(t,x)

(
1A(t)(x)Ew(t)

[
V
(
t + 1, F

(
t, x, u, w(t)

))])
(7.20)

is not empty. Then, any u� ∈ U such that u�(t, x) ∈ B
viab(t, x) belongs to

Uviab

β (t0, x0) for x0 ∈ Viabβ(t0).

7.6 From PVA to CVA

Population viability analysis (pva) is a process of identifying the threats faced
by a species and evaluating the likelihood that it will persist for a given time
into the future [2, 8, 9, 10]. Population viability analysis is often oriented
towards the conservation and management of rare and threatened species,
with the goal of applying the principles of population ecology to improve their
chances of survival. Threatened species management has two broad objectives.
The short term objective is to minimize the risk of extinction. The longer term
objective is to promote conditions under which species retain their potential
for evolutionary change without intensive management. Within this context,
pva may be used to address three aspects of threatened species management.

• Planning research and data collection. pva may reveal that population
viability is insensitive to particular parameters. Research may be guided
by targeting factors that may have an important impact on extinction
probabilities or on the rank order of management options.

• Assessing vulnerability. Together with cultural priorities, economic imper-
atives and taxonomic uniqueness, pva may be used to set policies and
priorities for allocating scarce conservation resources.

• Ranking management options. pva may be used to predict the likely re-
sponse of species to reintroduction, captive breeding, prescribed burning,
weed control, habitat rehabilitation, or different designs for nature reserves
or corridor networks.

We here advocate the use of a cva (Co-Viability Analysis) approach com-
bining pva and viable control frameworks. We consider a model similar to
that of agricultural land-use introduced in Sect. 6.6 and perform a stochastic
analysis. A population abundance N(t) evolves according to

N(t + 1) =
(
1 + r

(
N(t), w(t)

))(
N(t) − h(t)

)
,
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where h(t) are catches of the resource and r
(
N(t), w(t)

)
the uncertain growth

rate of the population. A probabilistic structure on growth rate r
(
N(t), w(t)

)

is assumed with w(t) including both environmental and demographic stochas-
ticity. Environmental stochasticity causes r to fluctuate randomly in time with
mean r and variance σ2

e . Demographic (individual) stochasticity is character-
ized by the variance in individual fitness σ2

d, so that the total variance in mean
fitness or population growth r

(
N(t), w(t)

)
is σ2(N(t)) = σ2

e + σ2
d

N(t) . We write
this as

r(N(t), w(t)) = r +

√

σ2
e +

σ2
d

N(t)
w(t) ,

where w(·) is an i.i.d. sequence of random variables.
The regulating agency aims at ensuring a minimal catch h� at every time

h(t) ≥ h� ,

together with a precautionary stock N � at final time T with a confidence level
β in the sense that:

P
(
N(T ) ≥ N �

)
≥ β .

Assume now that the uncertainty is specified by the following distribution:

w(t) =

{−1 with probability p = 0.5 ,

1 with probability 1 − p = 0.5 .
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Fig. 7.3. Maximal viability probability V (0, N0) as a function of population N0.
The guaranteed catches and population are h� = 0.2 and N � = 1 respectively.
The time horizon is set to T = 250. The stochastic viability kernel is Viabβ(0) =
{N0, V (0, N0) ≥ β} = [Nβ , +∞[.
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(a) N0 = 100 ∈ Viab80%: viability at 80%.
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(b) N0 = 200 ∈ Viab90%: viability at 90%

Fig. 7.4. Ten simulated trajectories N(t) of a population with guaranteed catches
h� = 0.2 for two initial sizes of N0 ∈ Viab80% (a) and N0 ∈ Viab90% (b) individuals
subject to stochastic and environmental stochasticity w(t). The dynamic parameters
are mean growth r = 3%, demographic σd = 10% and environmental σe = 20%
standard deviations. The straight line corresponds to the certain trajectory. The
Figures are generated with Scilab code 15.

The Fig. 7.3, built with Scilab code 15, plots the maximal co-viability
probability V (0, N0) with guaranteed catch h� = 0.2 as a function of popula-
tion N0. Not surprisingly, the viability probability V (0, N0) rises with confi-
dence level β while the stochastic viability kernel Viabβ(0) = {N0, V (0, N0) ≥
β} = [Nβ ,+∞[ decreases with it.

In Figs. 7.4, we exhibit simulated trajectories N(t) of a population with
an initial size of N0 = 100 ∈ Viab80%(0) (a) or N0 = 200 ∈ Viab90%(0)
(b) individuals subject to stochastic and environmental stochasticity w(·) for
guaranteed catch h(t) ≥ 0.2. The dynamic parameters are mean growth r =
3%, demographic σd = 10% and environmental σe = 20% standard deviations.
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The straight line corresponds to the certain trajectory. Some trajectories are
not viable in the population sense since extinctions occur. The larger the
initial abundance, the larger the probability of viability.
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Scilab code 15.

//
// exec proba_extinction.sce

// demographic stochasticity parameters

sig_e=0.2; sig_d=0.1; rbar=0.03;

// environmental stochasticity parameters

w_min=-1;w_max=1;p=0.5;q=1-p;

// Ricker dynamics parameters

Cap=0;

// carrying capacity

// constraints thresholds

N_min=1; N_max=10^3;

h_min=0.2;h_max=0.2;

// time horizon

Horizon=250 ;

function y=dynpop(x,w)

y=zeros(x);

z=x(x>=N_min);

y(x>=N_min)= z.*(1+rbar+((sig_e^2+sig_d^2 ./z)^0.5).*

w(x>=N_min));

// zero when x < N_min

endfunction

function y=dyna_exp(x,h,w)

y=dynpop(x-h,w);

endfunction

// Indicator function of state constraint

function y=Ind_x(t,x)

y=bool2s(x>=N_min);

endfunction

// Characteristic function of control constraint (approximate)

function [y]=Phi_u(t,x,h)

SGN = bool2s(h_min <= h) ;

y=0*SGN + 1/%eps *(1-SGN) ;

endfunction

/////////////////////////////////////

// State and control Discretization

/////////////////////////////////////

// Grid state x

x_min=0; x_max=N_max;delta_x=1;

grille_x=x_min:delta_x:x_max;

S=size(grille_x);

NN=S(2);

// Grid control

u_min=0; u_max=h_max;delta_u=0.05;

u=u_min:delta_u:u_max;

R=size(u); MM=R(2);

function [z]=Projbis(x)

z=round(x./delta_x).*delta_x;

z=min(z,x_max);

z=max(z,x_min);

endfunction

function i=Indice(x)

i=int((x-x_min)./delta_x)+1;

endfunction

// Discretized dynamics

function [z]=dyna(x,h,w)

xsuiv=dynpop(x-h,w);

P=Projbis(xsuiv);

z=Indice(P);

endfunction

for (ii=1:NN)

Etat_x(ii)=x_min+(ii-1)*delta_x;

end;

for (ii=1:MM)

Control_u(ii)=u_min+(ii-1)*delta_u;

end;

//////////////////

// Graphics

///////////////////

xset("window",1);xbasc(1);

xtitle("Maximal viability probability",...

’x’,’Max_{h}P(N(T)>=N_min)’);

xset("window",2); xbasc(2);

xtitle("Population",’time t’,’N(t)’);

xset("window",3); xbasc(3);

xtitle("Catches",’time t’,’h(t)’);

///////////////////////

// Dynamic programming

///////////////////////

x=grille_x;

W=zeros(Horizon,NN);

// Initialization at horizon T

for (i=1:NN)

W(Horizon,i)=Ind_x(Horizon,Etat_x(i));

end

// Bellman equation

for(t=Horizon-1:-1:1)

for (i=1:NN)

xx=Etat_x(i);

for (j=MM:-1:1)

uu=Control_u(j);

g_min(j)=-Phi_u(t,xx,uu)+W(t+1,dyna(xx,uu,w_min));

g_max(j)=-Phi_u(t,xx,uu)+W(t+1,dyna(xx,uu,w_max));

g(j)=p*g_min(j)+(1-p)*g_max(j); // expected value

end,

[Vopt,jopt]=max(g) ;

W(t,i)=Vopt;

j_opt(t,i)=jopt;

end,

end,

// Viability kernel

Viab=W(1,:)’;K=1-W(Horizon,:)’;

xset("window",1);xbasc(1);

plot2d(Etat_x,Viab,-4,rect=[0,0,x_max,1]);

xtitle("Maximal probability viability","initial abundance",...

"probability");

// legends("Maximal probability viability",-4,"lr");

////////////////////////////////////////////////////

// Simulations

////////////////////////////////////////////////////

// N0=200;

threshold_viab=0.8

if (max(W(1,:)) >= threshold_viab) then

for (k=1:10)

i(1)=int(rand(1)*(NN-1))+1;compt=0;

while(W(1,i(1))<threshold_viab )

then i(1)=int(rand(1)*(NN-1))+1;end,

// find viable state x(i(1))

traj_x(1)=Etat_x(i(1));

//traj_x(1)=N0; i(1)=Indice(N0);

for (t=1:Horizon-1)

if (rand(1)<p) then w(t)=w_min; else w(t)=w_max; end,

h_viab(t)=Control_u(j_opt(t,i(t)));

i(t+1)=dyna(traj_x(t),h_viab(t),w(t));

traj_x(t+1)=Etat_x(i(t+1));

end,

Tempx=(1:Horizon)-1;

Nmin=zeros(1,Horizon)’+N_min;

Nmax=zeros(1,Horizon)’+N_max;

NLin=traj_x(1)*(1+rbar).^Tempx’;

//

xset("window",2);plot2d(Tempx,[traj_x Nmin Nmax NLin],...

[1,2,3,4],leg="N(t)@Nmin@Nmax@Ncertain",...

rect=[1,N_min,Horizon,N_max]);

xset("window",2);plot2d(Tempx,[traj_x Nmin Nmax NLin],...

rect=[1,N_min,Horizon,N_max]);

plot2d(Tempx,[traj_x Nmin Nmax NLin],style=-[1,2,3,4])

legends(["N(t)";"Nmin";"Nmax";"Ncertain"],-[1,2,3,4])

// STOP...

Temps=1:Horizon-1;

xset("window",3);plot2d(Temps,h_viab,...

rect=[1,u_min,Horizon,u_max]);

end,

else " beta kernel is empty "

end

//
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8

Robust and stochastic optimization

In Chap. 7, viability issues were addressed in the uncertain context including
both robust and stochastic cases. The present chapter focuses on the optimal-
ity process involving worst case or expected performance. For the uncertain
case, material for the optimal management or conservation of natural resource
and bioeconomic modeling can be found in [4] together with [3]. Stochastic
optimality approaches to address the sustainability issues and, especially in-
tergenerational equity and conservation issues, are proposed for instance in
[5] including in particular the maximin, Green Golden and Chichilnisky ap-
proaches.

Again, it is worth noting that dynamic programming is a relevant method
in the uncertain context in the sense that it is well-suited to both robust
and stochastic problems. We have already seen in the certain case, that the
so-called Bellman’s principle expresses the fact that every “subpolicy” of an
optimal policy remains optimal along the optimal trajectories. Such principle
makes it possible to split a dynamic optimization problem into a sequence
of static optimization problem interrelated by backward induction. We detail
this process and these general ideas hereafter in the robust and stochastic
cases, when the criterion is additive [1, 2, 7].

The chapter is organised as follows. After briefly introducing the criterion
in the uncertain framework in Sect. 8.1, the robust optimality problem is pre-
sented in Sect. 8.2. The robust additive payoff case is treated with the dynamic
programming method in Sect. 8.3, as well as the robust “maximin” approach in
Sect. 8.5. The stochastic optimality problem is detailed in Sect. 8.6. Examples
from natural resource modeling illustrate the abstract results and concepts.
In particular, it is shown how some qualitative results of the certain case can
be expanded to the uncertain framework using the certainty equivalent.
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8.1 Dynamics, constraints, feedbacks and criteria

We briefly review some basic ingredients and conclude with the evaluation of
the criterion along controlled trajectories.

Dynamics

The state equation introduced in (6.1) as the uncertain dynamic model is
considered

x(t+1) = F
(
t, x(t), u(t), w(t)

)
, t = t0, . . . , T − 1 with x(t0) = x0 (8.1)

where again x(t) ∈ X = R
n represents the system state vector at time t ∈ N,

x0 ∈ X is the initial condition or initial state at initial time t0, T > t0 is
the horizon, u(t) ∈ U = R

p represents the decision or the control vector while
w(t) ∈ S(t) ⊂ W = R

q stands for the uncertain variable, or disturbance, noise.
Possible scenarios, or paths of uncertainties, w(·) are described by:

w(·) ∈ Ω := S(t0) × · · · × S(T ) ⊂ W
T+1−t0 .

Constraints and feedbacks

The admissibility of decisions and states is restricted by non empty subset
B(t, x) of admissible controls in U for all time t and state x,

u(t) ∈ B
(
t, x(t)

)
⊂ U , (8.2a)

together with a non empty subset A(t) of the state space X for all t =
t0, . . . , T − 1,

x(t) ∈ A(t) ⊂ X , (8.2b)

and a target
x(T ) ∈ A(T ) ⊂ X . (8.2c)

These control, state or target constraints may reduce the relevant paths of
the system. Such a feasibility issue will only be addressed in a robust frame-
work.

For this purpose, let us consider the set Uad of admissible feedbacks as
defined in (6.12)

Uad = {u ∈ U | u(t, x) ∈ B(t, x) , ∀(t, x)} , (8.3)

where U = {u : (t, x) ∈ N × X �→ u(t, x) ∈ U} is defined in (6.11).
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Criterion

Let us pick up one of the finite horizon criteria π defined previously in Sect. 6.1.
The robust optimization results that we shall present in the sequel may be ob-
tained with any of these criteria, while the stochastic optimization results may
be obtained only with the finite horizon additive and multiplicative criteria.

For any u ∈ Uad (measurable in the stochastic context), and criterion
π : X

T+1−t0 × U
T−t0 × W

T+1−t0 → R, we put

πu
(
t0, x0, w(·)

)
:= π

(
xF [t0, x0, u, w(·)](·), uF [t0, x0, u, w(·)](·), w(·)

)
(8.4)

where t0 ∈ {0, . . . , T − 1}, x0 ∈ X, w(·) ∈ Ω and xF , uF are the solu-
tion maps introduced in Sect. 6.2. Thus, πu

(
t0, x0, w(·)

)
is the evaluation

of the criterion π along the unique trajectory x(·) = xF [t0, x0, u, w(·)](·),
u(·) = uF [t0, x0, u, w(·)](·), starting from x(t0) = x0, and generated by the
dynamic (8.1), driven by feedback u(t) = u

(
t, x(t)

)
and disturbance scenario

w(·).

8.2 The robust optimality problem

In the robust optimality problem, we aggregate the scenarios w(·) in πu
(
t0, x0,

w(·)
)

by considering the worst case.

Worst payoff

First, we fix an admissible feedback u. Then, we introduce the worst perfor-
mance as in (6.14), namely the minimal payoff1 with respect to the scenarios
w(·) ∈ Ω:

πu
−(t0, x0) := inf

w(·)∈Ω
πu
(
t0, x0, w(·)

)
. (8.5)

Thus, the feedback u being fixed, we let the scenario w(·) vary in Ω and
evaluate the criterion by taking the lowest value.

Maximal worst payoff

Second, we let the feedback u vary, and aim at maximizing this worst pay-
off (8.5) by solving the optimization problem

π�
−(t0, x0) := sup

u∈Uad

πu
−(t0, x0)

= sup
u(·)

inf
w(·)∈Ω

π
(
x(·), u(·), w(·)

)
,

(8.6)

1 Recall that π measures payoffs. To address minimization problems, one should
simply change the sign and consider −π.
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where the last expression is abusively used, but practical and traditional, in
which x(·) and u(·) need to be replaced by x(t) = xF [t0, x0, u, w(·)](t) and
u(t) = u

(
t, x(t)

)
, referring to state and control solution maps introduced in

Sect. 6.2.

Definition 8.1. Given an initial condition x0 ∈ X at time t0, the optimal
value π�

−(t0, x0) in (8.6) is called the maximal worst payoff and any u� ∈ Uad

such that
π�
−(t0, x0) = max

u∈Uad
πu
−(t0, x0) = πu

�

− (t0, x0) (8.7)

is an optimal feedback.

In the viability case, the infimum in (8.6) is taken for u ∈ Uviab
1 (t0, x0)

defined in (7.5), giving

Uviab
1 (t0, x0) :=

⎧
⎨

⎩u ∈ Uad

∣∣∣∣∣∣

for all scenario w(·) ∈ Ω
xF [t0, x0, u, w(·)](t) ∈ A(t)

for t = t0, . . . , T

⎫
⎬

⎭ , (8.8)

instead of Uad as defined in (8.3).

Definition 8.2. Given an initial condition x0 ∈ X, the maximal viable worst
payoff is

π�
−(t0, x0) := sup

u∈Uviab
1 (t0,x0)

πu
−(t0, x0) (8.9)

and any u� ∈ Uviab
1 (t0, x0) such that

π�
−(t0, x0) = max

u∈Uviab
1 (t0,x0)

πu
−(t0, x0) = πu

�

− (t0, x0) (8.10)

is an optimal viable feedback strategy.

8.3 The robust additive payoff case

In the robust additive payoff case, we specify the criterion and consider the
finite horizon additive criterion:

π
(
x(·), u(·), w(·)

)
=

T−1∑

t=t0

L
(
t, x(t), u(t), w(t)

)
+ M

(
T, x(T ), w(T )

)
. (8.11)

Robust additive dynamic programming without state constraints

We have already seen in the certain case that the so-called Bellman’s prin-
ciple expresses the fact that every “subpolicy” of an optimal policy remains
optimal along the optimal trajectories. Such principle facilitaties splitting one
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optimization problem over time (dynamic) into a sequence of static optimiza-
tion problem interrelated by backward induction. We detail this process and
these general ideas hereafter in the robust case, when the criterion π is addi-
tive, that is, given by (8.11). Here, we restrict the study to the case without
state constraints, namely A(t) = X. The value function is defined by backward
induction as follows.

Definition 8.3. Assume no state constraints, that is A(t) = X for t = t0,
. . . , T . The value function or Bellman functionV (t, x), associated with the
additive criterion (8.11), the dynamics (8.1) and control constraints (8.2a),
is defined by the following backward induction, where t runs from T − 1 down
to t0:
⎧
⎪⎪⎨

⎪⎪⎩

V (T, x) := inf
w∈S(T )

M(T, x, w) ,

V (t, x) := sup
u∈B(t,x)

inf
w∈S(t)

[
L(t, x, u, w) + V

(
t + 1, F (t, x, u, w)

)]
.

(8.12)

Optimal robust feedbacks

The backward equation of dynamic programming (8.12) makes it possible to
define the value function V (t, x). It turns out that the value V (t0, x0) coincides
with the maximal worst payoff π�

−(t0, x0). In fact, we obtain a stronger result
since dynamic programming induction maximization reveals relevant robust
feedback controls.

The proof of the following Proposition 8.4 is given in the Appendix,
Sect. A.6.

Proposition 8.4. Assume that A(t) = X for t = t0, . . . , T . For any time t
and state x, assume the existence of the following feedback decision

u�(t, x) ∈ arg max
u∈B(t,x)

inf
w∈S(t)

[
L(t, x, u, w) + V

(
t + 1, F (t, x, u, w)

)]
. (8.13)

Then u� ∈ U is an optimal feedback of the robust problem (8.6), where π is
given by (8.11), and, for any initial state x0, the maximal worst payoff is given
by

V (t0, x0) = π�
−(t0, x0) = πu

�

− (t0, x0) . (8.14)

Robust dynamic programming in the viability case

When state constraints restrict the choice of relevant paths, we have to adapt
the dynamic programming equation using viability tools and especially the
robust viability kernel Viab1 introduced in Chap. 7. The value function is
defined by backward induction as follows.
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Definition 8.5. The value function or Bellman functionV (t, x), associated
with the additive criterion (8.11), the dynamics (8.1), control constraints (8.2a),
state constraints (8.2b) and target constraints (8.2c), is defined by the follow-
ing backward induction, where t runs from T − 1 down to t0,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V (T, x) := M(T, x) , ∀x ∈ Viab1(T ) = A(T ) ,

V (t, x) := sup
u∈Bviab

1 (t,x)

inf
w∈S(t)

[
L(t, x, u, w) + V

(
t + 1, F (t, x, u, w)

)]
,

∀x ∈ Viab1(t) ,
(8.15)

where Viab1(t) is given by the backward induction (7.11)
⎧
⎪⎪⎨

⎪⎪⎩

Viab1(T ) = A(T ) ,

Viab1(t) = {x ∈ A(t) | ∃u ∈ B(t, x) , ∀w ∈ S(t) ,

F (t, x, u, w) ∈ Viab1(t + 1)} ,

(8.16)

and where the supremum in (8.15) is over viable controls in B
viab
1 (t, x) given

by

B
viab

1 (t, x) = {u ∈ B(t, x) | ∀w ∈ S(t) , F (t, x, u, w) ∈ Viab1(t + 1)} . (8.17)

Optimal robust viable feedbacks

The backward equation of dynamic programming (8.15) makes it possible to
define the value function V (t, x). It turns out that the value V (t0, x0) coin-
cides with the maximal worst payoff π�

−(t0, x0). In fact, we obtain a stronger
result since dynamic programming induction maximization reveals relevant
feedbacks.

The proof2 of the following Proposition 8.6 is given in the Appendix,
Sect. A.6.

Proposition 8.6. For any time t = t0, . . . , T − 1 and state x ∈ Viab1(t),
assume the existence of the following feedback decision

u�(t, x) ∈ arg max
u∈Bviab

1 (t,x)

inf
w∈S(t)

[
L(t, x, u, w) + V

(
t + 1, F (t, x, u, w)

)]
. (8.18)

Then u� ∈ U is an optimal feedback of the viable robust problem (8.9), where
π is given by (8.11), and, for any initial state x0, the maximal viable worst
payoff is given by

V (t0, x0) = π�
−(t0, x0) = πu

�

− (t0, x0) . (8.19)

2 For the proof, we require additional technical assumptions: infx,u,w L
(
t, x, u, w

)
>

−∞ and infx,w M
(
T, x, w

)
> −∞.
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Hence, there is no theoretical problem in coupling viability and optimality
requirements in the robust framework. This will no longer be the situation in
the stochastic case.

8.4 Robust harvest of a renewable resource over two
periods

We consider a model of the management of a renewable resource over two
periods T = 2 and we perform a robust analysis. The uncertain resource
productivity R(t) is supposed to vary within an interval S = [R�, R�] ⊂ W =
R, with R� < R�. We aim at maximizing the worst benefit namely the minimal
sum of the discounted successive harvesting revenues

sup
0≤h(0)≤B(0), 0≤h(1)≤B(1)

inf
R(1),R(2)

[
ph(0) + ρph(1)

]
,

where the resource dynamics corresponds to

B(1) = R(1)
(
B(0) − h(0)

)
, B(2) = R(2)

(
B(1) − h(1)

)
.

• Final time t = T = 2. The robust value function is V (2, B) = 0.
• Time t = 1. By virtue of dynamic programming equation (8.12), one has

V (1, B) = sup
0≤h≤B

inf
R(2)∈[R�,R�]

[
ρph + V

(
2, R(2)(B − h)

)]
= sup

0≤h≤B
{ρph} .

The optimality problem over h is linear and we obtain similarly the optimal
feedback u�(1, B) = B while the value function is

V (1, B) = ρpB .

• Time t = 0. By virtue of dynamic programming equation (8.12), one has

V (0, B) = sup
0≤h≤B

inf
R(1)∈[R�,R�]

[
ph + V

(
1, R(1)(B − h)

)]

= sup
0≤h≤B

{
ph + inf

R(1)∈[R�,R�]
[ρpR(1)(B − h)]

}

= p sup
0≤h≤B

{
h(1 − ρR�) + ρR�B

}

where R� = infR(1)∈[R�,R�] R(1). The optimality problem over h is linear
and we obtain

u�(0, B) =

⎧
⎨

⎩
B if ρR� < 1

0 if ρR� > 1

and the value function is

V (0, B) =

⎧
⎨

⎩
pB if ρR� < 1

ρpR�B if ρR� > 1 .
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Thus, the results are similar to the certain case using the worst equivalent
R�. We deduce that sustainability is even more difficult to achieve in such a
robust framework.

8.5 The robust “maximin” approach

Here, we consider the finite horizon maximin criterion

π
(
x(·), u(·), w(·)

)
= inf

t=t0,...,T−1
L
(
t, x(t), u(t), w(t)

)
. (8.20)

We shall also consider the final payoff case with

π
(
x(·), u(·), w(·)

)
= min

(
min

t=t0,...,T−1
L
(
t, x(t), u(t), w(t)

)
,M
(
T, x(T ), w(T )

)
)

.

However, by changing T in T +1 and defining L(T, x, u, w) = M
(
T, x, w

)
, the

minimax with final payoff may be interpreted as one without on a longer time
horizon.

Robust dynamic programming equation

We state the results without state constraints, though robust ones would not
pose problems. The value function is defined by backward induction as follows.

Definition 8.7. Assume no state constraints A(t) = X for t ∈ {t0, . . . , T}.
The value function or Bellman functionV (t, x), associated with the maximin
criterion (8.20), the dynamics (8.1), control constraints (8.2a), is defined by
the following backward induction, where t runs from T − 1 down to t0:

⎧
⎪⎨

⎪⎩

V (T, x) := inf
w∈S(T )

M(T, x, w) ,

V (t, x) := sup
u∈B(t,x)

inf
w∈S(t)

min
(
L(t, x, u, w), V

(
t + 1, F (t, x, u, w)

))
.

(8.21)

Optimal robust feedbacks

The backward equation of dynamic programming (8.21) makes it possible to
define the value function V (t, x). It turns out that the value V (t0, x0) coin-
cides with the maximal worst payoff π�

−(t0, x0). In fact, we obtain a stronger
result since dynamic programming induction maximization reveals relevant
feedbacks.

The proof of the following Proposition 8.8 is given in the Appendix,
Sect. A.6.



8.6 The stochastic optimality problem 201

Proposition 8.8. Assume that A(t) = X for t = t0, . . . , T . For any time t
and state x, assume the existence of the following feedback decision

u
�(t, x) ∈ arg max

u∈B(t,x)

inf
w∈S(t)

min
(
L(t, x, u, w), V

(
t + 1, F (t, x, u, w)

))
. (8.22)

Then u� ∈ U is an optimal feedback of the robust problem (8.6), where π is
given by (8.20), and, for any initial state x0, the maximal worst payoff is given
by

V (t0, x0) = π�
−(t0, x0) = πu

�

− (t0, x0) . (8.23)

8.6 The stochastic optimality problem

Suppose that L and M in (8.11) are measurable and either bounded or non-
negative so as to be integrable when composed with measurable state and
decision maps. Suppose that the assumptions in Sect. 6.3 are satisfied.

In all that follows, , the primitive random process w(·) is assumed to
be a sequence of independent identically distributed (i.i.d.) random variables(
w(t0), w(t0 + 1), . . . , w(T − 1), w(T )

)
under probability P on the domain of

scenarios Ω = S
T+1−t0 .

Let B(t, x) ⊂ U be a non empty subset of the control space U for all (t, x),
and Uad be the set of measurable admissible feedbacks as defined in (8.3).

Mean payoff

We aim at computing the optimal expected value of the criterion π. As long
as the criterion π represents payoffs, we aim at identifying the maximal mean
payoffs and the associated feedbacks or pure Markovian strategies.

For any admissible feedback strategy u ∈ Uad and initial condition x0 ∈ X

at time t0, let us consider the or mean payoff as in (6.15):

πu(t0, x0) := E

[
πu
(
t0, x0, w(·)

)]
. (8.24)

Maximal mean payoff

The stochastic optimization problem is

π�(t0, x0) := sup
u∈Uad

E

[
πu
(
t0, x0, w(·)

)]

= sup
u(·)

E

[
π
(
x(·), u(·), w(·)

)]
,

(8.25)
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where the last expression is abusively used, but practical and traditional, in
which x(·) and u(·) need to be replaced by x(t) = xF [t0, x0, u, w(·)](t) and
u(t) = u

(
t, x(t)

)
, referring to state and control solution maps introduced in

Sect. 6.2.

Definition 8.9. Consider any initial condition x0 ∈ X. The optimal value
π�(t0, x0) in (8.25) is called the maximal expected payoff or maximal mean
payoff and any u� ∈ Uad such that

π�(t0, x0) = max
u∈Uad

πu(t0, x0) = πu
�

(t0, x0) (8.26)

is an optimal feedback.

In the viability case where state constraints reduce the admissibility of de-
cisions and feedbacks, let us emphasize that the stochastic optimality problem
with stochastic state constraints is not easy to cope with and that substantial
mathematical difficulties arise. This is why we restrict the viability problem
to the robust approach. Hence, the maximum in (8.25) is taken for robust
feedbacks u ∈ Uviab

1 (t0, x0) defined as follows3

U
viab
1 (t0, x0) :=

{
u ∈ U

ad
∣∣∣ P

(
w(·) ∈ Ω | x(t) ∈ A(t) for t = t0, . . . , T

)
= 1

}
,

(8.27)

where x(t) corresponds to the solution map x(t) = xF [t0, x0, u, w(·)](t) defined
in Sect. 6.2, instead of Uad as defined in (8.3).

Definition 8.10. Given an initial condition x0 ∈ X, the maximal viable mean
payoff is

π�
−(t0, x0) := sup

u∈Uviab
1 (t0,x0)

πu
−(t0, x0) (8.28)

and any u� ∈ Uviab
1 (t0, x0) such that

π�
−(t0, x0) = max

u∈Uviab
1 (t0,x0)

πu
−(t0, x0) = πu

�

− (t0, x0) (8.29)

is an optimal viable feedback.

Stochastic dynamic programming without state constraints

We first restrict the study to the case without state constraints, namely A(t) =
X for t = t0, . . . , T .

Again a backward inductive equation defines the value function V (t, x) and
we can split up the maximization operation into two parts for the following
reasons: the criterion π in (8.11) is additive, the expectation operator is linear,
the dynamic is a first order induction equation and, finally, constraints at time
t depend only on time t and state x.
3 See the footnotes 3 and 4 in the previous Chap. 7.
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Definition 8.11. The value function or Bellman functionV (t, x), associ-
ated with the additive criterion (8.11), the dynamics (8.1), control con-
straints (8.2a) and no state constraints (A(t) = X for t = t0, . . . , T ), is
defined by the following backward induction4, where t runs from T − 1 down
to t0:
⎧
⎪⎪⎨

⎪⎪⎩

V (T, x) := Ew(T )

[
M
(
T, x, w(T )

)]
,

V (t, x) := sup
u∈B(t,x)

Ew(t)

[
L
(
t, x, u, w(t)

)
+ V

(
t + 1, F (t, x, u, w)

)]
.

(8.30)

Stochastic optimal feedback

The backward equation of dynamic programming (8.30) makes it possible
to define the value function V (t, x). It turns out that the value V (t0, x0) at
time t0 coincides with the optimal mean payoff π�(t0, x0). Moreover, dynamic
programming induction maximization reveals relevant feedback controls or
pure Markovian strategies. Indeed, assuming the additional hypothesis that
the infimum is achieved in (8.30) for at least one decision, if we denote by
u�(t, x) a value u ∈ B(t, x) which achieves the maximum in equation (8.30),
then u�(t, x) is an optimal feedback for the optimal control problem in the
following sense.

The proof of the following Proposition 8.12 is given in the Appendix,
Sect. A.6.

Proposition 8.12. Assume that A(t) = X for t = t0, . . . , T . For any time t
and state x, assume the existence of the following feedback decision:

u�(t, x) ∈ arg max
u∈B(t,x)

Ew(t)

[
L
(
t, x, u, w(t)

)
+V
(
t+1, F

(
t, x, u, w(t)

))]
. (8.31)

If u� : (t, x) → u�(t, x) is measurable, we thus have an optimal strategy of the
maximization problem (8.25), where π is given by (8.11) and, for any initial
state x0, the optimal expected payoff is given by:

V (t0, x0) = π�(t0, x0) = πu
�

(t0, x0) . (8.32)

Stochastic dynamic programming with state constraints

If we introduce state constraints and deal with them in a robust sense, the
hereabove results hold true with B(t, x) replaced by B

viab
1 (t, x).

4 See the footnote 5 in Definition 7.9.



204 8 Robust and stochastic optimization

Definition 8.13. The value function or Bellman functionV (t, x), associ-
ated with the additive criterion (8.11), the dynamics (8.1), control con-
straints (8.2a), state constraints (8.2b) and target constraints (8.2c), is defined
by the following backward induction, where t runs from T − 1 down to t0,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V (T, x) := Ew(T )

[
M
(
T, x, w(T )

)]
, ∀x ∈ Viab1(T ) = A(T ) ,

V (t, x) := sup
u∈B(t,x)

Ew(t)

[
L
(
t, x, u, w(t)

)
+ V

(
t + 1, F

(
t, x, u, w(t)

))]
,

∀x ∈ Viab1(t) ,
(8.33)

where Viab1(t) is given by the backward induction (7.11)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Viab1(T ) = A(T ) ,

Viab1(t) = {x ∈ A(t) | ∃u ∈ B(t, x) , ∀w ∈ S(t) ,

F (t, x, u, w) ∈ Viab1(t + 1)} ,

(8.34)

and where the supremum in (8.33) is over viable controls in B
viab
1 (t, x) given

by

B
viab

1 (t, x) = {u ∈ B(t, x) | ∀w ∈ S(t) , F (t, x, u, w) ∈ Viab1(t + 1)} . (8.35)

The proof5 of the following Proposition 8.14 is given in the Appendix,
Sect. A.6.

Proposition 8.14. For any time t and state x, assume the existence of the
following feedback decision

u�(t, x) ∈ arg max
u∈Bviab

1 (t,x)

Ew(t)

[
L
(
t, x, u, w(t)

)
+ V

(
t + 1, F

(
t, x, u, w(t)

))]
.

(8.36)
If u� : (t, x) → u�(t, x) is measurable, we thus have an optimal strategy of the
maximization problem (8.28), where π is given by (8.11), and, for any initial
state x0, the optimal expected payoff is given by:

V (t0, x0) = π�(t0, x0) = πu
�

(t0, x0) . (8.37)

Robust is more stringent than stochastic

Not surprisingly, maximal payoffs are smaller in a robust perspective than in
a mean approach since the inequality
5 For the proof, we require the additional technical assumptions that L and M are

bounded.
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Ew[A(w)] ≥ inf
w∈S

A(w)

holds. Thus, for any initial state x0, the maximal expected payoff is larger
than the maximal worst payoff:

π�(t0, x0) ≥ π�
−(t0, x0) .

Moreover, the robust and stochastic maximization problems coincide
whenever the uncertainty disappears, which corresponds to the determinis-
tic case. In the certain case where S = {w}, the maximal expected payoff and
the maximal worst payoff coincide:

S = {w} =⇒ π�
−(t0, x0) = π�(t0, x0) .

8.7 Stochastic management of a renewable resource

Over two periods

We consider the biomass linear model over two periods T = 2,

B(1) = R(1)
(
B(0) − h(0)

)
, B(2) = R(2)

(
B(1) − h(1)

)
,

for which we aim at maximizing the expectation of the sum of the discounted
successive harvesting revenues

V (0, B(0)) = sup
0≤h(0)≤B(0), 0≤h(1)≤B(1)

ER(1),R(2)

[
ph(0) + ρph(1)

]
,

where R(1) and R(2) are two independent random variables.

• Final time t = T = 2. The value function is V (2, B) = 0.
• Time t = 1. By virtue of dynamic programming equation (8.30), one has:

V (1, B) = sup
0≤h≤B

ER(2)

[
ρph + V

(
2, R(2)(B − h)

)]
= sup

0≤h≤B
{ρph} .

The optimality problem over h is linear and we obtain the optimal feedback
harvesting u�(1, B) = B while the value function is:

V (1, B) = ρpB .

• Time t = 0. By (8.30), one has

V (0, B) = sup
0≤h≤B

ER(1)

[
ph + V

(
1, R(1)(B − h)

)]

= sup
0≤h≤B

{
ph + ER(1) [ρpR(1)(B − h))]

}

= p sup
0≤h≤B

{
h(1 − ρR) + ρRB

}
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where R = E [R(1)]. The optimality problem over h is linear and we obtain:

u�(0, B) =

⎧
⎨

⎩
B if ρR < 1

0 if ρR > 1 .

The value function is

V (0, B) =

⎧
⎨

⎩
pB if ρR < 1

pρRB if ρR > 1 .

Thus the results are similar to the certain case using the certainty equivalent
R. Consequently, we deduce that:

• the resource B becomes extinct in at least in two periods;
• conservation problems are stronger if R is weaker since the resource is

completely harvested at the first period in this case;
• no intergenerational equity occurs since either the whole resource is cap-

tured in the first or second period.

Over T periods

The dynamic model still is

B(t + 1) = R(t)
(
B(t) − h(t)

)
, 0 ≤ h(t) ≤ B(t) ,

where R(t0), . . . , R(T − 1) are independent and identically distributed posi-
tive random variables. We consider expected intertemporal discounted utility
maximization

sup
h(t0),...,h(T−1)

E

[
T−1∑

t=t0

ρtL
(
h(t)
)

+ ρT L
(
B(t)

)
]

.

We restrict the study to the isoelastic case where

L(h) = hη with 0 < η < 1 .

For t = t0, . . . , T − 1, dynamic programming equation (8.30) gives

V (t, B) = sup
h∈[0,B]

(
ρtL(h) + ER

[
V
(
t + 1, R(B − h)

)])
,

where R is a random variable standing for the uncertain growth of the resource
and having the same distribution as any of the random variables R(t0), . . . ,
R(T − 1).

Using a backward induction starting from V (T,B) = ρT L(B), it turns
out that the optimal strategies of harvesting h�(t, B) along with the value
function V (t, B) are characterized by
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Fig. 8.1. Preference for present: optimal stochastic paths B�(t) and h�(t) over time
horizon T = 10 with catch utility function L(h) = h0.5, discount factor ρ = 0.95
while initial biomass is B0 = 10. Resource growth parameters R� = 1.3, R� = 1

and p = P(R = 1.3) = 0.1. Consequently, certainty equivalent is R̂ ≈ 1.028 and
sustainability problems occurs as catches are strong for first periods and resource is
exhausted.

V (t, B) = ρtb(t)η−1Bη and h�(t, B) = b(t)B .

The recursive relation revealing b(t) is given by

b(t) =
ab(t + 1)

1 + ab(t + 1)
, b(T ) = 1 ,

depending on the term
a = (ρR̂η)

1
η−1 ,

where the certainty equivalent R̂ is defined by the implicit equation (the utility
function L(h) = hη is strictly increasing)
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Fig. 8.2. Preference for future: optimal stochastic paths B�(t) and h�(t) over time
horizon T = 10 with catch utility function L(h) = h0.5, discount factor ρ = 0.95
while initial biomass is B0 = 10. Resource parameters are R� = 1.3; R� = 1 and

p = P(R = 1.3) = 0.9. Thus resource certainty equivalent is R̂ = 1.26. Sustainability
problems occurs as catches are weak for first periods.

L(R̂) = ER[L(R)] . (8.38)

Optimal stochastic biomasses B�(t) and catches h�(t) are defined by

B�(t + 1) = R(t)
(
B�(t) − h�(t)

)
, h�(t) = h�

(
t, B�(t)

)
= b(t)B�(t) ,

which gives

h�(t+1)=b(t+1)B�(t+1)=b(t+1)R(t)B�(t)(1−b(t))=
R(t)b(t)

a
B�(t)=

R(t)

a
h�(t).

Since L(h) = hη, we obtain that
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ER

[
L(h�(t + 1))

L(h�(t))

]
=

ER [L(R)]
L(a)

=
L(R̂)
L(a)

=
R̂η

(ρR̂η)
η

η−1
=
(
ρR̂
) η

1−η

.

It turns out that the sustainability issues depend critically upon the product

ρ︸︷︷︸
economic discount factor

× R̂︸︷︷︸
biological growth factor

(8.39)

which mixes economic and biological characteristics of the problem.

Result 8.15 The relative variation of the utility of optimal stochastic catches
depends on the index ρR̂ as follows.

1. If ρR̂ > 1, then the utility of optimal stochastic catches increases along
time in the mean following sense:

E

[
L
(
h�(t + 1)

)

L
(
h�(t)

)
]

> 1 .

2. If ρR̂ < 1, then the utility of optimal stochastic catches decreases along
time in the mean following sense:

E

[
L
(
h�(t + 1)

)

L
(
h�(t)

)
]

< 1 .

3. If ρR̂ = 1, then the utility of optimal stochastic catches remains stationary
in the mean following sense:

E

[
L
(
h�(t + 1)

)

L
(
h�(t)

)
]

= 1 .

Figs. 8.1 and 8.2 show that sustainability problems occur with such optimal
stochastic catches. It is assumed that resource productivity R is a random
variable taking values R� = 1.3 and R� = 1.

In the first case depicted by Fig. 8.1 where the uncertain resource natural
growth features are not favorable, we have P(R = 1.3) = 0.1 and thus R̂ =
1.028, so that the resource stocks B�(t) quickly decrease. Similarly, the catches
h�(t) decrease and tend to collapse. In such a case, there is a preference
for the present which condemns the conservation of both the resource and
exploitation. As a consequence, intergenerational equity is not guaranteed.

In the second case displayed by Fig. 8.2, resource natural growth features
are more favorable and P(R = 1.3) = 0.9 yields the certainty equivalent
R̂ = 1.26: conservation of the resource is achieved. However a problem of
intergenerational equity appears since the catches h�(t) are very weak (al-
most zero) for the first periods before they quickly increase at the end of the
concerned period. There is a clear preference for the future.
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Scilab code 16.

//
// exec opti_uncertain_resource.sce

//parameters

puis=0.5;

Horizon=10;

rho=0.95 ;

B0=10;

p=0.1; q=1-p;

p=0.9; q=1-p;

R#=1.3;Rb=1;

// isoelastic utility

function [u]=util(x)

u=x^puis

endfunction

// certainty equivalent

Rchap=(p*util(R#)+q*util(Rb))^(1/puis) ;

a=(rho * util(Rchap))^(1/(puis-1)) ;

// proportion of consumption b(t)

b=[];

b(Horizon+1)=1;

for t=Horizon:-1:1

b(t)=a*b(t+1)/(1+a*b(t+1)) ;

end

// optimal catches and resource

function [h]=PREL_OPT(t,B)

h =b(t)*B

endfunction

function [x]=DYN_OPT(t,B,R)

x=R*(B-PREL_OPT(t,B))

endfunction

xset("window",1) ; xbasc()

xset("window",2) ; xbasc()

N_simu=3;

for i=1:N_simu

// simulation of random productivity R(t)

z=rand(1,Horizon,’uniform’);

for t=1:Horizon

if (z(t) <= p) then

Rsimu(t)=R#;

else Rsimu(t)=Rb;

end

end

// computation of optimal trajectories

Bopt(1)=B0;J=0;

for t=1: Horizon

hopt(t)=PREL_OPT(t,Bopt(t));

Bopt(t+1)=DYN_OPT(t,Bopt(t),Rsimu(t));

end

// graphics

xset("window",1) ;

plot2d(1:Horizon+1,Bopt,style=i) ;

plot2d(1:Horizon+1,Bopt,style=-i) ;

xtitle("Optimal biomass","time t","B(t)")

xset("window",2) ;

plot2d(1:Horizon,hopt,style=i) ;

plot2d(1:Horizon,hopt,style=-i) ;

xtitle("Optimal catch","time t","h(t)")

end

//

8.8 Optimal expected land-use and specialization

We now cope with the problem introduced in Sect. 6.6. The annual wealth
evolution of the farm was described by

υ(t + 1) = υ(t)

(
n∑

i=1

ui(t)Ri

(
w(t)

)
)

= υ(t)〈ui(t), R
(
w(t)

)
〉 ,

where R(w) =
(
R1

(
w
)
, . . . , Rn(w)

)
and 〈, 〉 denotes scalar product on R

n,

ui(t) :=
piBi(t)

υ(t)

stood for the proportion of wealth generated by use i (
∑n

i=1 ui(t) = 1, ui(t) ≥
0), and w(t) corresponded to environmental uncertainties varying in a given
domain S ⊂ W. The allocation u = (u1, . . . , un) ∈ Sn, belonging to the
simplex Sn of R

n, to the different land-uses appeared as a decision variable
representing the land-use structure.
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Now the farmer aims at optimizing the expected discounted final wealth
at time T :

sup
u

E
[
ρT υ(T )

]
.

Let us prove that the optimal allocation is a specialized one defined by use
i� ∈ arg maxi=1,...,n Ew[Ri(w)] in the sense that

⎧
⎪⎨

⎪⎩

u�
i (t, υ) =

{
0 if i �= i�

1 if i = i�

V (t, υ) = υρT
Ew[Ri�(w)]T−t .

(8.40)

This result suggests that without risk aversion (utility is linear), special-
ization in one land-use is optimal when the land-use remains constant. The
chosen use is the one which maximizes the expected growth Ew[Ri(w)].

Result 8.16 Without risk aversion (utility L is linear), specialization in
one land-use is optimal in the stochastic sense. The chosen use is the i� ∈
arg maxi=1,...,n Ew[Ri(w)] which maximizes the expected growth Ew[Ri(w)].
The optimal allocation and value are given by:

⎧
⎪⎨

⎪⎩

u�
i (t, υ) =

{
0 if i �= i�

1 if i = i�

V (t, υ) = υρT
Ew[Ri�(w)]T−t .

(8.41)

To prove this, we reason backward. Clearly the relation holds at final time
since we have V (T, υ) = υρT . Assume the relation (8.41) at time t + 1. From
dynamic programming equation (8.12), we deduce that:

V (t, υ) = sup
u∈Sn

Ew

[
V
(
t + 1, F (υ, u, w)

)]

= sup
u∈Sn

Ew

[
υ(〈R(w), u〉)ρT

Ew[Ri�(w)]T−(t+1)

]

= υρT
Ew[Ri�(w)]T−(t+1) sup

u∈Sn

Ew[〈R(w), u〉]

= υρT
Ew[Ri�(w)]T−(t+1) sup

u∈Sn

〈Ew[R(w)], u〉
.

The optimization problem supu∈Sn〈Ew[R(w)], u〉 is a linear programming
problem which admits u�

i (t, υ) as solution. Therefore, we obtain the desired
result:

V (t, υ) = υρT
Ew[Ri�(w)]T−t .
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8.9 Cost-effectiveness of grazing and bird community
management in farmland

Farmland biodiversity has undergone severe and widespread decline in recent
decades. Such is particularly true for bird species and agricultural intensifi-
cation is designated as a major cause. Targeting agricultural practices may
therefore help to restore habitat quality and enhance biodiversity. Hence, live-
stock raising and grazing should be considered as effective tools for the con-
servation of bird biodiversity, especially for wader populations foraging and
nesting in wet grasslands. Hereafter, following [6], we present a bio-economic
model of habitat - biodiversity interactions to provide intensity and timing
of grazing for the sustainability of both wader populations and farmer prac-
tices. The wader community here includes Lapwings, Redshanks and Godwit
species. The model integrates sward and bird population dynamics, grazing
strategies and uncertain climatic impacts on a discrete monthly basis at a lo-
cal scale. Major constraints are based on specific sward heights which promote
bird viability. The evaluation is conducted in terms of cost-effectiveness as the
grazing profile is chosen from among the robust viable strategies which min-
imize the expected economic cost of indoor livestock feeding. The numerical
method relies on stochastic dynamic programming under the context of robust
constraints. Data used for model calibration come from the wet grasslands of
the Marais Poitevin (France). The whole set of variables and parameters are
summarized in Tabs. 8.1, 8.2 and 8.3.

Dynamics

The first component of the model represents a grass sward grazed by suck-
ling cattle on a monthly basis. The sward state consists of a biomass (or-
ganic matter) including live BL(t) and standing dead BD(t) grass in (g.m−2).
The live grass increases via new growth and senesces to become dead grass.
Both live and dead grass are lost through grazing, with dead grass also
vanishing through decay. The management decision is represented by graz-
ing intensity u(t) expressed in livestock unit (LU.m−2). The grass dynamics
B(t) =

(
BL(t), BD(t)

)
controlled by grazing u(t) may be summarized in the

following compact form:

B(t + 1) = A
(
t, B(t), w(t)

)
B(t) − G

(
u(t), B(t)

)
. (8.42)

Here we comment the different terms.

• The matrix A reads:

A
(
t, B,w(t)

)
=

(
exp
(
− rS(t)

)
+ rG

(
t, B,w(t)

)
0

1 − exp
(
− rS(t)

)
exp
(
− rD(t)

)

)
.

• rS(t) and rD(t) stand respectively for the senescence and decay rate coef-
ficients which are time dependent.
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• The uncertain growth rate rG

(
t, B,w(t)

)
is the product of a potential

growth rate rP

(
t, w(t)

)
which varies according to the year and the relative

light interception by live mass based on Beer’s law:

rG

(
t, B,w(t)

)
= rP

(
t, w(t)

)1 − exp
(
− βμ(BL + BD)

)

BL + BD
,

with β a coefficient attenuation related to sun angle and μ a specific leaf
area.

• Stochastic uncertainty w(t) ∈ {−1, 1} is assumed to be a sequence of i.i.d.
random variables under probability P with common law P(w(t) = 1) =
p ∈]0, 1[ and P(w(t) = −1) = 1−p, giving a random potential growth rate
rP (t, w) as follows:

rP (t, w) = rP (t)

{
(1 + σ) with probability p ,

(1 − σ) with probability 1 − p .

Hence the potential growth fluctuates around its mean value rP (t) with a
dispersion level of σ.

• It is here assumed that cow grazing exhibits a preference for live biomass.
To meet this requirement, cattle first consume all available live grass GL

and then all available dead grass GD (in g.m−2) as follows
{GL(u,B) = min(qu,BL)

GD(u,B) = qu − GL(u,B) ,

with q the amount of grass required per month.

The second component of the model describes a community of three wader
species breeding in the grass sward. The life history of each species i = 1, 2, 3
is modeled by a life-cycle graph with two age-classes. The first class Ni1(t)
consists of sub-adults (first-year individuals) and the second class Ni2(t) of
adults (second-year or older). Only females are considered. Assuming a pre-
breeding census, the monthly dynamics of the species i corresponds to

Ni(t + 1) = Mi

(
t,Ni(t), h

(
B(t)

))
Ni(t) (8.43)

where h
(
B(t)

)
is the height of grass sward B(t). The matrix Mi is defined

by:

Mi

(
t,N, h

)
=

⎧
⎪⎪⎨

⎪⎪⎩

(
fi1(N,h) fi2(N,h)

si1 si2

)
if t = t∗i [modulo 12] ,

(
1 0
0 1

)
if t �= t∗i [modulo 12] .

(8.44)
We detail the parameters.
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• sij is the survival of class j in species i.
• t∗i is the month of chick rearing.
• fij(N,h) is the breeding success of individuals of class j in species i. Such

breeding success is the product of the proportion of breeding females γi,
clutch size fij , primary sex-ratio (i.e. the proportion of females at birth) υi

and chick survival. This survival depends on two factors that affect repro-
duction: grass height h as depicted by Fig. 8.3 and density of breeders Ni.
Specifically, we use a Beverton-Holt-like density-dependence. The breeding
success of individuals of class j in species i at time t is thus

fij(N,h) = γiυifij
si0(h)

1 + bi(Ni1 + Ni2)
(8.45)

where si0(h) is depicted by Fig. 8.3.
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Fig. 8.3. Chick survival rates si0(h) depending on sward height h (cm) for two
breeding wader species, lapwings (circle) and redhsanks (diamond).

• We rely on field data from the Marais Poitevin to determine a linear rela-
tionship between grass height and biomass:

h = h(B) = a1(BL + BD) + a0 . (8.46)

Biodiversity and production constraints

We first consider an ecological constraint that requires sward states suitable
for the chick rearing period of the different bird species. In this context, for
each bird species i, appropriate sward quality consists of both minimal h�

i(t)
and maximal h�

i(t) grass heights. Typically, a maximal survival for each species
can be required at the appropriate rearing period t∗i through the height cor-
ridor:

[h�
i(t

∗
i ), h

�
i(t

∗
i )] = arg max

h
si0(h) .

The combination of these thresholds for every species i yields a global height
corridor summarized by the following constraints:
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h�(t) = max
i

h�
i(t) ≤ h(t) ≤ min

i
h�

i(t) = h�(t) . (8.47)

Another important requirement we impose is related to the satisfaction of
cattle feeding requirements along the months. This production constraint as-
sumes that the demand of sward mass for grazing cannot exceed the available
biomass:

qu(t) ≤ BL(t) + BD(t) . (8.48)

Moreover the size of the herd is assumed to be set at u� which implies the
following control constraint:

u(t) ≤ u� . (8.49)

Cost-effectiveness

We focus on the economic grazing strategy that consists in minimizing the
expected discounted cost related to indoor cattle feeding:

min
u∈Uviab

1 (t0,B0)
Ew(·)

[
T∑

t=0

ρtc
(
u� − u(t)

)
]

,

where ρ ∈ [0, 1] stands for the discount factor and Uviab
1 (t0, B0) means that

control u(t) is a viable feedback in the robust sense. A linear relation is here
assumed for costs through the relation c(u�−u) with c standing for the indoor
feeding cost of one livestock unit.

Numerical results

Here dynamic programming and simulations are performed over a period of
T = 48 months with neiter present nor future preference ρ = 1. The whole
set of used variables and parameters detailed in [6] are expounded in Tab. 8.1
for birds (Lapwings, Redshanks, Godwit), in Tab. 8.2 for the sward and in
Tab. 8.3 for the agronomic and economic data. The environmental uncertainty
w(t) is characterized by a dispersion level σ = 5% of potential growth rate
rP (t, w(t)). Expected cost-effective grazing strategies u�(t, B) give grazing de-
cisions u�(t) = u�(t, B(t)) (Fig. 8.4b) which are characterized by dense grazing
intensity in spring followed by autumn grazing. Spring grazing is the major
determinant for sward height requirements (Fig. 8.4a). Autumn grazing is the
key to increasing the economic efficiency of this strategy. During all periods,
productive constraints related to feeding requirements are satisfied. The bird
population dynamics Ni(t) resulting from the sward requirements are viable
in the robust sense (Fig. 8.4c) despite the uncertain climatic scenarios.
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Table 8.1. Bird demographic parameters.

Lapwings Redshanks Godwit

Sub-adult survival si1 0.6 0.7 0.7

Adult survival si2 0.7 0.8 0.8

Adult clutch-size fi2 4.2 4.2 4.2

Sub-adult cluth size fi1 3.7 3.7 3.7

Proportion of breeding females γi 0.75 0.75 0.75

Sex ratio υi 0.5 0.5 0.5

Maximal chick survival si0 0.45 0.35 0.35

Upper desirable sward height h�
i(t) (cm)

14 if t∗1=May
+∞ otherwise

20 if t∗2=June
+∞ otherwise

+∞

Lower desirable sward height h�
i(t) (cm) 0

10 if t∗2=June
0 otherwise

0

Capacity charge parameter bi 0.0077 0.0077 0.0077

Table 8.2. Sward parameters

Senescence of green biomass rS(t) (0, 0, 0, 0.9, 0.9, 0.9, 1.35, 0.45, 0.45, 0.45, 0, 0)

Decay rate of death biomass rD (t) (0, 0, 0, 0, 0, 0, 0.52, 0.52, 1.05, 1.05, 0.52, 0.52)

Mean potential growth rate rP (t) (3, 3, 60, 330, 390, 150, 150, 150, 150, 150, 0, 0)

Probability p of high growth 0.5

Maximal deviation σ of high growth 0.1

Leaf area μ (m2g−1) 0.01

Attenuation β 0.5

Slope a1 and intercept a0 relation (0.07, 4.05)
height - biomass

Table 8.3. Agronomic and economic parameters

Livestock demand q (g.LU−1.month−1) 412.103

Feeding cost c (euros.LU−1.month−1) 30

Maximal livestock u� (LU.ha−1) 5
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Fig. 8.4. Expected cost-effectiveness paths over time over 4 years from viable ini-
tial sward states B0 = (475, 150) (in g.m−2) and bird states N10 = (0.02, 0.04),
N20 = (0.01, 0.05) and N30 = (0.01, 0.05) (abundances.ha−1). Optimal viable paths
are plotted including grazing u

�(t), sward height h�(t), and population densities
N�

i (t) for different climatic scenarios w(t). Every bird population (Lapwings, Red-
shanks, Godwit) is maintained at a sustainable level through robust grazing strate-
gies u

�(t, B) despite climatic uncertainties w(t).
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9

Sequential decision under imperfect
information

Up to now, it has been postulated that decision makers, regulating agencies
or planners know the whole state of the system at each time step, even in the
uncertain framework, and use this knowledge for appropriate feedback con-
trols. This situation refers to the case of perfect information. Unfortunately,
in many problems, only a partial component of the state is known. Likewise,
the observation of the state may be corrupted by noise. For instance, a fish-
ery only provides data on targeted species within an ecosystem whose global
state remains unknown. In a renewable resource management problem, data
on catch effort may be quite uncertain because of non compliance of agents
exploiting the natural stock. These situations correspond to imperfect infor-
mation problems [4, 14]. Of course, such a context may deeply alter the quality
of the decisions and change the global controlled dynamics and trajectories.
This context where information is at stake is of particular relevance for envi-
ronmental problems since it is related to notions such as value of information,
flexibility or learning effect and precautionary issues.

The chapter is organised as follows. The intertemporal decision problem
with imperfect observation is detailed in Sect. 9.1. The concept of value of
information is introduced in Sect. 9.2, and illustrated by precautionary catches
and climate change mitigation. The so-called precautionary effect is presented
in Sect. 9.5 and related to monotone variation of the value of information.

9.1 Intertemporal decision problem with imperfect
observation

Now, the state is not available in totality, being partially known and/or cor-
rupted by uncertainty. First, we must specify the dynamics/observation cou-
ple. Second, admissible feedbacks have to be redefined as now being a function
of observation only.
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9.1.1 Dynamics and observation

The control dynamical system of previous chapters is now assumed not to
provide the exact state, but only a partial and/or corrupted function of it. It
is described by

⎧
⎪⎪⎨

⎪⎪⎩

x(t + 1) = F
(
t, x(t), u(t), w(t)

)
, t = t0, . . . , T − 1

x(t0) = x0

y(t) = H
(
t, x(t), w(t)

)
, t = t0, . . . , T − 1

y(t0) = y0 ,

(9.1)

where again x(t) ∈ X = R
n is the state, u(t) ∈ U = R

p stands for the control
or decision and T ∈ N

∗ corresponds to the time horizon.
Vector y(t) ∈ Y = R

m represents the system’s observation or output at
time t which implies that the decisions strategies will now be feedbacks of the
outputs. The initial observation is y0 ∈ Y.

Compared to the perfect information case, w(t) is now an extended distur-
bance w(t) =

(
wX(t), wY(t)

)
evolving in some space WX ×WY, which includes

both uncertainties wX(t) ∈ WX = R
qX affecting the state via the dynamics F

and uncertainties wY(t) ∈ WY = R
qY affecting the observation via the output

function1 H in (9.1). The initial state x0 is also uncertain now, only partially
known through the relation y0 = H

(
t0, x0, w(t0)

)
. The set of possible scenar-

ios for the uncertainties is again represented by Ω ⊂ (WX × WY)T−t0 in the
sense that:

w(·) ∈ Ω ⊂ (WX × WY)T−t0 .

The observation function H : N × X × W → Y represents the system’s
output which may depend on state x and on uncertainty w. Here we find
important instances of output functions.

• The case of perfect information, treated in the previous chapters, refers to:

H(t, x, w) = (t, x) .

• Deterministic systems can be associated with the case:

H(t, x, w) = (t, x, w) .

• The case of observations corrupted by additive noise is depicted by the
situation where y(t) = x(t) + wX(t):

H(t, x, w) = H(t, x, wX, wY) = x + wX .

1 The output function H depends on time t, state x and disturbance w. It might
also depend on the control u. However, we shall not treat this case.
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• The case of learning may correspond to information on the state after a
given time t∗ < T , namely y(t) = h

(
x(t)
)

for t = t∗, . . . , T −1 and y(t) = 0
for t = t0, . . . , t

∗ − 1. The corresponding observation function is:

H(t, x, w) =

{
0 if t = t0, . . . , t

∗ − 1 ,

h(x) if t = t∗, . . . , T − 1 .

9.1.2 Decisions, solution map and admissible feedback strategies

As in the certain case, we may require state and decision constraints to be
satisfied: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

u(t) ∈ B
(
t, y(t)

)
⊂ U ,

x(t) ∈ A(t) ⊂ X ,

x(T ) ∈ A(T ) .

(9.2)

However, since the state x(t) is only partially known by the decision maker, the
question arises as to whether state constraints may be achieved by decisions
depending only upon partial and corrupted knowledge of the state. Notice
also that the control constraints are written as u(t) ∈ B

(
t, y(t)

)
and not

u(t) ∈ B
(
t, x(t)

)
.

Decision issues are more complicated than in the perfect observation case
in the sense that decisions u(t) = u

(
t, y(t)

)
now depend on the output y(t)

which stands for the information available to the decision maker. We thus now
define feedbacks as the set of all mappings from N × Y to U (and no longer
from N × X to U):

U = {u : N × Y → U} . (9.3)

Furthermore, given a feedback u ∈ U, a scenario w(·) ∈ Ω and an initial
state x0 at time t0 ∈ {0, . . . , T − 1}, the state map xH [t0, x0, u, w(·), w(·)],
control map uH [t0, x0, u, w(·), w(·)] and observation map yH [t0, x0, u, w(·)] are
now defined by xH [t0, x0, u, w(·), w(·)](t) = x(t), yH [t0, x0, u, w(·)] = y(t) and
uH [t0, x0, u, w(·), w(·)](t) = u

(
t, y(t)

)
respectively, where x(·) satisfies the dy-

namic

x(t + 1) = F

(
t, x(t), u

(
t, y(t)

)
, w(t)

)
, t = t0, . . . , T − 1 ,

with initial condition x(t0) = x0, and where

y(t) = H
(
t, x(t), w(t)

)
, t = t0, . . . , T − 1 .

In this context, we extend the notion of admissible feedbacks u ∈ Uad
H as

follows treating state constraints in the robust sense:
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U
ad
H (t0, y0) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u ∈ U

∣∣∣∣∣∣∣∣∣∣

for all scenario w(·) ∈ Ω
for all x0 ∈ X such that H(t0, x0, w0) = y0

x(t) = xH [t0, x0, u, w(·)](t) and
u(t) = uH [t0, x0, u, w(·)](t)
satisfy (9.2).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Notice how the initial state x0 has now been treated as an uncertain variable
as the scenario w(·).

9.1.3 Criterion to optimize

The criterion π is introduced as in Sect. 6.1. The usual case is the separable
or additive one:

π
(
x(·), u(·), w(·)

)
=

T−1∑

t=t0

L
(
t, x(t), u(t), w(t)

)
+ M

(
T, x(T ), w(T )

)
.

We shall focus on expected2 criterion. For this purpose, we assume that a
probability P is given on the space X×Ω (recall that the initial state x0 is an
uncertain variable), and that all measurability and integrability assumptions
are satisfied for the following expressions to hold true.

The maximal value criterion VH(t0, y0) of the criterion π with respect
to acceptable feedbacks depends on the observation function H and is now
assessed with respect to the initial observation3 y0

VH(t0, y0) := sup
u∈Uad

H
(t0,y0)

E(x0,w(·))

[
π
(
t0, x(·), u(·), w(·)

)
| H(t0, x0, w(t0)) = y0

]
,

(9.4)

with states x(t) = xF [t0, x0, u, w(·)](t) and controls u(t) = u
(
t, y(t)

)
the so-

lution maps introduced hereabove. The maximal value criterion is an expec-
tation with respect to probability P on X × Ω, and is conditional4 to those(
x0, w(t0)

)
compatible with the output y0 at time t0.

2 For the robust case, a parallel between probability and cost measures may be
found in [1, 3].

3 In the sequel, the reader will also see an evaluation VH(t, x) with respect to the
state depending on the context. See the following footnote 4 for the mathematical
proper dependence with respect to a new state.

4 The maximal value criterion could be assessed with respect to the conditional
law of the state x0 knowing the output y0. More generally, an appropriate new
state for indexing the maximal value criterion is the conditional law of the state
knowing past observations. We shall not develop this point in this monograph.
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9.2 Value of information

Consider two information structures Hβ and Hγ (observation functions) tak-
ing values from the same space Y. We define the value of information between
Hβ and Hγ as the difference between the two associated optimal criteria:

Δ(Hγ ,Hβ) := VHγ
(t0, y0) − VHβ

(t0, y0) . (9.5)

Whenever the value Δ(Hγ ,Hβ) is strictly positive, an information effect oc-
curs which means that the information structure Hγ improves the perfor-
mance5 through more adequate decisions compared to the information struc-
ture Hβ .

9.3 Precautionary catches

We consider the management of an animal population focusing on the trade-off
between conservation and invasion issues. According to [12], the population,
described by its biomass B(t), varies in time according to uncertain dynamics
g and catches h(t) as follows

B(t + 1) = g
(
R(t), B(t) − h(t)

)
,

where R(t) plays the role of uncertainty. Assuming a no density-dependent
and linear function g(R,B) = RB with r = R−1 the natural resource growth
rate, we obtain

B(t + 1) = R(t)B(t)
(
1 − e(t)

)
, (9.6)

where e(t) = h(t)/B(t) stands for the catch effort decision constrained by

e(t) ∈ B = [0, 1] ⊂ U = R .

Conservation intensity corresponds to 1− e(t). Productivity R(t) of the pop-
ulation is uncertain between two values 0 < R� ≤ R�:

R(t) ∈ S = {R�, R�} ⊂ W = R .

We assume that the sequence R(0), R(1). . . consists of independent and
identically distributed random variables, and that P(R(t) = R�) > 0 and
P(R(t) = R�) > 0.

We shall consider a two-periods problem: t0 = 0 and T = 2. It is postulated
that the policy goal is to constrain the biomass level of the population within
an ecological window, namely between minimal (survival, conservation) and

5 In the following examples, it may happen that the performance is measured by
cost minimization. In this case, Δ(Hβ , Hγ) = VHβ (t0, y0)−VHγ (t0, y0) is the value
of information between Hβ and Hγ .
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maximal (invasive threshold) safety values 0 < B� < B� at time horizon
T = 2:

B(2) ∈ A(2) = [B�, B�] ⊂ X = R . (9.7)

We focus on cost-effective policies which minimize6 the expected intertemporal
costs of conservation C

(
1 − e(t)

)
, where the cost function C(·) is assumed to

be linear
C(1 − e) = c × (1 − e) ,

and which ensure that the target (9.7) is achieved for all scenario.
First, it is only assumed information on state B(t) at each time t and we

aim at computing

VHβ
(0, B0) = inf

e(0)∈[0,1]
ER(0)

[
inf

e(1)∈[0,1]
ER(1)

[
C
(
1 − e(0)

)
+ ρC

(
1 − e(1)

)]]
,

where ρ ∈ [0, 1[ is a discount factor, and under the dynamics constraints (9.6)
and safety target (9.7). The observation function is thus:

Hβ(t, B,R) = B for t = 0, 1.

Now assume that learning of the population growth R(1) occurs at the second
period (t∗ = 1). The decision maker faces a more informative structure of
information:

Hγ(1, B,R) = (B,R) , Hγ(0, B,R) = B .

Focusing on cost-effective policies, we aim at computing:

VHγ
(0, B0) = inf

e(0)∈[0,1]
ER(0)

[
ER(1)

[
inf

e(1)∈[0,1]

[
C
(
1 − e(0)

)
+ ρC

(
1 − e(1)

)]]]
.

The difference between the expressions of VHβ
(0, B0) and VHγ

(0, B0) is the
following: without information one evaluates infe(1)∈[0,1] ER(1) in VHβ

(0, B0),
while the infimum can go deeper into the expectation in VHγ

(0, B0) which
reads ER(1) infe(1)∈[0,1] when information is available. Hence, we have:

VHβ
(0, M̃0) ≥ VHγ

(0, M̃0) .

A question that arises is whether a value of information occurs, i.e. VHβ
(0, B0) >

VHγ
(0, B0) (recall that we minimize costs and see the footnote 6). As exam-

ined in [6], the answer depends on the relative size of both the conservation
window and the growth uncertainty. The proof is exposed in the Appendix,
Sect. A.7.

6 This differs from the general utility maximization approach followed thus far in
the book.
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Result 9.1 An information effect occurs if the safety ratio B�/B� is strictly
smaller that the growth ratio R�/R�. In this case, the value of information
Δ(Hβ ,Hγ) is strictly positive for B0 ∈

[
B�

(R�)2
,+∞

[
since VHβ

(0, B0) = +∞
and VHγ

(0, B0) < +∞.
Moreover, for any B ≥ B�

(R�)2
, the optimal catch feedback (with learning) at

first period is given by

e�(0, B) = 1 −

√
ρB�

R̂2B
,

with the harmonic mean R̂−1 = ER[R−1].

This result shows that, when the uncertainty concerning the growth rate
of the resource is too large and when no information is revealed to the deci-
sion maker, no decisions exist which can ensure a safe final state in the robust
sense. However, the resolution of the uncertainty allows for cost-effective man-
agement with initial biomass higher than a precautionary threshold given by
B�/(R�)2. For invasive species management and conservation, this suggests
that a precautionary biomass lower bound makes sense. In the linear case, it
is worth pointing out that the “precautionary” decision (with learning) at first
period e�

(
0, B(0)

)
combines distinct population features as it involves both

viability biomass B� and certainty equivalent productivity R̂. Furthermore
note that this initial decision e�

(
0, B(0)

)
is not zero. Hence it is the opposite

of indecision before the arrival of the information.
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Fig. 9.1. Biomasses (B(0), B(1), B(2)) and cost-effective (with learning) efforts
(e(0), e(1)) obtained with the Scilab code 17. Parameters are R� = 0.9, R� = 2,
B� = 1, B� = 2 while ρ = 0.9.
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Scilab code 17.

//
// exec precaution.sce

///////////////////////////////////////////////////////

// Cost-effectiveness

// for renewable resource management with learning

///////////////////////////////////////////////////////

//

function [y]=f(B,w)

// linear population dynamics

y=w*B;

endfunction

function z=dyna(B,e,w)

// controlled uncertain dynamics

z=f(B*(1-e),w);

endfunction

function e=cost_effective(t,y)

// cost-effective effort

w_r=w_hat;

if t==1 then e=1-sqrt(rho*B_min./((w_r^2).*y(1)));end

if t==2 then e=1-B_min./(y(2).*y(1));end

e=max(0,e);

endfunction

function y=Obser(t,B,w)

// observation with learning

y=zeros(1,2);

if t==1 then y=[B,0];end

if t==2 then y=[B,w];end

endfunction

xset("window",1);xbasc();

xtitle("Population state",’time t’,’biomass B(t)’);

xset("window",2);xbasc();

xtitle("Catch effort",’time t’,’effort e(t)’);

xset("window",3);xbasc();

xtitle("Uncertainty",’time t’,’uncertainty w(t)’);

w_min=0.9; w_max=2;

// parameters dynamics

w_hat=(w_max-w_min)/(log(w_max)-log(w_min));

// Certainty equivalent of 1/w

Horizon=3;

// two period problem

B_min=1; B_max=B_min*w_max/(1.1*w_min);

// Safety Constraint

B_prec=B_min/(w_min^(Horizon-1));

// Precautionnary state

rho=1/1.05;

//discount factor

B_simu=10;

// Simulation number

for i=1:B_simu

// Simulations

B=B_prec+rand(1,Horizon)*(B_max-B_min);

// precautionnary initial conditions

// B(0)>= B_min/(w_min^(Horizon-1))

w=w_min+(w_max-w_min)*rand(1,Horizon-1);

// Random or growth along time

for t=1:Horizon-1

// precautionary Trajectory B(.) e(.)

y=Obser(t,B(t),w(t));

e(t)=cost_effective(t,y);

B(t+1)=dyna(B(t),e(t),w(t));

end,

rect1=[0,0,Horizon-1,(Horizon-1)*B_prec];

rect2=[0,0,Horizon-2,1];

rect3=[0,w_min,Horizon-2,w_max];

xB=[0:1:Horizon-1];xe=[0:1:Horizon-2];

//

xset("window",1);

plot2d(xB,[B’ B_min+zeros(1,Horizon)’ ...

B_max+zeros(1,Horizon)’],rect=rect1);

// drawing diamonds, crosses, etc. to identify the curves

// plot2d(xB,B’,style=1);

abcisse=linspace(0,Horizon-1,20);

plot2d(abcisse,[B_min*ones(abcisse)’ B_max*ones(abcisse)’],...

style=-[4,5]);

legends(["lower threshold";"upper threshold"],-[4,5],’lr’);

//

xset("window",2);plot2d(xe,e,rect=rect2);

xset("window",3);plot2d(xe,w,rect=rect3);

end

//

9.4 Information effect in climate change mitigation

We first present an example developed in [8] (see also [9]). Consider a version
of mitigation policies for carbon dioxyde emissions as exposed in Sect. 2.3.
Introducing the following difference between co2 concentrations

M̃(t) := M(t) − M−∞ (9.8)

the carbon cycle (2.20) may be written as

M̃(t + 1) = (1 − δ) M̃(t) + αEbau

(
1 − a(t)

)
, t = 0, 1 (9.9)

where we have assumed stationary emissions Ebau, with abatement rate a(t) ∈
[0, 1]. Here, only two periods are considered, say t = 0 being today, t = 1 for
25 years ahead and t = 2 for 50 years.
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The decision problem is one of cost minimization, inspired by [5]. Abate-
ment costs are C

(
a(0)

)
and C

(
a(1)

)
, with the convex functional form

C(a) = ca2 (9.10)

taken for simplicity. There is a final cost θD(M̃(2)) corresponding to damages
due to climate change, with here also a quadratic expression

D(M̃) = M̃2 (9.11)

and θ ≥ 0 an unknown parameter which measures the sensibility of damages
to the co2 concentration level. Two successive reduction decisions a(0) and
a(1) have to be taken in order to minimize7 the whole discounted cost

π(M̃(·), θ(·), a(·)) = C
(
a(0)

)
+ ρC

(
a(1)

)
+ θ(2)D

(
M̃(2)

)
.

We have introduced a new state variable θ(t) with state equation

θ(t + 1) = θ(t) , t = 0, 1 and θ(0) = θ0 . (9.12)

Thus θ(2) = θ(1) = θ0 is the value of the unknown parameter.
In the perfect information case, the whole state

(
M̃(t), θ(t)

)
is observed at

each time t. This corresponds to perfect knowledge of θ. We shall not consider
this case.

In absence of information about the parameter θ (now become component
of the state (M̃, θ)), only part M̃(t) of the whole state is observed. This
corresponds to an output function

Hβ(t, M̃ , θ) = M̃ , t = 0, 1 . (9.13)

Now, scientific information may be revealed at mid-term t∗ = 1, after the
first decision, but before the climatic damages. Such a case of learning about
the parameter θ is depicted by

Hγ(0, M̃ , θ) = (M̃, 0) and Hγ(1, M̃ , θ) = (M̃, θ) . (9.14)

Notice that no additional disturbance set W is needed, since no disturbances
affect the dynamics, the observations8 or the costs.

In the stochastic framework, a probability distribution P0 on θ is supposed
to be given, while M̃0 = M̃(0) is supposed to be known. In both cases of
information structure, the initial decision a(0) will only depend upon M̃(0).

In absence of information, a(1) will only depend upon M̃(1) and we obtain9

7 See the previous footnote 6 in this Chapter.
8 Noisy observations would require an uncertainty w and H(1, M̃ , θ, w) = (M̃, θ+w)

for instance.
9 The expression E

P0
θ0

denotes an expectation with respect to the probability distri-
bution P0 of the random variable θ0 = θ.
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VHβ (0, M̃0) = inf
0≤a(0)≤1

[
C
(
a(0)

)
+ inf

0≤a(1)≤1
E

P0
θ0

[
ρC
(
a(1)

)
+ θ(2)D(M̃(2))

]]
.

When scientific information may be revealed at mid-term, the value of θ
is revealed at t∗ = 1, so that a(1) will depend upon both M̃(1) and θ, giving
thus

VHγ (0, M̃0) = inf
0≤a(0)≤1

[
C
(
a(0)

)
+ E

P0
θ0

[
inf

0≤a(1)≤1

(
ρC
(
a(1)

)
+ θ(2)D(M̃(2))

)]]
.

The difference between the expressions of VHβ
(0, M̃0) and VHγ

(0, M̃0) is
the following: without information one evaluates inf0≤a(1)≤1 E

P0
θ0

in VHβ
(0, M̃0),

while the infimum can go deeper into the expectation in VHγ
(0, M̃0) which

reads E
P0
θ0

inf0≤a(1)≤1 when information is available. Hence, we have:

VHβ
(0, M̃0) ≥ VHγ

(0, M̃0) .

It turns out that an information effect generally holds for such a mitigation
problem. This suggests that costs of co2 mitigation are reduced when learning
of uncertainties occurs. The proof is given in the Appendix, Sect. A.7.

Result 9.2 Assume that the unknown parameter θ follows a probability dis-
tribution P0 having support not reduced to a single point and included in [θ�, θ�]
such that

0 ≤ θ� < θ� ≤ ρc

αEbau(1 − δ)
(
(1 − δ)M̃0 + αEbau

) . (9.15)

Then, there is an information effect in the sense that

Δ(Hβ ,Hγ) = VHβ
(0, M̃0) − VHγ

(0, M̃0) > 0 .

The question whether first optimal abatement a�(0) is also reduced with
such a learning mechanism is examined in Sect. 9.5.

9.5 Monotone variation of the value of information and
precautionary effect

In the theoretical literature on environmental irreversibility and uncertainty [2,
10, 11], an important issue is the so called “irreversibility effect”. This effect
states roughly that, when there is a source of irreversibility in the system we
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control, then “the learning effect is precautionary” in the following sense. By
learning effect we refer to how the first-period optimal decision is modified
when the decision maker considers that information will arrive in the future.
By precautionary, we mean that the first-period optimal decision is lower (less
emissions, less consumption, more cautious) with than without information
prospect. Such question is also treated in [7, 13]. We present here a general
framework and an analysis which focuses upon the value of information as a
function of any possible initial decision.

Consider a two-periods control system where, for simplicity, the dynamics
is not affected by uncertainty as in

⎧
⎪⎪⎨

⎪⎪⎩

x(t + 1) = F
(
t, x(t), u(t)

)
, t = 0, 1

x(t0) = x0

y(t) = H
(
t, x(t), w(t)

)
, t = 0, 1

y(t0) = y0 .

(9.16)

Suppose that the control variable u is scalar:

u ∈ B(0) ⊂ U = R .

Irreversibility may be captured by the property that the second decision u(1)
belongs to B(1, x(1)), where the set B(1, x) indeed depends upon state x.

The optimization problem is (without discount factor)

sup⎧
⎨

⎩
u(0) ∈ B(0)
u(1) ∈ B(1, x(1))

E

[
L
(
0, x(0), u(0), w(0)

)
+L
(
1, x(1), u(1), w(1)

)
+M
(
2, x(2), w(2)

)]
.

Suppose that the initial decision u(0) is taken without information, that
is H(0, x0, w0) = 0. For the second time, let us consider Hβ and Hγ , two
information structures (not necessarily comparable in the sense that one is
finer than the other).

Define the value of information at time t = 1 starting from state x1 by:

VHβ (1, x1) := sup
u(1)∈B(t,x1)

E

[
L
(
1, x1, u(1), w(1)

)
+ M

(
2, x(2), w(2)

)]
. (9.17)

The value of substituting information structure Hβ for Hγ at time t = 1
is the following function of the state x1 at time t = 1:

Δ(1)(Hγ ,Hβ)(x1) := VHγ
(1, x1) − VHβ

(1, x1) . (9.18)

Proposition 9.3. Assuming their existence and uniqueness, let u�
Hβ

(0) be
the optimal initial decision with information structure Hβ, and the same for
u�

Hγ
(0). If the function u0 ∈ B(0) �→ Δ(1)(Hγ ,Hβ)

(
F (0, x0, u0)

)
is decreasing,
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then precautionary effect holds in the sense that the initial optimal decisions
are ranked as follows:

u�
Hγ

(0) ≤ u�
Hβ

(0) .

The proof, exposed in [8] and given in the Appendix, Sect. A.7, relies on
the mathematical property that two functions fβ and fγ having the increasing
differences property (u �→ fβ(u) − fγ(u) is increasing) verify uγ ≤ uβ , where
uβ := arg maxu fβ(u) and uγ := arg maxu fγ(u) are supposed to exist and to
be unique.

9.6 Precautionary effect in climate change mitigation

Returning to the climate change mitigation problem exposed in Sect. 9.4, let
us see whether precautionary effect holds true.

Without information, we have:

Vβ(1, M̃1)= inf
0≤a(1)≤1

E
P0
θ0

[
ρC
(
a(1)

)
+θ(2)D

(
(1 − δ)M̃1 + αEbau

(
1 − a(1)

))]
.

Similarly, in the case of learning about damage intensity ϑ = θ0, we compute

Vγ(1, M̃1)=E
P0
θ0

[
inf

0≤a(1)≤1

(
ρC
(
a(1)

)
+θ(2)D

(
(1 − δ) M̃1+αEbau(1 − a(1))

))]
,

Under the assumptions of Result 9.2, it is proved in the Appendix, Sect. A.7,
that

Vγ(1, M̃1) − Vβ(1, M̃1) =
(

E
P0
θ0

[
θρc

ρc + θα2E2
bau

]
−

E
P0
θ0

[θ] ρc

ρc + E
P0
θ0

[θ]α2E2
bau

)(
(1 − δ)M̃1 + αEbau

)2
.

Thus, the value of substituting information structure Hβ for Hγ at time t = 1
(recall that we minimize costs and see the footnote 6 in this Chapter) is
decreasing with the state M̃1. Indeed, we have

d

dM̃1

(
VHγ

(1, M̃1) − VHβ
(1, M̃1)

)
=

(
E

P0
θ0

[
θρc

ρc+θα2E2
bau

]
−

E
P0
θ0

[θ] ρc

ρc+E
P0
θ0

[θ]α2E2
bau

)
(1 − δ)

(
(1 − δ)M̃1+αEbau

)
< 0.

This follows from the strict concavity of θ �→ θρc

ρc + θα2E2
bau

and from Jensen

inequality.
Now since the function a(0) �→ M̃(1) = (1 − δ) M̃0 + αEbau

(
1 − a(0)

)

is strictly decreasing, we can apply Proposition 9.3. This gives the following
Result.
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Result 9.4 Under the assumptions of Result 9.2, there is a precautionary
effect in the sense that the initial optimal abatement is lower with information
than without:

a�
Hγ

(0) ≤ a�
Hβ

(0) .
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A

Appendix. Mathematical Proofs

A.1 Mathematical proofs of Chap. 3

Proof of Theorem 3.3

Proof. This proof is inspired by [5]. Recall that the solution of equation x(t+
1) = Ax(t) is given by:

x(t) = Atx(0) .

Moreover, for any matrix A, there exists a nonsingular matrix P (possibly
complex) that transforms A into its Jordan form, that is

P−1AP = J = Diag[J1, J2, . . . , Jr] ,

where r is the number of distinct eigenvalues of A and Ji is the Jordan block
associated with the eigenvalue λi of A (spec(A) = {λ1, . . . , λr}). The Jordan
Block Ji takes the form of

Ji =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λi 1 0 . . . . . . 0
0 λi 1 0 . . . 0
...

. . .
...

...
. . . 0

...
. . . 1

0 . . . . . . 0 λi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

νi×νi

,

where νi = ν(λi) is the order of multiplicity of eigenvalue λi of A. Therefore

At = PJ tP−1 = PDiag[J t
1, J

t
2, . . . , J

t
r]P

−1
r∑

i=1

νi∑

k=1

tk−1λt
iRik ,

where the matrix with general term Rik depends upon P and the upper part
of the Ji. The state x(t) converges toward 0 if and only if limt→+∞ At = 0.
Equivalently, we have
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lim
t→+∞

tk−1λt
i = 0 , ∀i = 1, . . . , r ,

which holds true if and only if supi=1,...,r |λi| < 1.

Proof of Result 3.6

Proof. From (3.23a)-(3.23b), (Ne, Re) is an equilibrium if, and only if,

0 = Ni,e(fiRe − di) , i = 1, . . . , n ,

0 = Se − aRe −
n∑

i=1

wifiReNi,e .

Excluding the exceptional case where di/fi = dj/fj for at least one pair
i �= j, a non-zero equilibrium Ne has only one non-zero component. This is
the exclusion principle.

We thus have at most n possible equilibria. Let us focus on one of them,
characterized as follows with Se large enough. For the sake of simplicity, as-
sume temporarily that ie = n in the sense that:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Re =
dn

fn
,

Ni,e =

⎧
⎨

⎩

Se − Rea

Rewnfn
> 0 if i = n ,

0 if i �= n .

Putting x = (N,R), the Jacobian matrix of dynamic F given by (3.23a)-
(3.23b) at xe = (Ne, Re) is:

∂F

∂x
(Ne, Re)=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + Δt(f1Re − d1) 0 0 . . . 0 0

0 1 + Δt(f2Re − d2) 0 0 0

0 0
. . .

. . .
.
.
.

.

.

.

.

.

.
. .

.
. .

. 0

.

.

.

0 . . . . . . 0 1 ΔtNn,efn

−Δtw1f1Re −Δtw2f2Re . . . . . . −ΔtwnfnRe; 1 − Δt(a + wnfnNn,e)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues λi are solutions of Det(∂F
∂x (Ne, Re) − λI) = 0, that is:

0 =
n−1∏

i=1

(1 + Δt(fiRe − di) − λ)
∣∣∣∣

1 − λ ; ΔtNn,efn

−ΔtwnfnRe ; 1 − Δt(a + wnfnNn,e) − λ

∣∣∣∣ .

We can see at once that the n−1 first eigenvalues are λi = 1+Δt(fiRe −di).
The last two λn and λn+1 are solution of P (λ) = 0 where

P (λ) = (1 − λ)(1 − Δt(a + wnfnNn,e) − λ) + Δ2
t Nn,ef

2
nwnRe .
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For a small enough Δt, it appears that |λn| < 1 and |λn+1| < 1 because the
necessary and sufficient conditions P (1) > 0, P (−1) > 0 and P (0) < 1 (valid
for a second-order polynomial P ) of the so-called Jury test [4, 1] are satisfied.
Indeed,

P (1) = Δ2
t Nn,ef

2
nwnRe ,

P (−1) = 2
(
2 − Δt(a + wnfnNn,e)

)
+ Δ2

t Nn,ef
2
nwnRe ,

P (0) = 1 − Δt(a + wnfnNn,e) .

On the other hand, since Re = dn/fn and since we have excluded the
exceptional case where di/fi = dj/fj for at least one pair i �= j, then
fiRe − di �= 0 for i = 1,. . . , n − 1. If fiRe − di > 0 for at least one
i, then λi = 1 + Δt(fiRe − di) > 1 and the equilibrium xe = (Ne, Re)
is unstable by Theorem 3.4. If fiRe − di < 0 for i = 1,. . . , n − 1, then
0 < λi = 1+Δt(fiRe−di) < 1 for a small enough Δt > 0 and the equilibrium
xe = (Ne, Re) is asymptotically stable by Theorem 3.4.

Thus, among the possible equilibria, the only asymptotic stable equilib-
rium satisfies the conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Re = min
i=1,...,n

di

fi
=

die

fie

,

Ni,e =

⎧
⎨

⎩

Se − Rea

Rewiefie

> 0 if i = ie ,

0 if i �= ie .

A.2 Mathematical proofs of Chap. 4

Proof of Proposition 4.2.

Proof. The proof is by backward induction. At final time t = T , it is clear
that Viab(T ) = A(T ).

Assume that the relation (4.11) is true at time t + 1 ≤ T . From the very
definition of the viability kernel at time t, we can write
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Viab(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ∈ X

∣∣∣∣∣∣∣∣∣∣

∃ (u(t), . . . , u(T − 1)) and ∃ (x(t), . . . , x(T − 1), x(T ))
such that x(t) = x,

x(s + 1) = F
(
s, x(s), u(s)

)
, u(s) ∈ B

(
s, x(s)

)
,

∀s = t, . . . , T − 1
x(s) ∈ A(s), ∀s = t, . . . , T − 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ A(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ u ∈ B(t, x)
∃ (u(t + 1), . . . , u(T − 1)) and
∃ (x(t + 1), . . . , x(T − 1), x(T ))
such that x(t + 1) = F (t, x, u)

x(s + 1) = F
(
s, x(s), u(s)

)
, u(s) ∈ B

(
s, x(s)

)
,

∀s = t + 1, . . . , T − 1
x(s) ∈ A(s), ∀s = t + 1, . . . , T − 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
{

x ∈ A(t) | ∃ u ∈ B(t, x) , F (t, x, u) ∈ Viab(t + 1)
}

and we conclude.

Proof of Proposition 4.3.

Proof. The unicity of equation (4.13) is clear. For the sake of simplicity, let
us denote W (t, x) := ΨViab(t)(x).

At final time t = T , it is clear that Viab(T ) = A(T ). Expressed with
characteristic functions, we have the equivalent of the desired statement:

W (T, ·) = ΨViab(T )(·) = ΨA(T )(·) .

At time t ≤ T − 1, let us evaluate the right hand side

inf
u∈B(t,x)

{
ΨA(t)(x) + W

(
t + 1, F (t, x, u)

)}

of (4.13). Whenever x ∈ Viab(t), we know from Proposition 4.2 that there
exists u ∈ B(t, x) satisfying F (t, x, u) ∈ Viab(t + 1). Expressed with charac-
teristic functions, this is equivalent to claiming the existence of u ∈ B(t, x)
such that ΨViab(t+1)

(
F (t, x, u)

)
= 0. In other words, we have:

0 = min
u∈B(t,x)

{W
(
t + 1, F (t, x, u)

)
} .

Moreover, x ∈ A(t) yields ΨA(t)(x) = 0 and, consequently:

0 = min
u∈B(t,x)

{ΨA(t)(x) + W
(
t + 1, F (t, x, u)

)
} .

Thus the assertion holds true since W (t, x) = ΨViab(t)(x) = 0.

Whenever x /∈ Viab(t), we distinguish two cases.
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• If x /∈ A(t), obviously ΨA(t)(x) = +∞ and therefore:

W (t, x) = +∞ = inf
u∈B(t,x)

{ΨA(t)(x) + W
(
t + 1, F (t, x, u)

)
} .

• If x ∈ A(t)\Viab(t), we know from Proposition 4.2 that, for any u ∈ B(t, x),
we have F (t, x, u) /∈ Viab(t + 1). Consequently, we obtain

W (t, x) = +∞ = inf
u∈B(t,x)

{W
(
t + 1, F (t, x, u)

)
} ,

which concludes the proof.

Proof of Result 4.10.

Proof. We illustrate how dynamic programming equation (4.11) can be used
here. We have Viab(T ) = [B�, B�] and:

B ∈ Viab(T − 1) ⇐⇒ ∃e ∈ [e�, e�] , B� ≤ RB(1 − e) ≤ B� ,

⇐⇒ ∃e ∈ [e�, e�] ,
B�

R(1 − e)
≤ B ≤ B�

R(1 − e)
where we used the fact that 0 ≤ e ≤ 1 ,

⇒ B�

R(1 − e�)
≤ B ≤ B�

R(1 − e�)

where we used the fact that 0 ≤ e� ≤ e ≤ e� ≤ 1 .

Denoting B�(T ) = B�, B�(T−1) = B�(T )
R(1−e�)

, B�(T ) = B�, B�(T−1) = B�(T )
R(1−e�)

,
we have thus obtained that:

Viab(T − 1) ⊂ [B�(T − 1), B�(T − 1)] .

On the other hand, we claim that whenever B ∈ [B�(T − 1), B�(T − 1)], there
exists e ∈ [e�, e�] such that B�(T ) ≤ RB(1 − e) ≤ B�(T ), thus meaning that:

[B�(T − 1), B�(T − 1)] ⊂ Viab(T − 1) .

Indeed, since B > 0, we have:

B�(T ) ≤ RB(1 − e) ≤ B�(T ) ⇐⇒ 1 − B�(T )
RB

≤ e ≤ 1 − B�(T )
RB

.

Hence, our claim is proved as soon as

[1 − B�(T )
RB

, 1 − B�(T )
RB

] ∩ [e�, e�] �= ∅ ,

which occurs precisely when B ∈ [B�(T − 1), B�(T − 1)], because

B ≥ B�(T − 1) ⇒ 1 − B�(T )
RB

≥ 1 − B�(T )
RB�(T − 1)

= 1 − (1 − e�) = e�

and, in the same way, for the other bound. For the rest of the proof, we proceed
in the same way by induction.



242 A Appendix. Mathematical Proofs

Proof of Result 4.11.

Proof. To prove this result, we reason backward using the dynamic program-
ming method as in (4.13). First, the viability kernel at final time T is given
by:

Viab(T ) = [−∞,M �] × R+ .

Assume now that at time t + 1 the viability kernel is:

Viab(t + 1) = [−∞,M �(t + 1)] × R+ .

Using the Bellman equation (4.13), we deduce that:

Viab(t) =
{
(M, Q)| ∃a ∈ [0, 1], M + E(Q)(1 − a) − δ(M − M∞)

≤ M �(t + 1), Q(1 + g) ≥ 0
}

=

{
(M, Q)| Q ≥ 0, inf

a∈[0,1]

(
M + E(Q)(1 − a) − δ(M − M∞)

)
≤ M �(t + 1)

}

=
{

(M, Q)| Q ≥ 0, M − δ(M − M∞) ≤ M �(t + 1)
}

=

{
(M, Q)| Q ≥ 0, M ≤ M �(t + 1) − δM∞

1 − δ

}
.

From definition of M �(t) in (4.25), we deduce that

M �(t + 1) − δM∞
1 − δ

= M �(t) ,

and conclude that Viab(t) = [−∞,M �(t)] × R+.

Proof of Result 4.12.

The proof relies on the three Lemmas A.1, A.2 and A.3 that are exposed at
the end of the proof. The main proof is detailed below.

Proof. First assume that hlim > hmse. Suppose for a moment that Viab �= ∅
and pick any B0 ∈ Viab. From the very definition of the viability kernel, there
exists a path

(
B(·), h(·)

)
with B(0) = B0 that remains in Viab in the sense

that:
hlim ≤ h(t) ≤ B(t) .

Since hlim > hmse, Lemma A.1 yields Bpa = +∞. Then, combining Lem-
mas A.2 and A.3 in this case, we deduce the existence of a time T such
that B(T ) ≤ B�(T ) < hlim. Consequently, a contradiction occurs. Therefore
B0 /∈ Viab which ends this part of the proof.

Now we assume that hlim ≤ hmse. We use the three Lemmas A.1, A.2 and
A.3 to obtain the desired assertion. Following Thorem 4.8, we proceed in two
steps as follows.
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1. We first prove that the set V = [Bpa,+∞[ is a viability domain and a
subset of Viab.

2. Second, we prove that [hlim, Bpa[ ⊂ R+\Viab.

1. From Lemma A.1, we know that Bpa < +∞ and the set V makes sense.
Now, consider any B ∈ V , namely B ≥ Bpa. Pick the lowest admissible
catch hlim. Since g is increasing, we can write:

g(B − hlim, B) ≥ g(Bpa − h�) = Bpa .

Thus for any B ∈ V , there exists an admissible h such that g(B−h) ∈ V .
Consequently, V is a viability domain. Since Bpa > hlim we also have
V ⊂ [hlim,+∞[. Thus we conclude that V ⊂ Viab.

2. Now consider any B0 such that hlim ≤ B0 < Bpa and assume for a moment
that B0 ∈ Viab. There then exists a solution B(·) starting from B0 that
remains in Viab. Combining Lemmas A.3 and A.2, we deduce the existence
of a time T such that B(T ) ≤ B�(T ) < hlim. We derive a contradiction
with B0 ∈ Viab. Therefore B0 /∈ Viab which ends this part of the proof.

The set of viable catches corresponds to:

HViab(B) =
{

h ≥ hlim, g(B − h) ∈ Viab
}

.

Given any initial state B ∈ Viab, this set HViab(B) is not empty. Since dy-
namic g is increasing and Bpa = g(Bpa−hlim), any h∗(B) ∈ HViab(B) satisfies:

g
(
B − h∗(B)

)
≥ g(Bpa − hlim) = Bpa .

Since g is increasing, this means equivalently that B − h∗(B) ≥ Bpa − hlim or
the desired result:

hlim ≤ h∗(B) ≤ B − Bpa + hlim .

Lemma A.1 We have:

inf
{

B, B ≥ hlim, g(B − hlim) ≥ B

}
=

{
+∞ if hlim > hmse ,

Bpa < +∞ if hlim ≤ hmse .

Proof. (Lemma A.1) Assume that hlim ≤ hmse. Consider the set:

A = {B, B ≥ hlim, g(B − hlim) ≥ B} . (A.1)

This set A is not empty because Bmse belongs to it. Indeed, Bmse ≥ hmse ≥
hlim. Moreover since hlim ≤ hmse and g increasing, we can write that:

g(Bmse − hlim) ≥ g(Bmse − hmse) = Bmse .

Furthermore A is bounded from below by hlim which implies the existence of
the minimum for this set. Such a minimum lies on the lower boundary of the
set and satisfies the equality g(B − hlim) = B. Thus Bpa exists.
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Lemma A.2 Consider any B0 such that hlim ≤ B0 < Bpa and

M = max
B, hlim≤B≤B0

(
g(B − hlim) − B

)
.

Then M < 0.

Proof. (Lemma A.2) The maximum is achieved because g is continuous. As-
sume for a moment that M ≥ 0. There then exists B∗ ∈ [hlim, B0] such that:

g(B∗ − hlim) − B∗ ≥ 0 .

This situation implies that B∗ ∈ A where A is the set defined in (A.1). Thus:

B∗ ≥ min
B∈A

B = Bpa .

We derive a contradiction since B∗ ≤ B0 < Bpa.

Lemma A.3 Consider B�(t) the solution of B�(t+1) = g(B�(t)−hlim) start-
ing from B0 with hlim ≤ B0 < Bpa. Then, for any t ≥ 0, and any admissible
solution B(·), we have:

B(t) ≤ B�(t) ≤ B0 + tM ≤ B0 .

Proof. (Lemma A.3) Recursive proof. At time t = 0, we have:

B0 = B(0) ≤ B�(0) ≤ B0 + tM = B0 ≤ B0 .

Assume the relation holds true at time t. Then:

B�(t+1) = B�(t)+g(B�(t)−hlim)−B�(t) ≤ B�(t)+M ≤ B0+(t+1)M ≤ B0 .

Moreover, since g is increasing, for any admissible h(t) ≥ hlim and B(t) ≤
B�(t), we claim

B(t + 1) = g
(
B(t) − h(t)

)
≤ g(B�(t) − hlim) = B�(t + 1) ,

thus concluding the proof.

A.3 Mathematical proofs of Chap. 5

Proof of Proposition 5.4

Proof. In Proposition 4.4, let us recall (4.16)

T ad(t, x) =

⎧
⎨

⎩
(
x(·), u(·)

)
∣∣∣∣∣∣

x(t) = x,
x(t + 1) = F

(
t, x(t), u(t)

)
, t = t, . . . , T − 1

u(t) ∈ B
viab
(
t, x(t)

)
, t = t, . . . , T − 1

⎫
⎬

⎭ ,
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which gives

(
x(·), u(·)

)
∈ T ad(t, x) ⇐⇒

⎧
⎪⎨

⎪⎩

x(t) = x ∈ A(t)
u(t) ∈ B

viab(t, x)(
x(·), u(·)

)
∈ T ad

(
t + 1, F

(
t, x, u(t)

))
.

In the above expression, we may have T ad(t, x) = ∅, as well as B
viab(t, x) = ∅

(that is, x �∈ Viab(t)).
We have:

V (t, x) = sup(
x(·),u(·)

)
∈T ad(t,x)

( T−1∑

s=t

L
(
s, x(s), u(s)

)
+ M

(
T, x(T )

))

= sup⎧
⎨

⎩
x(t) = x ∈ A(t)
u(t) ∈ B(t, x)

sup
(

x(·),u(·)
)
∈T ad

(
t+1,F

(
t,x,u(t)

))

(
L
(
t, x(t), u(t)

)
+

T−1∑

s=t+1

L
(
s, x(s), u(s)

)
+ M

(
T, x(T )

))

= sup
u∈B(t,x),x∈A(t)

(
L(t, x, u)

+ sup(
x(·),u(·)

)
∈T ad

(
t+1,F (t,x,u)

) T−1∑
s=t+1

L
(
s, x(s), u(s)

)
+ M

(
T, x(T )

))

= sup
u∈B(t,x),x∈A(t)

(
L(t, x, u) + V

(
t + 1, F (t, x, u)

))
.

Then we distinguish the cases x ∈ Viab(t) and x 	∈ Viab(t).

Proof of Proposition 5.5

Just adapt the proof of Proposition 5.4 given above.

Proof of Proposition 5.20

Proof. We proceed similarly to the additive case. Notice that by changing T
into T + 1 and defining

L(T, x, u) = M
(
T, x
)

,

the minimax with final payoff may be interpreted as one without payoff on a
longer time horizon. We have1:

1 From the relation supz∈Z min
(
a, b(z)

)
= min

(
a, supz∈Z b(z)

)
.
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V (t, x) = sup(
x(·),u(·)

)
∈T ad(t,x)

min
s=t,...,T−1

(
L
(
s, x(s), u(s)

))

= sup⎧
⎨

⎩
x(t) = x ∈ A(t)
u(t) ∈ B(t, x)

sup(
x(·),u(·)

)
∈T ad

(
t+1,F

(
t,x,u(t)

))

min

(
L(t, x, u), min

s=t+1,...,T−1

(
L
(
s, x(s), u(s)

))
)

= sup
u∈B(t,x),x∈A(t)

min

(
L(t, x, u),

sup(
x(·),u(·)

)
∈T ad

(
t+1,F

(
t,x,u(t)

))mins=t+1,...,T−1

(
L
(
s, x(s), u(s)

))
)

= sup
u∈B(t,x),x∈A(t)

min

(
L(t, x, u), V

(
t + 1, F (t, x, u)

)
)

.

Then we distinguish the cases x ∈ Viab(t) and x �∈ Viab(t).

Proof of Proposition 5.13

Proof. This proof is by backward induction. At time T , according to equa-
tion (5.40) for the adjoint state, the equality q�(T − 1) = (∂M

∂x )′
(
T, x�(T )

)

holds true. On the other hand, we have V (T, x) = M(T, x), according to
induction (5.16). Thus:

q�(T − 1) = (
∂M

∂x
)′
(
T, x�(T )

)
= (

∂V

∂x
)′
(
T, x�(T )

)
.

By assumption, u�
(
t, x�(t)

)
in (5.20) is unique. Thus, we may apply the

Danskin theorem2 to (5.16) at point x = x�(t):

∂V

∂x

(
t, x�(t)

)
=

∂L

∂x

(
t, x�(t), u�

(
t, x�(t)

))

+
∂V

∂x

(
t + 1, F

(
t, x�(t), u�

(
t, x�(t)

))
)

∂F

∂x

(
t, x�(t), u�

(
t, x�(t)

))
.

Using the induction hypothesis

2 We recall here the Danskin theorem (1966) that expresses the derivative of the
superior hull of functions in a particular case [3].

Theorem A.4. Let V be a compact of R
m and f : R

n × V −→ R, jointly
continuous, C1 with respect to the first variable. Let us denote g : R

n →
R, x → maxy∈V f(x, y) and V̂ (x) = {y ∈ V, f(x, y) = g(x)}. Then, ∀h ∈
R

n, g has a directional derivative in the direction h given by Dg(x; h) =
maxy∈V̂ (x)

〈
∂f
∂x

(x, y), h
〉
.



A.3 Mathematical proofs of Chap. 5 247

q�(t) = (
∂V

∂x
)′
(
t + 1, x�(t + 1)

)
,

we can deduce that

∂V

∂x

(
t, x�(t)

)
=

∂L

∂x

(
t, x�(t), u�

(
t, x�(t)

))
+ q�(t)′

∂F

∂x

(
t, x�(t), u�

(
t, x�(t)

))
,

and thus

q�(t − 1) =
∂L

∂x

(
t, x�(t), u�

(
t, x�(t)

))
+ q�(t)′

∂F

∂x

(
t, x�(t), u�

(
t, x�(t)

))
.

Proof of Proposition 5.22

Proof. We proceed in two steps. First, consider the initial time t0 and the
initial state x0. Pick some L� such that x0 ∈ Viab(t0, L�). From the very
definition of the viability kernel, this implies the existence of a feasible path(
x̃(·), ũ(·)

)
such that,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̃(t + 1) = F
(
t, x̃(t), ũ(t)

)
, t = t0, . . . , T − 1

x̃(t0) = x0

x̃(t) ∈ A(t) , t = t0, . . . , T
ũ(t) ∈ B

(
t, x(t)

)
, t = t0, . . . , T − 1

L
(
t, x̃(t), ũ(t)

)
≥ L� , t = t0, . . . , T − 1 .

(A.2)

We thus have inft=t0,...,T−1 L
(
t, x̃(t), ũ(t)

)
≥ L� and we deduce that:

V (t0, x0) = sup(
x̃(·),ũ(·)

)
satisfying (A.2)

inf
t=t0,...,T−1

L
(
t, x̃(t), ũ(t)

)
≥ L� .

Since the inequality holds for any L�, this leads to:

V (t0, x0) ≥ sup{L� ∈ R | x0 ∈ Viab(t0, L�)} .

Conversely, from the definition of the value function V (t0, x0), for any
n ∈ N, there exists an admissible (satisfying (A.2)) and maximizing sequence(
xn(·), un(·)

)
n≥1

in the sense that:

V (t0, x0) ≥ inf
t=t0,...,T−1

L(t, xn(t), un(t)) ≥ V (t0, x0) −
1
n

.

This situation implies x0 ∈ Viab
(
t0, V (t0, x0) − 1

n

)
which leads to

V (t0, x0) −
1
n
≤ sup{L� ∈ R | x0 ∈ Viab(t0, L�)}

and finally:
V (t0, x0) ≤ sup{L� ∈ R | x0 ∈ Viab(t0, L�)} .

Hence the equality holds true.



248 A Appendix. Mathematical Proofs

A.4 Robust and stochastic dynamic programming
equations

We follow [2] for the introduction of the so-called fear operator, and for the
parallel treatment with the stochastic case.

Fear and expectation operators

Let R = R ∪ {−∞} ∪ {+∞}. Consider a general set Ω. The so-called fear
operator FΩ on Ω is defined on the set of functions A : Ω → R by:

FΩ [A] = Fω [A (ω)] := inf
ω∈Ω

A (ω) . (A.3)

When Ω = Ω1 × Ω2, we have the formula:

FΩ [A] = F(ω1,ω2) [A (ω1, ω2)] = Fω1 [Fω2 [A (ω1, ω2)]] . (A.4)

Consider a probability space Ω with σ-field F and probability P. The so-
called expectation operator E(Ω,F,P) is defined on the set of measurable and
integrable functions A : Ω → R by:

E(Ω,F,P)[A] = Eω [A (ω)] = EP [A (ω)] =
∫

Ω

A (ω) dP(ω) . (A.5)

When Ω = Ω1 × Ω2, F = F1 ⊗ F2 and P = P1 ⊗ P2, we have the Fubini
formula:

E(Ω,F,P)[A] = E(Ω1,F1,P1)

[
E(Ω2,F2,P2) [A (ω1, ω2)]

]
. (A.6)

Let G denote either F or E depending on the context. When Ω = Ω1×Ω2,
for an adequate function A, we have

GΩ [A] = G(ω1,ω2) [A (ω1, ω2)] = Gω1 [Gω2 [A (ω1, ω2)]] . (A.7)

Maximization problem

In this proof, we shall stress the dependency of the criterion upon the initial
time by considering a criterion π as a function π : N × X

T+1 × U
T × W

T+1.
The difference with the definition in Sect. 6.1 is purely notational.

Let us call a criterion π in the Whittle form [6] whenever it is given by a
backward induction of the form:
⎧
⎪⎪⎨

⎪⎪⎩

π
(
t, x(·), u(·), w(·)

)
= ψ
(
t, x(t), u(t), w(t), π

(
t + 1, x(·), u(·), w(·)

))
,

t = t0, . . . , T − 1 ,

π
(
T, x(·), u(·), w(·)

)
= M(T, x(T ), w(T )) .

(A.8)
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The function ψ : {t0, . . . , T − 1} × X × U × W × R → R is assumed to be
G-linear in its last argument in the sense that:

Gw(t),w(t+1),...,w(T ) [ψ (t, x, u, w(t), A (w(t + 1), . . . , w(T )))] =

Gw(t) [ψ (t, x, u, w, G [A (w(t + 1), . . . , w(T ))])] . (A.9)

We illustrate what means to be G-linear when G is either F or E.

• When G is the fear operator F, ψ is assumed to be continuously increasing
in its last argument3. This form is adapted to maximin dynamic program-
ming with ψ(t, x, u, w,C) = min(L(t, x, u, w), C) and includes both the
additive case for which ψ(t, x, u, w,C) = L(t, x, u, w) + C and the multi-
plicative case for which ψ(t, x, u, w,C) = L(t, x, u, w) × C.

• When G is the expectation operator E, ψ(t, x, u, w,C) = g(t, x, u, w) +
β(t, x, u, w)C. This form includes the additive and the multiplicative cases.

We consider the dynamics (6.1)

x(t + 1) = F
(
t, x(t), u(t), w(t)

)
, t = t0, . . . , T − 1 with x(t0) = x0,

(A.10)
the control constraints (6.5a)

u(t) ∈ B
(
t, x(t)

)
⊂ U, (A.11)

and no state constraints (A(t) = X for t = t0, . . . , T ). Recall the admissible
feedbacks set (6.12)

Uad = {u ∈ U | u(t, x) ∈ B(t, x) , ∀(t, x)} , (A.12)

and, for any admissible decision strategy u ∈ Uad, the evaluation (8.4) of the
criterion

πu
(
t0, x0, w(·)

)
:= π

(
t0, xF [t0, x0, u, w(·)](·), uF [t0, x0, u, w(·)](·), w(·)

)
(A.13)

where t0 ∈ {0, . . . , T − 1}, x0 ∈ X, w(·) ∈ Ω, with

Ω = S(t0) × · · · × S(T ) ,

and xF , uF are the solution maps of Sect. 6.2. Define

πu
G
(t0, x0) := Gw(·)

[
πu
(
t0, x0, w(·)

)]
, (A.14)

and consider the maximization problem:

π�
G
(t0, x0) := sup

u∈Uad

πu
G
(t0, x0) . (A.15)

3 ψ(t, x, u, w, C�) ≥ ψ(t, x, u, w, C�) whenever −∞ ≤ C� ≤ C� ≤ +∞, and Cn →
C ⇒ ψ(t, x, u, w, Cn) → ψ(t, x, u, w, C).
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Dynamic programming equation

Definition A.5. The value function V (t, x), associated with the Whittle cri-
terion (A.8), the dynamics (A.10), the control constraints (A.11) and no state
constraints (A(t) = X for t = t0, . . . , T ) is defined by the following backward
induction, where t runs from T − 1 down to t0:
⎧
⎪⎨

⎪⎩

V (T, x) := Gw∈S(T ) [M(T, x, w)] ,

V (t, x) := sup
u∈B(t,x)

Gw∈S(t)

[
ψ
(
t, x, u, w, V

(
t + 1, F (t, x, u, w

))]
.

(A.16)

Proposition A.6. Assume that A(t) = X for t = t0, . . . , T . For any time t
and state x, assume the existence of the following feedback decision:

u�(t, x) ∈ arg max
u∈B(t,x)

Gw∈S(t)

[
ψ
(
t, x, u, w, V

(
t + 1, F (t, x, u, w

))]
. (A.17)

Then u� ∈ Uad is an optimal feedback of the maximization problem (A.15).

Proof. Let u� ∈ Uad denote one of the optimal feedback strategies given
by dynamic programming (A.17). We perform a backward induction to
prove (A.15).

First, the equality at t = T holds true since:

πu
�

G
(T, x) = Gw(·)∈Ω

[
πu

�(
T, x, w(·)

)]
by (A.14)

= Gw(·)∈S(t0)×···×S(T )

[
πu

�(
T, x, w(·)

)]

= Gw∈S(T ) [M(T, x, w)] by (A.16)
= V (T, x) by (A.16).

Now, suppose that:

πu
�

G
(t + 1, x) = sup

u∈Uad

πu
G
(t + 1, x) = V (t + 1, x) . (A.18)

The very definition (A.16) of the value function V combined with (A.19) in
Lemma A.7 (proved below) implies that:

πu
�

G
(t, x)=Gw∈S(t)

[
ψ
(
t, x, w, u�(t, x), πu

�

G

(
t+1, F (t, x, u�(t, x), w)

))]
by (A.19)

=Gw∈S(t)

[
ψ
(
t, x, w, u�(t, x), V

(
t + 1, F (t, x, u�(t, x), w)

))]
by (A.18)

= max
u∈B(t,x)

Gw∈S(t)

[
ψ
(
t, x, u, w, V

(
t + 1, F (t, x, u, w)

))]
by (A.17)

=V (t, x) by (A.16).

Furthermore, for any u ∈ Uad, we obtain:
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πu
�

G
(t, x)=Gw∈S(t)

[
ψ
(
t, x, w, u�(t, x), πu

�

G

(
t+1, F (t, x, u�(t, x), w)

))]
by (A.19)

≥Gw∈S(t)

[
ψ
(
t, x, w, u(t, x), V

(
t + 1, F (t, x, u(t, x), w)

))]
by (A.18)

≥ max
u∈B(t,x)

Gw∈S(t)

[
ψ
(
t, x, u, w, V

(
t + 1, F (t, x, u, w)

))]

since u ∈ Uad hence u(t, x) ∈ B(t, x)
=V (t, x) by (A.16).

Consequently, the desired statement is obtained since

πu
�

G
(t, x) = V (t, x) ≤ sup

u∈Uad

πu
G
(t, x)

yields the equality:

V (t, x) = πu
�

G
(t, x) = max

u∈Uad
πu

G
(t, x) .

Lemma A.7. We have, for t = t0, . . . , T − 1 and u ∈ U:

⎧
⎨

⎩

πu
G(T, x) = Gw∈S(T ) [M(T, x, w)]

πu
G(t, x) = Gw∈S(t) [ψ (t, x, w, u(t, x), πu

G (t + 1, F (t, x, u(t, x), w)))] .
(A.19)

Proof. (Lemma A.7.) By (A.8) and (A.13), we have:

⎧
⎪⎨

⎪⎩

πu
(
T, x, w(·)

)
= M

(
T, x, w(T )

)

πu
(
t, x, w(·)

)
= ψ

(
t, x, w(t), u(t, x), πu

(
t + 1, F (t, x, u(t, x), w(t)), w(·)

))
.

(A.20)

Notice that, according to (6.13), πu
(
t, x, w(·)

)
depends in fact only upon(

w(t), . . . , w(T − 1)
)

insofar as w(·) is concerned:

πu
(
t, x, w(·)

)
= πu

(
t, x,

(
w(t), . . . , w(T − 1)

))
. (A.21)

We have:



252 A Appendix. Mathematical Proofs

πu
G
(t, x) = Gw(·)∈Ω [πu(t, x, w(·))] by (A.14)

= Gw(·)∈Ω [ψ (t, x, w(t), πu (t + 1, F (t, x, u(t, x), w(t)), w(·)))]
by (A.20)

= Gw(·)∈S(t)×···×S(T )

[
ψ
(
t, x, w(t), πu(t + 1, F (t, x, u(t, x), w(t)),

w(t + 1), . . . , w(T − 1))
)]

by (A.21)

= Gw(t)∈S(t)

[
G(w(t+1),...,w(T−1))∈S(t+1)×···×S(T )

[

ψ (t, x, w(t), πu (t+1, F (t, x, u(t, x), w(t)), w(t+1), . . . , w(T−1)))
]]

by (A.7)

= Gw∈S(t)

[
ψ
(
t, x, u(t, x), w, G(w(t+1),...,w(T−1))∈S(t+1)×···×S(T )

×
[
πu (t + 1, F (t, x, u(t, x), w(t + 1), . . . , w(T − 1)))

)]

by (A.9) because ψ is G -linear in its last argument

= Gw∈S(t)

[
ψ

(
t, x, w, u(t, x), Gw(·)∈S(t)×···×S(T )

×
[
πu

(
t + 1, F

(
t, x, u(t, x), w(·)

))])
]

by (A.21)

= Gw∈S(t)

[
ψ (t, x, w, u(t, x), πu

G
(t+1, F (t, x, u(t, x), w)))

]
by (A.14).

A.5 Mathematical proofs of Chap. 7

Proof of Proposition 7.5

Proof. Apply the generic Proposition A.6 with the fear operator G = FΩ and
with ψ(t, x, u, w,C) = 1A(t)(x) × C and:

π
(
t0, x(·), u(·), w(·)

)
=

T∏

t=t0

1A(t)(x(t)) .

Notice that:

Viab1(t) =

{
x0 ∈ X

∣∣∣∣∣sup
u(·)

inf
w(·)

π
(
t0, x(·), u(·), w(·)

)
= 1

}
.

Proof of Proposition 7.10

Proof. Apply the generic Proposition A.6 with the expectation operator G =
Ew(·) and with ψ(t, x, u, w,C) = 1A(t)(x) × C and:



A.6 Mathematical proofs of Chap. 8 253

π
(
t0, x(·), u(·), w(·)

)
=

T∏

t=t0

1A(t)(x(t)) .

Notice that:

Viabβ(t) =

{
x0 ∈ X

∣∣∣∣∣sup
u(·)

Ew(·)
[
π
(
t0, x(·), u(·), w(·)

)]
≥ β

}
.

A.6 Mathematical proofs of Chap. 8

Proof of Proposition 8.4

Proof. Apply the generic Proposition A.6 with the fear operator G = FΩ and
with ψ(t, x, u, w,C) = L(t, x, u, w) + C.

Proof of Proposition 8.6

Proof. Adapt the previous proof of Proposition 8.4 with

ψ̃(t, x, u, w,C) =
{

ψ(t, x, u, w,C) if x ∈ A(t)
−∞ if not,

and

M̃(T, x, w) =
{

M(t, x, w) if x ∈ A(T )
−∞ if not.

Under the additional technical assumptions infx,u,w L
(
t, x, u, w

)
> −∞ and

infx,w M
(
T, x, w

)
> −∞, we prove that

x ∈ Viab1(t) ⇐⇒ V (t, x) > −∞ .

Proof of Proposition 8.8

Proof. Apply the generic Proposition A.6 with the fear operator G = FΩ and
with ψ(t, x, u, w,C) = min(L(t, x, u, w), C).

Proof of Proposition 8.12

Proof. Apply the generic Proposition A.6 with the expectation operator G =
Ew(·) and with ψ(t, x, u, w,C) = L(t, x, u, w) + C.
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Proof of Proposition 8.14

Proof. Adapt the previous proof of Proposition 8.12 with

ψ̃(t, x, u, w,C) =
{

ψ(t, x, u, w,C) if x ∈ A(t)
−∞ if not,

and

M̃(T, x, w) =
{

M(t, x, w) if x ∈ A(T )
−∞ if not.

A.7 Mathematical proofs of Chap. 9

Proof of Result 9.1.

Proof. We reason backward using the dynamic programming method. We use
the notation ΨA(·) for the characteristic function of the domain A defined by:

ΨA(B) =
{

0 if B ∈ A

+∞ otherwise.

On the one hand, the Vβ value function at time 1 is given by:

Vβ(1, B) = inf
e∈[0,1]

ER(1)

[
ρC(1 − e) + ΨA(2) (R(1)(B(1 − e)))

]

= inf
e∈[0,1]

(
ρC(1 − e) + ER(1)

[
Ψ A(2)

R(1)
(B(1 − e))

])
.

Using the fact that resource productivity R(1) has a discrete support S =
{R�, R�}, and that P(R(1) = R�) > 0 and P(R(1) = R�) > 0, we write

ER

[
Ψ A(2)

R
(B(1−e))

]
= P(R(1) = R�)Ψ A(2)

R�

(B(1 − e))

+P(R(1) = R�)Ψ A(2)
R�

(B(1 − e))

= Ψ A(2)
R�

(B(1 − e)) + Ψ A(2)
R�

(B(1 − e))

= Ψ A(2)
R�

∩ A(2)
R�

(B(1 − e)) .

Thus

Vβ(1, B) = inf
e∈[0,1]

(
ρC(1 − e) + Ψ⋂

R∈S

A(2)
R

(B(1 − e))
)

.

The condition B�

B� < R�

R� yields that:

⋂

R∈S

A(2)
R

=
⋂

R∈{R�,R�}

[B�, B�]
R

= ∅ .
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Consequently, for any B, we obtain Ψ⋂
R∈S

A(2)
R

(B) = +∞ and thus

Vβ(1, B) = +∞ ,

which means that the target cannot be reached no matter what the state B
is at time 1. By dynamic programming and backward reasoning, we deduce
that Vβ(0, B) = +∞.

On the other hand, the Vγ value function with learning at time 1 is given
by:

Vγ(1, B,R) = inf
e∈[0,1]

(
ρC(1 − e) + ΨA(2) (RB(1 − e)))

)

= inf{
e ∈ [0, 1],
RB(1 − e) ∈ A(2)

ρC(1 − e) .

The constraint set {e ∈ [0, 1], RB(1 − e) ∈ A(2)} is not empty if and only if
B ≥ B�

R . In this case, since C(1− e) = c(1− e) decreases with e and is linear,
we can write

inf{
e ∈ [0, 1],
RB(1 − e) ∈ A(2)

ρC(1 − e) = ρC(1 − e�(1, R,B))

where e�(1, R,B) = 1 − B�

RB because A(2) = [B�, B�]. Thus:

Vγ(1, B,R) = ρC(1 − e�(1, R,B)) + Ψ
[ B�

R ,+∞[
(B) .

We now have to distinguish two cases to compute

ER(1) [Vγ(1, B,R(1))] = υ(1, B) .

• If B < B�

R� , then, since effort cost C(·) is positive:

υ(1, B) ≥ Ψ
[ B�

R�
,+∞[

(B) = +∞ .

• If B ≥ B�

R� , then, for any R ∈ S = {R�, R�}, we have B ≥ B�

R or equivalently
Ψ

[ B�

R ,+∞[
(B) = 0 and consequently υ(1, B) = ER [ρC(1 − e�(1, R,B))]. In

that case, using the certainty equivalent R̂−1 = E[R−1], we write υ(1, B) =
ρC(1 − e�(1, R̂, B)).

Therefore:
υ(1, B) = ρC(1 − e�(1, R̂, B)) + Ψ

[ B�

R�
,+∞[

(B) .

Using the dynamic programming method and similar reasonings, we also de-
rive the adaptive precautionary value function at initial time t = 0:
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Vγ(0, B) = inf
e∈[0,1]

ER(0)

[
C(1 − e) + υ (1, R(0)B(1 − e)))

]

= inf
e∈[0,1]

(
C(1 − e) + ER(0) [υ(1, R(0)B(1 − e))]

)

= inf
e∈[0,1]

(
C(1 − e) + ER(0)

[
ρC(1 − e�(1, R̂, R(0)B(1 − e)))

]

+ER(0)

[
Ψ

[ B�

R�
,+∞[

(R(0)B(1 − e))
])

= inf
e∈[0,1]

(
C(1−e)+ρC(1−e�(1, R̂, R̂B(1−e)))+Ψ

[ B�

R�2 ,+∞[
(B(1−e))

)
.

For any B ∈ [ B�

R�2 ,+∞[, we obtain:

Vγ(0, B) = inf⎧
⎨

⎩
e ∈ [0, 1],
1 − e ≥ B�

R�2B

(
C(1 − e) + ρC(1 − e�(1, R̂, R̂B(1 − e)))

)
.

Now we compute the optimal initial feedback e�(0, ·). We combine the first
order optimality conditions associated with Vγ(0, B) and the linear costs C(1−
e) = c(1 − e) to obtain:

0 = c

(
−1 +

ρB�

R̂2B(1 − e)2

)
.

The solution is given by e�(0, B) = 1−
√

ρB�

R̂2B
which turns out to be an interior

solution if 0 < ρ < 1 and B ∈ [ B�

R�2 ,+∞[.

Proof of Result 9.2.

Proof. To solve the overall optimization problem, we first compute the second
period cost minimization with and without information.

Without information, we have:

Vβ(1, M̃1) = inf
0≤a(1)≤1

E
P0
θ0

[
ρC
(
a(1)

)
+ θ(2)D

(
(1 − δ)M̃1 + αEbau

(
1 − a(1)

))]
.

Similarly, in the case of learning about damage intensity θ = θ0, we compute

Vγ(1, M̃1)=E
P0
θ0

[
inf

0≤a(1)≤1

(
ρC
(
a(1)

)
+θ(2)D

(
(1−δ) M̃1+αEbau(1−a(1))

))]
,

In both expressions, appears the quantity

f(a1, θ) = C(a1) + θD
(
(1 − δ)M̃1 + αEbau

(
1 − a1

))
,
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with
Vβ(1, M̃1) = inf

0≤a1≤1
f(a1, θ) ,

where θ = E
P0
θ0

[θ0], while

Vγ(1, M̃1) = E
P0
θ0

[
inf

0≤a1≤1
f(a1, θ)

]
.

Since C(a) = ca2 and D(M̃) = M̃2 are quadratic, so is a1 �→ f(a1, θ), and its
minimum is achieved at

a1(θ) =
θαEbau

(
(1 − δ)M̃1 + αEbau

)

ρc + θα2E2
bau

,

giving

inf
a1∈R

f(a1, θ) = f(a1(θ), θ) =
θρc

ρc + θα2E2
bau

(
(1 − δ)M̃1 + αEbau

)2
.

It can be proved that the function θ �→ a1(θ) is increasing. Consequently,
using assumption (9.15)

0 = a1(0) ≤ a1(θ�) ≤ a1(θ�) ≤ a1

(
ρc

αEbau(1 − δ)
(
(1 − δ)M̃0 + αEbau

)

)
.

By virtue of inequalities

M̃1 ≤ (1 − δ)M̃0 + αEbau(1 − a) ≤ (1 − δ)M̃0 + αEbau ,

we claim that

a1

(
ρc

αEbau(1 − δ)
(
(1 − δ)M̃0 + αEbau

)

)
≤ 1 .

Thus a1(θ) ∈ [0, 1] for any θ ∈ [θ�, θ�] and

inf
0≤a1≤1

f(a1, θ) =
θρc

ρc + θα2E2
bau

(
(1 − δ)M̃1 + αEbau

)2
, ∀θ ∈ [θ�, θ�] .

Thus, since the unknown parameter θ0 is supposed to follow a probability
distribution P0 having support within [θ�, θ�], we obtain that

Vβ(1, M̃1) =
E

P0
θ0

[θ] ρc

ρc + E
P0
θ0

[θ] α2E2
bau

(
(1 − δ)M̃1 + αEbau

)2
,

and that
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Vγ(1, M̃1) = E
P0
θ0

[
θρc

ρc + θα2E2
bau

] (
(1 − δ)M̃1 + αEbau

)2
.

Hence, we deduce that:

Vγ(1, M̃1) − Vβ(1, M̃1) =
(

E
P0
θ0

[
θρc

ρc + θα2E2
bau

]
−

E
P0
θ0

[θ] ρc

ρc + E
P0
θ0

[θ] α2E2
bau

)(
(1 − δ)M̃1 + αEbau

)2
< 0 .

This follows from the strict concavity of θ �→ θρc

ρc + θα2E2
bau

and from Jensen

inequality.

Proof of Proposition 9.3.

Proposition A.8. Let D ⊂ R, let g : D → R and h : D → R. We denote

Dg := arg max
u∈D

g(u) ⊂ D and Dg+h := arg max
u∈D

(g + h)(u) ⊂ D ,

and we assume that Dg �= ∅ and Dg+h �= ∅.

1. If h is strictly increasing on ] −∞, supDg], then

supDg ≤ inf Dg+h .

2. If h is increasing on ] −∞, supDg], then

supDg ≤ supDg+h .

3. If h is strictly decreasing on [inf Dg,+∞[, then

supDg+h ≤ inf Dg .

4. If h is decreasing on [inf Dg,+∞[, then

inf Dg+h ≤ inf Dg .

Proof. We prove the first statement, the others being minor variations.
Let u�

g ∈ Dg. For any u ∈ D, we have g(u) ≤ g(u�
g). For any u ∈]−∞, u�

g[,
we have h(u) < h(u�

g) if h is strictly increasing. Thus:

u ∈] −∞, u�
g[⇒ g(u) + h(u) < g(u�

g) + h(u�
g) .

We conclude that Dg+h ⊂ [u�
g,+∞[, so that:

Dg+h ⊂
⋂

u�
g∈Dg

[u�
g,+∞[ = [supDg,+∞[ ,

thus proving that supDg ≤ inf Dg+h.
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target, 41
technology, 36, 167
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approach, 8, 74
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transition equation, 39
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uncertain variable, 155
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utility
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value
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