

Download free eBooks at bookboon.com

2

David Haskins

C Programming in Linux

http://bookboon.com/

Download free eBooks at bookboon.com

3

C Programming in Linux
© 2009 David Haskins & Ventus Publishing ApS
ISBN 978-87-7681-472-4

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

4

Contents

Contents

 About the author, David Haskins

 Introduction

 Setting up your System

1. Chapter One: Hello World
1.1 Hello Program 1
1.2 Hello Program 2
1.3 Hello Program 3
1.4 Hello Program 4
1.5 Hello World conclusion

2. Data and Memory
2.1 Simple data types?
2.2 What is a string?
2.3 What can a string “mean”
2.4 Parsing a string
2.5 Data and Memory – conclusion

7

8

11

13
13
14
17
19
22

23
23
27
28
31
34

GET THERE FASTER

Oliver Wyman is a leading global management consulting firm that combines

deep industry knowledge with specialized expertise in strategy, operations, risk

management, organizational transformation, and leadership development. With

offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and

executive teams of Global 1000 companies.

An equal opportunity employer.

Some people know precisely where they want to go. Others seek the adventure of
discovering uncharted territory. Whatever you want your professional journey to be,
you’ll find what you’re looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

DISCOVER
OUR WORLD

http://bookboon.com/
http://bookboon.com/count/advert/d1fde9ab-937d-4cfe-a21e-9f5700d8f159

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

5

Contents

3. Functions, pointers and structures
3.1 Functions
3.2 Library Functions
3.3 A short library function reference
3.4 Data Structures
3.5 Functions, pointers and structures – conclusion

4. Logic, loops and fl ow control
4.1 Syntax of C Flow of control
4.2 Controlling what happens and in which order
4.3 Logic, loops and fl ow conclusion

5. Database handling with MySQL
5.1 On not reinventing the wheel
5.2 MySQL C API

6. Graphics with GD library
6.1 Generating binary content
6.2 Using TrueType Fonts
6.3 GD function reference

35
35
38
39
41
44

46
46
47
57

58
58
58

63
63
66
68

http://bookboon.com/
http://bookboon.com/count/advert/dba0fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

6

Contents

7. Apache C modules
7.1 Safer C web applications
7.2 Adding some functionality
7.3 Apache Modules Conclusion

8. The Ghost project
8.1 A PHP web site generator project

 Conclusion

73
73
76
77

78
78

84

Hellmann’s is one of Unilever’s oldest brands having been popular for over 100 years.
If you too share a passion for discovery and innovation we will give you the tools and
opportunities to provide you with a challenging career. Are you a great scientist who
would like to be at the forefront of scientific innovations and developments? Then you will
enjoy a career within Unilever Research & Development. For challenging job opportunities,
please visit www.unilever.com/rdjobs.

Could you think of 101 new things
to do with eggs and oil?

http://bookboon.com/
http://bookboon.com/count/advert/f6a0fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

C Programming in Linux

7

About the author, David Haskins

About the author, David Haskins

I was born in 1950 in Chelsea, London, but grew up in New Zealand returning to England in 1966. I
have worked in the computer industry since 1975 after a couple of years as a professional drummer.

My first experience was five years as a mainframe hardware engineer for Sperry Univac (now Unisys)
followed by 14 years as an analyst programmer with British Telecom in London.

While engaged in a complex task of converting large quantities of geographical data (map coordinate
references) I discovered the joys of C – its speed and efficiency. That was in 1985 and I have been a
fan of C ever since.

Since 1994 I have been a senior lecturer at the Faculty of Computing, Information Systems and
Mathematics at Kingston University, London. This is a mostly technical university that evolved from
a former polytechnic college with a long tradition of aeronautical engineering.

I am engaged mainly in teaching many computer languages and internet systems design to a large and
multicultural student body.

Most of my academic research and commercial consultancy has been involved with spatial systems
design and the large data volumes and necessary processing efficiency concerns has led me to
concentrate on C and C++. My teaching web site is at www.ubiubi.org which shows some of this
material.

A keen Open Systems enthusiast, I have exclusively centred all my teaching on the Linux platform
since 2002 and Kingston University is well advanced in delivering dual boot facilities for all its
student labs.

I am a keen swimmer and in 2009 completed the annual Lorne Pier-to-Pub race in Victoria, Australia
which is the largest open-sea swimming race in the world where 4,500 people of all ages swim each
January as the shark-spotting planes fly overhead.

When not teaching I am a keen vegetable gardener and amateur musician, playing in jazz groups and in
Scottish bagpipe bands. I play the drums, the great highland bagpipe, the clarinet, the guitar and the piano.

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

8

Introduction

Introduction

Why learn the C language?

Because the C language is like Latin - it is finite and has not changed for years. C is tight and spare,
and in the current economic climate we will need a host of young people who know C to keep existing
critical systems running.

C is built right into the core of Linux and Unix. The design idea behind Unix was to write an
operating system in C so all you needed to port it to a new architecture was a C compiler. Linux is
essentially the success story of a series of earlier attempts to make a PC version of Unix.

A knowledge of C is now and has been for years a pre-requisite for serious software professionals and
with the recent popularity and maturity of Open Systems this is even more true. The terseness and
perceived difficulty of C saw it being ousted from university teaching during the late 1990s in favour
of Java but there is a growing feeling amongst some teaching communities that Java really is not such
a good place to start beginners.

Students paradoxically arrive at colleges knowing less about computing than they did ten years ago as
programming is seen as too difficult for schools to teach. Meanwhile the body of knowledge expected
of a competent IT professional inexorably doubles every few years.

Java is commonly taught as a first language but can cause student confusion as it is in constant flux, is
very abstract and powerful, and has become too big with too many different ways to do the same
thing. It also is a bit “safe” and insulates students from scary experiences, like driving with air-bags
and listening to headphones so you take less care. The core activity of writing procedural code within
methods seems impenetrable to those who start from classes and objects.

So where do we start? A sensible place is “at the beginning” and C is as close as most of us will ever
need to go unless we are becoming hardware designers. Even for these students to start at C and go
further down into the machine is a good idea.

C is like having a very sharp knife which can be dangerous, but if you were learning to be a chef you
would need one and probably cut yourself discovering what it can do. Similarly C expects you to
know what you are doing, and if you don't it will not warn before it crashes.

A knowledge of C will give you deep knowledge of what is going on beneath the surface of higher-
level languages like Java. The syntax of C pretty-well guarantees you will easily understand other
languages that came afterwards like C++, Java, Javascript, and C#.

C gives you access to the heart of the machine and all its resources at a fine-grained bit-level.

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

9

Introduction

C has been described as like “driving a Porsche with no brakes” - and because it is fast as well this can
be exhilarating. C is is often the only option when speed and efficiency is crucial.

C has been called “dangerous” in that it allows low-level access to the machine but this scariness
is exactly what you need to understand as it gives you respect for the higher-level languages you
will use.

Many embedded miniaturised systems are all still written in C and the machine-to-machine world of
the invisible internet for monitoring and process control often uses C.

Hopefully this list of reasons will start you thinking that it might be a good reason to have a go at
this course.

References

The C Programming Language – Second Edition - Kernighan and Richie
ISBN 0-13-11-362-8

The GNU C Library Free Software Foundation C Manual
http://www.gnu.org/software/libc/manual/

MySQL C library
http://dev.mysql.com/doc/refman/5.1/en/index.html

The GD C library for graphics
http://www.libgd.org/Documentation

APXS - the APache eXtenSion tool
http://httpd.apache.org/docs/2.0/programs/apxs.html

Apache
http://httpd.apache.org/docs/2.2/developer/

“The Apache Modules Book” Nick Kew, Prentice Hall
ISBN 0-13-240967-4

A Source Code Zip File Bundle is supplied with this course which contains all the material described
and a Makefile.

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

10

Introduction

The teaching approach

I began university teaching later in life after a career programming in the telecommunications industry.

My concern has been to convey the sheer fun and creativity involved in getting computers to do what
you want them to do and always try to give useful, practical, working examples of the kinds of things
students commonly tell me they want to do.

Learning a language can be a dry, boring affair unless results are immediate and visible so I tend to use
the internet as the input-output channel right from the start.

I prefer teaching an approach to programming which is deliberately “simple” using old-fashioned
command-line tools and editors and stable, relatively unchanging components that are already built-in
to Unix and Linux distributions such as Suse, Ubuntu and Red Hat.

This is in response to the growing complexity of modern Integrated Development Environments
(IDEs) such as Developer Studio, Netbeans and Eclipse which give students an illusion that they know
what they are doing but generate obfuscation.

My aim is to get students confident and up to speed quickly without all the nightmare associated with
configuring complex tool chains. It is also essentially a license-free approach and runs on anything.

With this fundamental understanding about what is really going on you can progress on to use and
actually understand whatever tools you need in your career.

In order to give a sense of doing something real and useful and up to date, the focus is on developing
visible and effectively professional-quality web-server and client projects to put on-line, using:

Apache Web server and development libraries.
C language CGI programs (C programming using the “make” utility).
C language Apache modules.
MySQL server with C client library interfaces.
GD graphics library with C interfaces.
Incidental use of CSS, (X)HTML, XML, JavaScript, Ajax.

This course has been designed for and lab-tested by first and second year Computer Science Students
at Kingston University, London UK.

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

11

Setting up your System

Setting up your System

This book presumes you are using the Linux operating system with either the KDE3.5, KDE4, or
Gnome desktop. Specific instructions are included for Ubuntu (and Kubuntu) and OpenSuse 11.

If you are using the KDE desktop you will have Konqueror or Dolphin as the File Manager and kate or
kedit for an editor

In Gnome you would probably use Nautilus and gedit

You need to be familiar with the idea of doing some things as “super user” so that you have access
permission to copy or edit certain files. This is normally done by prefacing the Linux command with
“sudo” and providing the password, as in this example:

 “sudo cp hello3 /srv/www/cgi-bin/hello3”

which copies the file “hello3” to the area where the Apache server locates common gateway interface
or cgi programs.

In KDE “kdesu konqueror” would open a file manager as super user.

In Gnome “gnomesu nautilus” would open a file manager as super user.

You will need to have installed the following packages:

package Ubuntu Open Suse

C development libraries build-essential Base Development (pattern)

Apache web server apache2 Web and LAMP Server (pattern)

Apache development libraries apache2-prefork-dev apache2-devel

MySQL server, client and
development libraries

mysql-server libmysqlclient15-
dev

libmysqlclient-devel

GD and development libraries libgd2-xpm gd
gd-devel

Throughout the text you will see references to the folder cgi-bin. The location of this will vary
between Linux distributions. By default this folder used for web programs is:

 OpenSuse: /srv/www/cgi-bin
 Ubuntu: /usr/lib/cgi-bin

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

12

Setting up your System

To place programs there you need superuser rights, so it may be better to create a folder inside your
own home/*****/public_html/cgi-bin directory and change the ScriptAlias and associated Directory
references inside the Apache configuration files (OpenSuse) /etc/apache2/default-server.conf or
(Ubuntu) /etc/apache2/default-server.conf.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

C Programming in Linux

13

Chapter One: Hello World

1. Chapter One: Hello World

1.1 Hello Program 1

Using the File Manager (in KDE, Konqueror or in Gnome, Nautilus) create a new directory
somewhere in your home directory called something appropriate for all the examples in this book,
perhaps “Programming_In_Linux” without any spaces in the name.

Open an editor (in KDE, kate, or in Gnome, gedit) and type in (or copy from the supplied source code
zip bundle) the following:

Save the text as chapter1_1.c in the new folder you created in your home directory.

Open a terminal window and type: gcc -o hello chapter1_1.c
to compile the program into a form that can be executed.

Now type “ls -l” to list the details of all the files in this directory. You should see that chapter1_2.c is
there and a file called “hello” which is the compiled C program you have just written.

Now type: ./hello
to execute, or run the program and it should return the text:

 "Hello you are learning C!!".

If this worked, congratulations, you are now a programmer!

/***
C Programming in Linux (c) David Haskins 2008
chapter1_1.c
***/
#include <stdio.h>

int main(int argc, char *argv[])
{
 printf("Hello, you are learning C!!\n");
 return 0;
}

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

14

Chapter One: Hello World

1.2 Hello Program 2

Taking this example a stage further, examine the start of the program at the declaration of the entry
point function: int main(int argc, char *argv[])

In plain English this means:

Anatomy of the program:

The part inside /*** ***/ is a comment and is not compiled but just for information and
reference.

The “#include...” part tells the compiler which system libraries are needed and which header files
are being referenced by this program. In our case “printf” is used and this is defined in the
stdio.h header.

The “int main(int argc, char *argv[])” part is the start of the actual program. This is an entry-
point and most C programs have a main function.

The “int argc” is an argument to the function “main” which is an integer count of the number of
character string arguments passed in “char *argv[]” (a list of pointers to character strings) that
might be passed at the command line when we run it.

A pointer to some thing is a name given to a memory address for this kind of data type. We can
have a pointer to an integer: int *iptr, or a floating point number: float *fPtr. Any list of things is
described by [], and if we know exactly how big this list is we might declare it as [200]. In this
case we know that the second argument is a list of pointers to character strings.

Everything else in the curly brackets is the main function and in this case the entire program
expressed as lines.

Each line or statement end with a semi-colon “;”.

We have function calls like “printf(...)” which is a call to the standard input / output library
defined in the header file stdio.h.

At the end of the program “return 0” ends the program by returning a zero to the system.

Return values are often used to indicate the success or status should the program not run
correctly.

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

15

Chapter One: Hello World

The function called “main”, which returns an integer, takes two arguments, an integer called “argc”
which is a count of the number of command arguments then *argv[] which is a list or array of pointers
to strings which are the actual arguments typed in when you run the program from the command line.

Some Definitions:

function: a block of program code with a return data type, a name, some arguments of varying
data types separated by commas, enclosed in brackets, then the body of the function enclosed in
curly brackets, each statement ending with a semi-colon.
integer symbol int : a counting number like 0,1,2,3,4,5.
list, array symbol []: a sequence of things of the same kind in a numbered order.
pointer symbol * : a memory address locating the start of piece of data of a certain type.
string or char * : a pointer to a sequence of characters like 'c' ,'a', 't' making up “cat”. A
character string ends with s special character NULL or '\0' ascii value 0 or hex 00

http://bookboon.com/
http://bookboon.com/count/advert/a79f44a9-bd6e-444e-97c2-a02700c59d7f

Download free eBooks at bookboon.com

C Programming in Linux

16

Chapter One: Hello World

Let's rewrite the program to see what all this means before we start to panic.

Save the text as chapter1_2.c in the same folder.

Open a terminal window and type:
gcc -o hello2 chapter1_2.c to compile the program into a form that can be executed.

Now type ls -l to list the details of all the files in this directory. You should see that chapter1_2.c is
there and a file called hello2 which is the compiled C program you have just written.

Now type ./hello2 to execute, or run the program and it should return the text:

 Hello, you are still learning C!!
 Number of arguments to the main function:1
 argument number 0 is ./hello2

We can see that the name of the program itself is counted as a command line argument and that the
counting of things in the list or array of arguments starts at zero not at one.

Now type ./hello2 my name is David to execute the program and it should return the text:

 Hello, you are still learning C!!
 Number of arguments to the main function:5
 argument number 0 is ./hello2
 argument number 1 is my
 argument number 2 is name

/**
C Programming in Linux (c) David Haskins 2008
chapter1_2.c
***/
#include <stdio.h>

int main(int argc, char *argv[])
{
 int i=0;
 printf("Hello, you are learning C!!\n");
 printf("Number of arguments to the main function:%d\n", argc);
 for(i=0; i<argc; i++)
 {
 printf("argument number %d is %s\n", i, argv[i]);
 }
 return 0;
}

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

17

Chapter One: Hello World

 argument number 3 is is
 argument number 4 is David

So, what is happening here? It seems we are reading back each of the character strings (words) that
were typed in to run the program.

1.3 Hello Program 3

Lets get real and run this in a web page. Make the extra change adding the first output printf statement
“Content-type:text/plain\n\n” which tells our server what kind of MIME type is going to be
transmitted.

Compile using gcc -o hello3 chapter1_3.c and copy the compiled file hello3 to your
public_html/cgi-bin directory (or on your own machine as superuser copy the program to
/srv/www/cgi-bin (OpenSuse) or /usr/lib/cgi-bin (Ubuntu)).

Anatomy of the program:

printf("Hello, you are learning C!!\n");

the library function printf is called with one argument, a character string ending with a \n or new
line character.

printf("Number of arguments to the main function:%d\n", argc);

the library function printf is called with two arguments, a character string ending with a \n that
includes %d as a placeholder for the second argument argc which is an int.

for(i=0; i<argc; i++)

is a “for loop” in which we do something repeatedly using a counter integer i which is
incremented (by the expression i++) at each iteration or looping which continues while i stays
less than the value of argc

printf("argument number %d is %s\n", i, argv[i]);

the library function printf is called with three arguments, a character string ending with a \n that
includes %d as a placeholder for the second argument argc which is an int, and %s which is a
placeholder for the third argument argv[i], the i-th member of the array of pointers to character
strings called argv[].

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

18

Chapter One: Hello World

Open a web browser and type in the URL http://localhost/cgi-bin/hello3?david+haskins and you
should see that web content can be generated by a C program.

/***
* C Programming in Linux (c) David Haskins 2008
* chapter1_3.c *
***/
#include <stdio.h>

int main(int argc, char *argv[])
{
 int i=0;

 printf("Content-type:text/plain\n\n");
 printf("Hello, you are still learning C!!\n");
 printf("Number of arguments to the main function:%d\n", argc);
 for(i=0;i<argc;i++)
 {
 printf("argument number %d is %s\n", i, argv[i]);
 }
 return 0;
}

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

19

Chapter One: Hello World

1.4 Hello Program 4

A seldom documented feature of the function signature for “main” is that it can take three arguments
and the last one we will now look at is char *env[] which is also a list of pointers to strings, but in this
case these are the system environment variables available to the program at the time it is run

Compile with gcc -o hello4 chapter1_4.c and as superuser copy the program to /srv/www/cgi-bin
(OpenSuse) or /usr/lib/cgi-bin (Ubuntu). You can run this from the terminal where you compiled it
with ./hello4 and you will see a long list of environment variables. In the browser when you enter
http://localhost/cgi-bin/hello4 you will a different set altogether.

/***
* C Programming in Linux (c) David Haskins 2008
* chapter1_4.c *
***/
#include <stdio.h>

int main(int argc, char *argv[], char *env[])
{
 int i=0;

 printf("Content-type:text/plain\n\n");
 printf("Hello, you are still learning C!!\n");
 printf("Number of arguments to the main function:%d\n", argc);
 for(i=0;i<argc;i++)
 {
 printf("argument number %d is %s\n", i, argv[i]);
 }
 i = 0;
 printf("Environment variables:\n");
 while(env[i])
 {
 printf("env[%d] = %s\n", i, env[i]);
 i++;
 }
 return 0;
}

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

20

Chapter One: Hello World

Wikipedia defines environment variables like this:

“In all Unix and Unix-like systems, each process has its own private set of environment
variables. By default, when a process is created it inherits a duplicate environment of its parent
process, except for explicit changes made by the parent when it creates the child........ All Unix
operating system flavors as well as DOS and Microsoft Windows have environment variables;
however, they do not all use the same variable names. Running programs can access the values of
environment variables for configuration purposes. Examples of environment variables include......
PATH, HOME... “

��������	
�����
������
��������
���������
�����������
��������
�����
��
���������������������������

������
������

������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
������������
��

��������	
��
����

��	��������	
��
����

���������
���

����������

����������
�����
��

���������

 The Wake
the only emission we want to leave behind

http://bookboon.com/
http://bookboon.com/count/advert/4ba133ea-6153-46a2-ad8f-9fef00f222a0

Download free eBooks at bookboon.com

C Programming in Linux

21

Chapter One: Hello World

We will soon find out that QUERY_STRING is an important environment variable for us in
communicating with our program and in this case we see it has a value of “david+haskins” or
everything after the “?” in the URL we typed. It is a valid way to send information to a common
gateway interface (CGI) program like hello4 but we should restrict this to just one string. In our case
we have used a “+” to join up two strings. If we typed: “david haskins” the browser would translate
this so we would see:
 QUERY_STRING=david%20haskins

We will learn later how complex sets of input values can be transmitted to our programs.

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

22

Chapter One: Hello World

1.5 Hello World conclusion

We have seen that a simple program with a tiny bit of input and some output is in fact extremely
powerful in that it reveals and exposes the inner workings of a great deal of our computer.

Even though we have just begun we have encountered many of the key concepts we will use over and
over again:

functions and arguments
Numbers (integers) and character strings as data types
Lists or arrays
Loops using “for” and “while”

We have made a deliberate big leap from writing a program that runs simply in a “terminal screen” to
one which will be visible over the internet in a browser.

The reason for this is that the process of writing programs that interact with users in windowing
systems like Windows, Gnome or KDE is extremely complex and not something you will be asked
very often to do .

The internet browser has become the de facto interface mode for almost everything we do these days
so we might as well understand using it from the start.

In all the successive chapters we will follow this model: starting off with some basic technique then
applying it to a web-based system.

In practice there is not much real-world C common gateway interface programming going on but there
is a great deal of C and C++ based code running as Apache modules and Microsoft IIS ISAPI Dlls.
Perhaps not many know that much of Ebay is written in C / C++.

Why? It is as fast as things get and their business with the bargain snipers in the a global real-time
market needs this lightning fast core, so there is no other way to get that performance.

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

23

Data and Memory

2. Data and Memory

2.1 Simple data types?

When we write programs we have to make decisions or assertions about the nature of the world as we
declare and describe variables to represent the kinds of things we want to include in our information
processing.

This process is deeply philosophical; we make ontological assertions that this or that thing exists and
we make epistemological assertions when we select particular data types or collections of data types
to use to describe the attributes of these things. Heavy stuff with a great responsibility and not to be
lightly undertaken.

As a practical example we might declare something that looks like the beginnings of a database record
for geography.

GOT-THE-ENERGY-TO-LEAD.COM
We believe that energy suppliers should be renewable, too. We are therefore looking for enthusiastic
new colleagues with plenty of ideas who want to join RWE in changing the world. Visit us online to find
out what we are offering and how we are working together to ensure the energy of the future.

http://bookboon.com/
http://bookboon.com/count/advert/26a3fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

C Programming in Linux

24

Data and Memory

Here we are doing the following:

- asserting that all the character strings we will ever encounter in this application will be 255
limited to characters so we define this with a preprocessor statement – these start with #.

- assert that towns are associated with counties, and counties are associated with countries some
hierarchical manner.

- assert that the population is counted in whole numbers – no half-people.
- assert the location is to be recorded in a particular variant (WGS84) of the convention of

describing spots on the surface of the world in latitude and longitude that uses a decimal
fraction for degrees, minutes, and seconds.

Each of these statements allocates memory within the scope of the function in which it is declared.
Each data declaration will occupy an amount of memory in bytes and give that bit of memory a
label which is the variable name. Each data type has a specified size and the sizeof() library function
will return this as an integer. In this case 3 x 256 characters, one integer, and two floats. The exact
size is machine dependent but probably it is 780 bytes.

/**
C Programming in Linux (c) David Haskins 2008
chapter2_1.c
***/
#include <stdio.h>
#DEFINE STRINGSIZE 256

int main(int argc, char *argv[])
{
 char town[STRINGSIZE] = "Guildford";
 char county[STRINGSIZE] = "Surrey";
 char country[STRINGSIZE] = "Great Britain";
 int population = 66773;
 float latitude = 51.238599;
 float longitude = -0.566257;
 printf("Town name: %s population:%d\n",town,population);
 printf("County: %s\n",county);
 printf("Country: %s\n",country);
 printf("Location latitude: %f longitude: %f\n",latitude,longitude);
 printf("char = %d byte int = %d bytes float = %d bytes\n",
 sizeof(char),sizeof(int),sizeof(float));
 printf("memory used:%d bytes\n", ((STRINGSIZE * 3) * sizeof(char)) + sizeof(int) + (2
* sizeof(float)));
 return 0;
}

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

25

Data and Memory

Outside the function in which the data has been declared this data is inaccessible – this is the scope of
declaration. If we had declared outside the main() function it would be global in scope and other
functions could access it. C lets you do this kind of dangerous stuff if you want to, so be careful.

Generally we keep a close eye on the scope of data, and pass either read-only copies, or labelled
memory addresses to our data to parts of the programs that might need to do work on it and even
change it. These labelled memory addresses are called pointers.

We are using for output the printf family of library functions (sprintf for creating strings, fprintf for
writing to files etc) which all use a common format string argument to specify how the data is to be
represented.

- %c character
- %s string
- %d integer
- %f floating point number etc.

The remaining series of variables in the arguments are placed in sequence into the format string as
specified.

In C it is a good idea to intialise any data you declare as the contents of the memory allocated for
them is not cleared but may contain any old rubbish.

Compile with: gcc -o data1 chapter2_1.c -lc
Output of the program when called with : ./data1

 Town name: Guildford population:66773
 County: Surrey
 Country: Great Britain
 Location latitude: 51.238598 longitude: -0.566257
 char = 1 byte int = 4 bytes float = 4 bytes
 memory used:780 bytes

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

26

Data and Memory

A note on make a helpful utility

By now you are probably getting bored typing in all these compiler commands and for this reason
there is a utility called make that runs on a file called Makefile in the folder where your code is
stored. Here is the Makefile for the examples so far:

#Makefile

all:chap1 chap2

chap1: 1-1 1-2 1-3 1-4

1-1:

 gcc -o hello1 chapter1_1.c -lc

1-2:

 gcc -o hello2 chapter1_2.c -lc

1-3:

 gcc -o hello3 chapter1_3.c -lc

1-4:

 gcc -o hello4 chapter1_4.c -lc

chap2: 2-1 2-2

2-1:

 gcc -o data1 chapter2_1.c -lc

2-2:

 gcc -o data2 chapter2_2.c -lc

clean:

 rm hello* data* *~

to compile everything type make all

to compile target 2-1 for chapter2_1.c type make 2-1

the tab after each make target is vital to the syntax of make

In the code bundle there is a Makefile for the whole book.

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

27

Data and Memory

2.2 What is a string?

Some programming languages like Java and C++ have a string data type that hides some of the
complexity underneath what might seem a simple thing.

An essential attribute of a character string is that it is a series of individual character elements of
indeterminate length.

Most of the individual characters we can type into a keyboard are represented by simple numerical
ASCII codes and the C data type char is used to store character data.

Strings are stored as arrays of characters ending with a NULL so an array must be large enough to
hold the sequence of characters plus one. Remember array members are always counted from zero.

In this example we can see 5 individual characters declared and initialised with values, and an empty
character array set to “”.

©
 U

B
S

20
10

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

www.ubs.com/graduates

Looking for a career where your ideas could really make a difference? UBS’s

Graduate Programme and internships are a chance for you to experience

for yourself what it’s like to be part of a global team that rewards your input

and believes in succeeding together.

Wherever you are in your academic career, make your future a part of ours

by visiting www.ubs.com/graduates.

 You’re full of energy
and ideas. And that’s
 just what we are looking for.

http://bookboon.com/
http://bookboon.com/count/advert/52a1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

C Programming in Linux

28

Data and Memory

Take care to notice the difference between single quote marks ' used around characters and double
quote marks “ used around character strings.

Compile with: gcc -o data2 chapter2_2.c -lc
Output of the program when called with : ./data2

 david

2.3 What can a string “mean”

Anything at all – name given to a variable and its meaning or its use is entirely in the mind of the
beholder. Try this

/***
* C Programming in Linux (c) David Haskins 2008
* chapter2_2.c *
***/
#include <stdio.h>

int main(int argc, char *argv[], char *env[])
{
 char c1 = 'd';
 char c2 = 'a';
 char c3 = 'v';
 char c4 = 'i';
 char c5 = 'd';
 char name[6] = "";

 sprintf(name,"%c%c%c%c%c",c1,c2,c3,c4,c5);
 printf("%s\n",name);
 return 0;
}

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

29

Data and Memory

Compile with: gcc -o data3 chapter2_3.c -lc
As superuser copy the program to your public_html/cgi-bin directory (or /srv/www/cgi-bin
(OpenSuse) or /usr/lib/cgi-bin (Ubuntu)).

In the browser enter: http://localhost/cgi-bin/data3?red
what you should see is this:

/***
* C Programming in Linux (c) David Haskins 2008
* chapter2_3.c *
***/
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[], char *env[])
{
 printf("Content-type:text/html\n\n");
 printf("<html>\n");
 printf("<body bgcolor=\"%s\">\n",argv[1]);
 printf("</body>\n");
 printf("</html>\n");
 return 0;
}

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

30

Data and Memory

Or if send a parameter of anything at all you will get surprising results:

What we are doing here is using the string parameter argv[1] as a background colour code inside an
HTML body tag. We change the Content-type specification to text/html and miraculously now our
program is generating HTML content. A language being expressed inside another language. Web
browsers understand a limited set of colour terms and colours can be also defined hexadecimal codes
such as #FFFFFF (white) #FF0000 (red) #00FF00 (green) #0000FF (blue).

This fun exercise is not just a lightweight trick, the idea that one program can generate another in
another language is very powerful and behind the whole power of the internet. When we generate
HTML (or XML or anything else) from a common gateway interface program like this we are
creating dynamic content that can be linked to live, changing data rather than static pre-edited web
pages. In practice most web sites have a mix of dynamic and static content, but here we see just how
this is done at a very simple level.

Throughout this book we will use the browser as the preferred interface to our programs hence we will
be generating HTML and binary image stream web content purely as a means to make immediate the
power of our programs. Writing code that you peer at in a terminal screen is not too impressive, and
writing window-type applications is not nearly so straightforward.

In practice most of the software you may be asked to write will be running on the web so we might as
well start with this idea straight away. Most web applications involve multiple languages too such as
CSS, (X)HTML, XML, JavaScript, PHP, JAVA, JSP, ASP, .NET, SQL. If this sounds frightening, don't
panic. A knowledge of C will show you that many of these languages, which all perform different
functions, have a basis of C in their syntax.

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

31

Data and Memory

2.4 Parsing a string

The work involved in extracting meaning or valuable information from some kind of input string is
called “parsing”. We will now build another fun internet-callable CGI program to demonstrate the
power in our hands.

CAREERKICKSTART
An app to keep you in the know

Whether you’re a graduate, school leaver or student, it’s a difficult time to start your career.
So here at RBS, we’re providing a helping hand with our new Facebook app. Bringing together
the most relevant and useful careers information, we’ve created a one-stop shop designed
to help you get on the career ladder – whatever your level of education, degree subject or
work experience.

And it’s not just finance-focused either. That’s because it’s not about us. It’s about you.
So download the app and you’ll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.

http://bookboon.com/
http://bookboon.com/count/advert/d2b53358-417f-4c5a-8fac-a04600d403fd

Download free eBooks at bookboon.com

C Programming in Linux

32

Data and Memory

Compile with: gcc -o data4 chapter2_4.c -lc
As superuser copy the program to /srv/www/cgi-bin (OpenSuse) or /usr/lib/cgi-bin (Ubuntu).

/***
* C Programming in Linux (c) David Haskins 2008
* chapter2_4.c *
***/
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[], char *env[])
{
 char *token = NULL;
 char colour1[256] = "";
 char colour2[256] = "";
 int wide = 0;
 int high = 0;
 int columns = 0;
 int rows = 0;

 token = (char *) strtok(argv[1],":");
 strcpy(colour1,token);
 token = (char *) strtok(NULL,":");
 strcpy(colour2,token);
 token = (char *) strtok(NULL,":");
 wide = atoi(token);
 token = (char *) strtok(NULL,":");
 high = atoi(token);
 printf("Content-type:text/html\n\n");
 printf("<html>\n");
 printf("<body bgcolor=\"%s\">\n",colour1);
 printf("<center>\n");
 printf("<table bgcolor=\"%s\" border=2>\n",colour2);
 for(rows=1;rows<=high;rows++)
 {
 printf("<tr>\n");
 for(columns=1;columns<=wide;columns++)
 {
 printf("<td><h6>row=%d cell=%d</h6></td>\n",rows,columns);
 }
 printf("</tr>\n");
 }
 printf("</table>\n");
 printf("</body>\n");
 printf("</html>\n");
 return 0;
}

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

33

Data and Memory

In the browser enter:
http://localhost/cgi-bin/data4?red:blue:5:5:
what you should see is this:

In this program we take argv[1] which here is yellow:blue:5:5: and parse it using the library function
strtok which chops the string into tokens separated by an arbitrary character ':' and use these tokens as
strings to specify colours and integer numbers to specify the row and cell counts of a table.

The function atoi converts an string representation of a integer to an integer (“1” to 1).

The function strtok is a little odd in that the first time you call it with the string name you want to
parse, then on subsequent calls the first parameter is changed to NULL.

The for(...) loop mechanism was used to do something a set number of times.

The HTML terms introduced were:

<html> <body> <table> <tr> table row <td> table data cell

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

34

Data and Memory

2.5 Data and Memory – conclusion

We have used some simple data types to represent some information and transmit input to a program
and to organise and display some visual output.

We have used HTML embedded in output strings to make output visible in a web browser.
As an exercise try this:

Write a program to put into your /public_html/cgi-bin folder which can be called in a browser with
the name of a sports team or a country and a series of colours specified perhaps as hexadecimals e.g.
ff0000 = red (rrggbb) used for the team colours or map colours, and which displays something
sensible. My version looks like this:

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

35

Functions, pointers and structures

3. Functions, pointers and structures

3.1 Functions

The entry point into all our programs is called main() and this is a function, or a piece of code that
does something, usually returning some value. We structure programs into functions to stop them
become long unreadable blocks of code than cannot be seen in one screen or page and also to ensure
that we do not have repeated identical chunks of code all over the place. We can call library
functions like printf or strtok which are part of the C language and we can call our own or other
peoples functions and libraries of functions. We have to ensure that the appropriate header file exists
and can be read by the preprocessor and that the source code or compiled library exists too and is
accessible.

As we learned before, the scope of data is restricted to the function in which is was declared, so we
use pointers to data and blocks of data to pass to functions that we wish to do some work on our data.
We have seen already that strings are handled as pointers to arrays of single characters terminated with
a NULL character.

http://bookboon.com/
http://bookboon.com/count/advert/9d9dfd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

C Programming in Linux

36

Functions, pointers and structures

In this example we can repeatedly call the function “doit” that takes two integer arguments and reurns
the result of some mathematical calculation.

Compile: gcc -o func1 chapter3_1.c -lm
Copy to cgi-bin: cp func1 /home/david/public_html/cgi-bin/func1

(by now you should be maintaining a Makefile as you progress, adding targets to compile examples as
you go.)

/***
* C Programming in Linux (c) David Haskins 2008
* chapter3_1.c *
***/
#include <stdio.h>
#include <string.h>
#include <math.h>

double doit(int number1, int number2)
{
 return sqrt((double)(number1 + number2));
}

int main(int argc, char *argv[], char *env[])
{
 int n1 = 0, n2 = 0, i=0;
 n1 = atoi((char *) strtok(argv[1],":"));
 n2 = atoi((char *) strtok(NULL,":"));
 printf("Content-type:text/html\n\n<html><body>\n");
 for(i=1;i<=100;i++) printf("%f ",doit(n1+i,n2*i));
 printf("</body></html>\n");
 return 0;
}

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

37

Functions, pointers and structures

The result in a browser looks like this called with “func1?5:5”.

In this case the arguments to our function are sent as copies and are not modified in the function but
used.

If we want to actual modify a variable we would have to send its pointer to a function.

Designed for high-achieving graduates across all disciplines, London Business School’s Masters
in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM
employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to
work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access
to the School’s network of more than 34,000 global alumni – a community that offers support and
opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or
give us a call on +44 (0)20 7000 7573.

Masters in Management

The next step for
top-performing
graduates

* Figures taken from London Business School’s Masters in Management 2010 employment report

http://bookboon.com/
http://bookboon.com/count/advert/e8616b25-ea05-4d56-87db-9f6000996287

Download free eBooks at bookboon.com

C Programming in Linux

38

Functions, pointers and structures

We send the address of the variable 'result' with &result, and in the function doit we de-reference the
pointer with *result to get at the float and change its value, outside its scope inside main . This gives
identical output to chapter3_1.c.

3.2 Library Functions

C contains a number of built-in functions for doing commonly used tasks. So far we have used atoi,
printf, sizeof, strtok, and sqrt. To get full details of any built-in library function all we have to do is
type for example:

 man 3 atoi

and we will see all this:

/***
* C Programming in Linux (c) David Haskins 2008
* chapter3_2.c *
***/
#include <stdio.h>
#include <string.h>
#include <math.h>
void doit(int number1, int number2, double *result)
{
 *result = sqrt((double)(number1 + number2));
}
int main(int argc, char *argv[], char *env[])
{
 int n1 = 0, n2 = 0, i=0;
 double result = 0;
 n1 = atoi((char *) strtok(argv[1],":"));
 n2 = atoi((char *) strtok(NULL,":"));
 printf("Content-type:text/html\n\n<html><body>\n");
 for(i=1;i<=100;i++)
 {
 doit(n1+i,n2*i,&result);
 printf("%f ", result);
 }
 printf("</body></html>\n");
 return 0;
}

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

39

Functions, pointers and structures

Which pretty-well tells you everything you need to know about this function and how to use it and
variants of it. Most importantly it tells you which header file to include.

3.3 A short library function reference

Full details of all the functions available can be found at:
http://www.gnu.org/software/libc/manual/

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

40

Functions, pointers and structures

There is no point in learning about library functions until you find you need to do something which
then leads you to look for a function or a library of functions that has been written for this purpose.
You will need to understand the function signature – or what the argument list means and how to use it
and what will be returned by the function or done to variables passed as pointers to functions.

Common Library Functions by Header File:

 math.h
 Trigonometric Functions e.g.:
 cos sin tan
 Exponential, Logarithmic, and Power Functions e.g.:
 exp log pow sqrt
 Other Math Functions e.g.:
 ceil fabs floor fmod

 stdio.h
 File Functions e.g.:
 fclose feof fgetpos fopen fread fseek
 Formatted I/O Functions e.g.:
 printf scanf Functions
 Character I/O Functions e.g.:
 fgetc fgets fputc fputs getc getchar gets
 putc putchar puts

 stdlib.h
 String Functions e.g.:
 atof atoi atol
 Memory Functions e.g.:
 calloc free malloc
 Environment Functions e.g.:
 abort exit getenv system
 Math Functions e.g.:
 abs div rand

 string.h
 String Functions e.g.:
 strcat strchr strcmp strncmp strcpy
 strncpy strcspn strlen strstr strtok

 time.h
 Time Functions e.g.:
 asctime clock difftime time

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

41

Functions, pointers and structures

3.4 Data Structures

Sometimes we wish to manage a set of variable as a group, perhaps taking all the values from a
database record and passing the whole record around our program to process it. To do this we can
group data into structures.

This program uses a struct to define a set of properties for something called a player. The main
function contains a declaration and instantiation of an array of 5 players. We pass a pointer to each
array member in turn to a function to rank each one. This uses a switch statement to examine the first
letter of each player name to make an arbitrary ranking. Then we pass a pointer to each array member
in turn to a function that prints out the details.

Destination MMU
MMU is proud to be one of the most popular universities in the UK.
Some 34,000 students from all parts of the globe select from its
curricula of over 1,000 courses and qualifications.

We are based in the dynamic yet conveniently compact city of Manchester,
located at the heart of a sophisticated transport network including a major
international airport on the outskirts. Parts of the campus are acclaimed for
their architectural style and date back over 150 years, in direct contrast to
our teaching style which is thoroughly modern, innovative and
forward-thinking.

MMU offers undergraduate and postgraduate courses in
the following subject areas:

• Art, Design & Performance
• Computing, Engineering & Technology
• Business & Management
• Science, Environmental Studies & Geography
• Law, Education & Psychology
• Food, Hospitality, Tourism & Leisure Studies
• Humanities & Social Science

For more details or an application form
please contact MMU International.
email: international@mmu.ac.uk
telephone: +44 (0)161 247 1022
www.mmu.ac.uk/international

http://bookboon.com/
http://bookboon.com/count/advert/7ea1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

C Programming in Linux

42

Functions, pointers and structures

/***
* C Programming in Linux (c) David Haskins 2008
* chapter3_3.c *
***/
#include <stdio.h>
#include <string.h>
struct player
{
 char name[255];
 char role[255];
 int ranking;
};
void rank(struct player *p)
{
 switch(p->name[0])
 {
 case 'P': p->ranking = 4;break;
 case 'H': p->ranking = 1;break;
 case 'R': p->ranking = 2;break;
 case 'J': p->ranking = 5;break;
 case 'B': p->ranking = 3;break;
 }
}
void show(struct player *p)
{
 printf("Name:%s Role:%s Ranking;%d
\n",
 p->name,p->role,p->ranking);
}
int main(int argc, char *argv[], char *env[])
{
 struct player myteam[5] = { { "Pele","striker",0 },

 { "Beckham","male model",0 },

 { "Roddick","tennis man",0 },

 { "Haskins","swimmer",0 },

 { "Jagger","singer",0 } };
 int i=0;
 printf("Content-type:text/html\n\n");
 for(i=0;i<5;i++) rank (&myteam[i]);
 for(i=0;i<5;i++) show (&myteam[i]);
 return 0;
}

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

43

Functions, pointers and structures

The results are shown here, as usual in a browser:

This is a very powerful technique that is quite advanced but you will need to be aware of it. The idea
of structures leads directly to the idea of classes and objects.

We can see that using a struct greatly simplifies the business task of passing the data elements around
the program to have different work done. If we make a change to the definition of the struct it will
still work and we simply have to add code to handle new properties rather than having to change the
argument lists or signatures of the functions doing the work.

Get Internationally Connected
at the University of Surrey
MA Intercultural Communication with International Business
MA Communication and International Marketing

MA Intercultural Communication with International Business

Provides you with a critical understanding of communication in contemporary
socio-cultural contexts by combining linguistic, cultural/media studies and
international business and will prepare you for a wide range of careers.

MA Communication and International Marketing

Equips you with a detailed understanding of communication in contemporary
international marketing contexts to enable you to address the market needs of
the international business environment.

For further information contact:
T: +44 (0)1483 681681
E: pg-enquiries@surrey.ac.uk
www.surrey.ac.uk/downloads

http://bookboon.com/
http://bookboon.com/count/advert/8d9ffd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

C Programming in Linux

44

Functions, pointers and structures

The definition of the structure does not actually create any data, but just sets out the formal shape of
what we can instantiate. In the main function we can express this instantiation in the form shown
creating a list of sequences of data elements that conform to the definition we have made.

You can probably see that a struct with additional functions or methods is essentially what a class is in
Java, and this is also the case in C++. Object Oriented languages start here and in fact many early
systems described as “object oriented” were in fact just built using C language structs.

If you take a look for example, at the Apache server development header files you will see a lot of
structs for example in this fragment of httpd.h :

Dont worry about what this all means – just notice that this is a very common and very powerful
technique, and the design of data structures, just like the design of database tables to which it is closely
related are the core, key, vital task for you to understand as a programmer.

You make the philosophical decisions that the world is like this and can be modelled in this way. A
heavy responsibility - in philosophy this work is called ontology (what exists?) and epistemology
(how we can know about it?). I bet you never thought that this was what you were doing!

3.5 Functions, pointers and structures – conclusion

We have used some simple data types to represent some information and transmit input to a program
and to organise and display some visual output.
We have used HTML embedded in output strings to make output visible in a web browser.
We have learned about creating libraries of functions for reuse.
We have learning about data structures and the use of pointers to pass them around a program.

struct server_addr_rec {
 /** The next server in the list */
 server_addr_rec *next;
 /** The bound address, for this server */
 apr_sockaddr_t *host_addr;
 /** The bound port, for this server */
 apr_port_t host_port;
 /** The name given in "<VirtualHost>" */
 char *virthost;
};

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

45

Functions, pointers and structures

Exercise:

Using C library functions create a program that:

opens a file in write mode,
writes a command line argument to the file
closes the file
opens the file in read mode
reads the contents
closes the file
prints this to the screen

This will give you experience with finding things out, looking for suitable library functions, and
finding examples on-line or from a book.

STEP INTO A WORLD
OF OPPORTUNITY
www.ecco.com/trainees
trainees@ecco.com

http://bookboon.com/
http://bookboon.com/count/advert/d2841635-abd6-4513-bb72-9fde00d4a687

Download free eBooks at bookboon.com

C Programming in Linux

46

Logic, loops and fl ow control

4. Logic, loops and flow control

4.1 Syntax of C Flow of control

We can can use the following C constructs to control program execution.
When we can count our way through a sequence or series:

 for(initial value; keep on until ; incremental change)
 { do this; and this; and this; }

When we are waiting for some condition to change:

 while(this is true)
 { do this; and this; and this; }
or if we want to do something at least once then test:
 do { do this; and this; and this; }
 while(this is true)

When we have a single option to test:

 if(this is true)
 { do this; and this; and this; }
 else
 { do this; and this; and this; }

When we have more options to test:

 if(this is true)
 { do this; and this; and this; }
 else if (this is true)
 { do this; and this; and this; }
 else
 { do this; and this; and this; }

When we have more options to test based on an integer or single character value:

 switch(on an integer or character value)
 {
 case 0: do this; and this; and this; break;
 case n: do this; and this; and this; break;
 default:do this; and this; and this; break;
 }

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

47

Logic, loops and fl ow control

4.2 Controlling what happens and in which order

This part is all about if, and then, and else and true and false – the nuts and bolts of how we express
and control the execution of a program. This can be very dry and dusty material so to make it more
understandable we are going to solve a problem you are going to need to solve to do any interactive
web work of any complexity.

We will build something we can use in order to provide something like the functionality that can be
obtained from typical getParameter(“ITEM1”) method in Java servlets or $_REQUEST[''ITEM1”]
function in PHP.

In Chapter 1 we saw that environment variables can be accessed by the implicit argument to the main
function. We can also use the library function getenv() to request the value of any named environment
variable.

Here we display the QUERY_STRING which is what the program gets as the entire contents of an
HTML form which contains NAME=VALUE pairs for all the named form elements.

An HTML form by default uses the GET method which transmits all form data back to the program or
page that contains the form unless otherwise specified in an action attribute. This data is contained in
the QUERY_STRING as a series of variable = value pairs separated by the & character.

/***
* C Programming in Linux (c) David Haskins 2008
* chapter4_1.c *
***/
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[], char *env[])
{
 printf("Content-type:text/html\n\n<html><body bgcolor=#23abe2>\n");
 char value[256] = "";
 strncpy(value,(char *) getenv("QUERY_STRING"),255);
 printf("QUERY_STRING : %s
\n", value);
 printf("<form>\n");
 printf("<input type=\"TEXT\" name=\"ITEM1\">\n");
 printf("<input type=\"TEXT\" name=\"ITEM2\">\n");
 printf("<input type=\"SUBMIT\">");
 printf("</form></body></html>\n");
 return 0;
}

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

48

Logic, loops and fl ow control

Calling this program in a browser we see a form and can enter some data in the boxes:

Note that in HTML values of things are enclosed in quotation marks, so to embed these inside a
C string we have to “escape” the character with a special sign \ like this “\”ITEM1\” “. Also we
are using “\n” or explicit new line characters at the end of each piece of HTML output, so that
when we select “view source” in the browser we get some reasonably formatted text to view
rather than the whole page appearing as one long single line.

http://bookboon.com/
http://bookboon.com/count/advert/5aa0fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

C Programming in Linux

49

Logic, loops and fl ow control

And after submitting the form we see:

To make much sense of the QUERY_STRING and find a particular value in it, we are going to have to
parse it, to chop it up into its constituent pieces and for this we will need some conditional logic (if,
else etc) and some loop to count through the characters in the variable. A basic function to do this
would ideally be created as this is a task you might need to do do again and again so it makes sense to
have a chunk of code that can be called over again.

In the next example we add this function and the noticeable difference in the output is that we can
insert the extracted values into the HTML boxes after we have parsed them. We seem to have
successfully created something like a java getParameter() function – or have we?

Have a good long look at chapter4_2.c and try it out with characters other than A-Z a-z or numerals
and you will see something is not quite right. There is some kind of encoding going on here!

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

50

Logic, loops and fl ow control

If I were tp type DAVID !!! into the first field:

I get this result:

A space character has become a + and ! has become %21.

This encoding occurs because certain characters are explicitly used in the transmission protocol itself.
The & for example is used to separate portions of the QUERY_STRING and the space cannot be sent
at all as it is.

Any program wishing to use information from the HTML form must be able to decode all this stuff
which will now attempt to do.

The program chapter4_2.c accomplishes what we see so far. It has a main function and a decode_value
function all in the same file.

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

51

Logic, loops and fl ow control

The decode_value function takes three arguments:

the name of the value we are looking for “ITEM1=” or “ITEM2=”.
the address of the variable into which we are going to put the value if found
the maximum number of characters to copy

The function looks for the start and end positions in the QUERY_STRING of the value and then
copies the characters found one by one to the value variable, adding a NULL charcter to terminate the
string.

Going up in the world…
You’ll be going up in the world after graduating from Nottingham Trent
University. We are one of the best universities in England for graduate
employment with over 97% of our students employed or in further study
within six months of graduating.*

• Consistently ranked as one of the leading modern universities in The Independent Good
University Guide.

• Courses informed by businesses and industry – strong commercial partnerships with over
6,000 companies globally.

• Many courses include professional accreditation and / or the opportunity to undertake a
work placement. This gives our graduates a competitive edge when entering the job market.

• An exciting student city in the middle of England. Ideally located for travel across the UK
and with direct flights to destinations across Europe from East Midlands Airport.

• Investing £130 million across our three campuses to create an inspiring learning
environment.

• In the most recent QAA institutional review, the University received the highest
commendation for its consistent commitment to supporting students and their learning.

If you would like any guidance on applying to Nottingham Trent University
please contact Laura Vella, our International Officer for Europe, on

Tel: +44 (0)115 848 8180
Email: laura.vella@ntu.ac.uk

www.ntu.ac.uk/book

5365/07/09 * HESA DHLE 2006–07

http://bookboon.com/
http://bookboon.com/count/advert/2e9ffd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

C Programming in Linux

52

Logic, loops and fl ow control

/***
* C Programming in Linux (c) David Haskins 2008
* chapter4_2.c *
***/
#include <stdio.h>
#include <string.h>

void decode_value(const char *key, char *value, int size)
{
 int length = 0, i = 0, j = 0;
 char *pos1 = '\0', *pos2 = '\0';
 //if the string key is in the query string
 if((pos1 = strstr((char *) getenv("QUERY_STRING"), key)) != NULL)
 {
 //find start of value for this key
 for(i=0; i<strlen(key); i++) pos1++;
 //find length of the value
 if((pos2 = strstr(pos1,"&")) != NULL)
 length = pos2 - pos1;
 else length = strlen(pos1);
 //character by character, copy value from query string
 for(i = 0, j = 0; i < length ; i++, j++)
 {
 if(j < size) value[j] = pos1[i];
 }
 //add NULL character to end of the value
 if(j < size) value[j] = '\0';
 else value[size-1] = '\0';
 }
}
int main(int argc, char *argv[], char *env[])
{
 printf("Content-type:text/html\n\n<html><body bgcolor=#23abe2>\n");
 char value[255] = "";
 strncpy(value,(char *) getenv("QUERY_STRING"),255);
 printf("QUERY_STRING : %s
\n", value);
 printf("<form>\n");
 //call the decode_value function to get value of "ITEM1"
 decode_value("ITEM1=", (char *) &value, 255);
 if(strlen(value) > 0)
 printf("<input type=\"TEXT\" name=\"ITEM1\" value=\"%s\">\n",value);
 else
 printf("<input type=\"TEXT\" name=\"ITEM1\">\n");
 //call the decode_value function to get value of "ITEM2"
 decode_value("ITEM2=", (char *) &value, 255);
 if(strlen(value) > 0)
 printf("<input type=\"TEXT\" name=\"ITEM2\" value=\"%s\">\n",value);
 else
 printf("<input type=\"TEXT\" name=\"ITEM2\">\n");
 printf("<input type=\"SUBMIT\">");
 printf("</form></body></html>\n");
 return 0;
}

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

53

Logic, loops and fl ow control

It looks like we are going to have to do some serious work on this decode_value package so as this is
work we can expect to do over and over again it makes sense to write a function that can be reused.

First off we can put this function into a separate file called decode_value.c and create a file for all the
functions we may write called c_in_linux.h and compile all this into a library. In the Make file we
can add:

This looks horrible and complex but all it means is this:
typing “make all” will:

 compile all the *.c files listed in the list OBJ_SRC and into object files *.o
 compile all the object files into a library archive called lib_c_in_linux.a
 compile 4-4 using this new archive.

This is the model we will use to keep our files as small as possible and the share-ability of code at its
maximum.

We can now have a simpler “main” function file, and files for stuff we might want to write as call-able
functions from anywhere really which we do not yet know about. All this is organised into a library
file (*.a for archive) – these can also be compiled as dynamically loadable shared objects *.so whch
are much like Windows DLLs. This exactly how all Linux software is written and delivered.

SRC_CIL = decode_value.c

OBJ_CIL = decode_value.o

#CIL_INCLUDES = -I/usr/include/apache2 -I. -I/usr/include/apache2 -I/usr/include/apr-1

#CIL_LIBS = -L/usr/lib/mysql -lmysqlclient -L/usr/lib -lgd -
L/home/david/public_html/Ventus/code

all: lib_cil 4-4

lib_cil:

 gcc -c $(SRC_CIL)

 ar rcs c_in_linux.a $(OBJ_CIL)

 $(RM) *.o

4-4:

 gcc -o logic4 chapter4_3.c c_in_linux.a -lc

 cp logic4 /home/david/public_html/cgi-bin/logic4

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

54

Logic, loops and fl ow control

For example the MySQL C Application Programmers Interface (API) comprises:

 all the header files in /usr/include/mysql
 the library file /usr/lib/mysql/libmysqlclient.a

What we are doing really is how all of Linux is put together – we are simply adding to it in the
same way.

Our main file now looks like this:

/***
* C Programming in Linux (c) David Haskins 2008
* chapter4_3.c *
***/
#include <stdio.h>
#include <string.h>
#include "c_in_linux.h"

int main(int argc, char *argv[], char *env[])
{
 printf("Content-type:text/html\n\n<html><body bgcolor=#23abe2>\n");
 char value[255] = "";
 strncpy(value,(char *) getenv("QUERY_STRING"),255);
 printf("QUERY_STRING : %s
\n", value);
 printf("<form>\n");
 //call the decode_value function to get value of "ITEM1"
 decode_value("ITEM1=", (char *) &value, 255);
 if(strlen(value) > 0)
 printf("<input type=\"TEXT\" name=\"ITEM1\"
value=\"%s\">\n",value);
 else
 printf("<input type=\"TEXT\" name=\"ITEM1\">\n");
 //call the decode_value function to get value of "ITEM2"
 decode_value("ITEM2=", (char *) &value, 255);
 if(strlen(value) > 0)
 printf("<input type=\"TEXT\" name=\"ITEM2\"
value=\"%s\">\n",value);
 else
 printf("<input type=\"TEXT\" name=\"ITEM2\">\n");
 printf("<input type=\"SUBMIT\">");
 printf("</form></body></html>\n");
 return 0;
}

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

55

Logic, loops and fl ow control

This code calls the function decode_value in the same way but because the library, c_in_linux.a was
linked in when it was compiled and as it has access to the header file c_in_linux.h that lists all the
functions in the library it all works properly.

Try to describe the process in pseudocode of decoding this QUERY STRING:

 get the QUERY_STRING
 find the search string “ITEM1=” inside it
 look for the end of the value of “ITEM1=”
 copy the value to our “value” variable, translating funny codes such as:
 %21 is ! %23 is #

These special codes are generated by the browser so that whatever you put in an HTML form will get
safely transmitted and not mess about with the HTTP protocol. There are lot of them and the task for
this chapter is to finish this task off so that EVERY key on your keyboard works as you think it
should!!

Program chapter4_3.c calls this unfinished function decode_value which this far can only cope with
the space character and ! - it uses if and else and for and the library function getenv, strcpy, strlen,
ststr in a piece of conditional logic in which a string is analysed to find a specific item and this thing
then copied into a piece of memory called value which has been passed to it.

The result shows the decoded value pasted into the first field;

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

56

Logic, loops and fl ow control

/***
* program: decode_value.c *
* version: 0.1 *
* author: david haskins February 2008 *
***/
#include <stdlib.h>
#include <string.h>
void decode_value(const char *key, char *value, int size)
{
 unsigned int length = 0;
 unsigned int i = 0;
 int j = 0;
 char *pos1 = '\0',*pos2 = '\0', code1 = '\0',code2 = '\0';

 strcpy(value,"");
 if((pos1 = strstr(getenv("QUERY_STRING"), key)) != NULL)
 {
 for(i=0; i<strlen(key); i++) pos1++;
 if((pos2 = strstr(pos1,"&")) != NULL)
 {
 length = pos2 - pos1;
 }
 else length = strlen(pos1);
 for(i = 0, j = 0; i < length ; i++, j++)
 {
 if(j < size)
 {
 if(pos1[i] == '%')
 {
 i++; code1 = pos1[i];
 i++; code2 = pos1[i];
 if(code1 == '2' && code2== '0')
 value[j] = ' ';//0x20
 else if(code1 == '2' && code2== '1')
 value[j] = '!';//0x21
 }
 else value[j] = pos1[i];
 }
 }
 if(j < size)
 {
 value[j] = '\0';
 }
 else value[size-1] = '\0';
 }
}

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

57

Logic, loops and fl ow control

4.3 Logic, loops and flow conclusion

The most important part of controlling the flow of your program is to have a clear idea about what it is
you are trying to do. We have also learned to break our code up into manageable lumps, and started to
build and use a library and header file of our own.

Being able to express a process in normal words or pseudocode is useful and helps you to break the
code into steps.

Use for loops to explicitly count through things you know have an ending point.
Use while and do...while loops to do things until some condition changes.
Use switch statements to when integers or single characters determine what happens next.
Use if and else if and else when mutually exclusive things can be tested in a sequence.
Complex sets of if and else and not (!) conditionals can end up unreadable.
Use braces ({ }) to break it all up into chunks.

Exercise:

A useful task now would be to complete the function decode_value so you have a useful tool to grab
web content from HTML forms decoding all the non alpha-numeric keys on your keyboard.
You will use this exercise again and again so it is worth getting it right.

STUDY. PLAY.
The stuff you'll need to make a good living The stuff that makes life worth living

NORWAY.
YOUR IDEAL STUDY DESTINATION.

WWW.STUDYINNORWAY.NO
FACEBOOK.COM/STUDYINNORWAY

http://bookboon.com/
http://bookboon.com/count/advert/96187bc1-08b7-494f-9730-9fec00d3acd8

Download free eBooks at bookboon.com

C Programming in Linux

58

Database handling with MySQL

5. Database handling with MySQL

5.1 On not reinventing the wheel

It is pretty sensible to not start from scratch at every project so we build on work done by others who
came this way. All of the C libraries we are using were written by someone from even lower level bits
and pieces and we can access and modify this code should we want to. This is what Open Systems is
all about.
In practice we simply want to use reliable services, and the first two we are going to use are ubiquitous
– databases access and graphical image generation.

5.2 MySQL C API

To access the set of MySQL functions we make sure our compiler can access the header and libraries
of MySQL and simply call some mysql functions we have not had to write ourselves.
In this next example we join the database code onto the last work we did and insert the decoded data
into a database, and read out what we have stored there so far.
In a new terminal window we type:

mysql test
then:

create table CIL (ITEM1 varchar(255),ITEM2 varchar(255));

This creates a table for the program to write to in the test database that should already be created in
your MySQL setup.

It looks like this if it all works out OK.

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

59

Database handling with MySQL

The data types declared MYSQL, MYSQL_RES, and MYSQL_ROW are preprocessor definitions
that stand for more complex C declarations in mysql.h and all we need to know is how to call them.

The documentation at MySQL provides all the information you will need to do more complex
operations.

Are you considering a
European business degree?
LEARN BUSINESS at university level.
We mix cases with cutting edge
research working individually or in
teams and everyone speaks English.
Bring back valuable knowledge and
experience to boost your career.

MEET a culture of new foods, music
and traditions and a new way of
studying business in a safe, clean
environment – in the middle of
Copenhagen, Denmark.

ENGAGE in extra-curricular activities
such as case competitions, sports,
etc. – make new friends among cbs’
18,000 students from more than 80
countries.

See what we look like
and how we work on cbs.dk

http://bookboon.com/
http://bookboon.com/count/advert/2f6fa854-3867-4bb6-892a-9fb800b9d043

Download free eBooks at bookboon.com

C Programming in Linux

60

Database handling with MySQL

/***
* C Programming in Linux (c) David Haskins 2008
* chapter5_1.c *
***/
#include <stdio.h>
#include <string.h>
#include <mysql/mysql.h>
#include "c_in_linux.h"

int main(int argc, char *argv[], char *env[])
{
 char value1[255] = "",value2[255] = "",SQL[1024]="";
 int rc = 0;

 MYSQL *conn = NULL;
 MYSQL_RES *result = NULL;
 MYSQL_ROW row;

 printf("Content-type:text/html\n\n<html><body bgcolor=#23abe2>\n");
 strncpy(value1,(char *) getenv("QUERY_STRING"),255);
 printf("QUERY_STRING : %s
\n", value1);
 printf("<form>\n");
 //call the decode_value function to get value of "ITEM1"
 decode_value("ITEM1=", (char *) &value1, 255);
 if(strlen(value1) > 0)
 printf("<input type=\"TEXT\" name=\"ITEM1\" value=\"%s\">\n",value1);
 else
 printf("<input type=\"TEXT\" name=\"ITEM1\">\n");
 //call the decode_value function to get value of "ITEM2"
 decode_value("ITEM2=", (char *) &value2, 255);
 if(strlen(value2) > 0)
 printf("<input type=\"TEXT\" name=\"ITEM2\" value=\"%s\">\n",value2);
 else
 printf("<input type=\"TEXT\" name=\"ITEM2\">\n");
 printf("<input type=\"SUBMIT\">");
 printf("</form></body></html>\n");
 //OPEN DATABASE
 conn = mysql_init((MYSQL *) 0);
 mysql_options(conn,MYSQL_READ_DEFAULT_GROUP,"mysqlcapi");
 mysql_real_connect(conn, "localhost","","","test",0, NULL, 0);
 //INSERT IF THERE IS ANY DATA
 if(strlen(value1) > 0 || strlen(value2) > 0)
 {
 sprintf(SQL,"insert into CIL values ('%s','%s')",value1,value2);
 rc = mysql_query(conn,SQL);
 }
 //READ
 rc = mysql_query(conn,"select * from CIL");
 result = mysql_use_result(conn);
 while((row = mysql_fetch_row(result)) != NULL)
 {
 printf("item1=%s item2=%s
",row[0],row[1]);
 }
 mysql_free_result(result);
 mysql_close(conn);
 return 0; }

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

61

Database handling with MySQL

Understood all that?

In barely 10 lines (highlighted) of C we have inserted our data into a database table and can read it out
again, which is pretty painless. With mysql_init we obtain a pointer to a data structure of type
MYSQL, we can then se this to connect to the test database with mysql_options and
mysql_real_connect, then we execute SQL statements just as we would in a terminal session. The
results of a query can be retrieved as a sequence of MYSQL_ROW arrays of strings with
mysql_use_results. We free up the memory used with mysql_free_result and close the database with
mysql_close.

As is usual with C libraries, you need to be able understand the usually sparse documentation to
understand the function calls, and for MySQL 5.1 we can find all this information at:
http://dev.mysql.com/doc/refman/5.1/en/index.html

 Technical training on
WHAT you need, WHEN you need it

 At IDC Technologies we can tailor our technical and engineering
training workshops to suit your needs. We have extensive

experience in training technical and engineering staff and
have trained people in organisations such as General
Motors, Shell, Siemens, BHP and Honeywell to name a few.
Our onsite training is cost effective, convenient and completely
customisable to the technical and engineering areas you want
covered. Our workshops are all comprehensive hands-on learning
experiences with ample time given to practical sessions and
demonstrations. We communicate well to ensure that workshop content
and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on
your premises or a venue of your choice for your convenience.

Phone: +61 8 9321 1702
Email: training@idc-online.com
Website: www.idc-online.com

INDUSTRIAL
DATA COMMS

AUTOMATION &
PROCESS CONTROL

ELECTRONICS

ELECTRICAL
POWER

MECHANICAL
ENGINEERING

OIL & GAS
ENGINEERING

For a no obligation proposal, contact us today
 at training@idc-online.com or visit our website
 for more information: www.idc-online.com/onsite/

http://bookboon.com/
http://bookboon.com/count/advert/6d5a1393-8ea8-4721-88d7-a02100eae314

Download free eBooks at bookboon.com

C Programming in Linux

62

Database handling with MySQL

The MySQL 5.1 Reference Manual / Connectors and APIs / MySQL C API includes:
mysql_affected_rows()

mysql_autocommit()

mysql_change_user()

mysql_character_set_name()

mysql_close()

mysql_commit()

mysql_connect()

mysql_create_db()

mysql_data_seek()

mysql_debug()

mysql_drop_db()

mysql_dump_debug_info()

mysql_eof()

mysql_errno()

mysql_error()

mysql_escape_string()

mysql_fetch_field()

mysql_fetch_field_direct()

mysql_fetch_fields()

mysql_fetch_lengths()

mysql_fetch_row()

mysql_field_count()

mysql_field_seek()

mysql_field_tell()

mysql_free_result()

mysql_get_character_set_info()

mysql_get_client_info()

mysql_get_client_version()

mysql_get_host_info()

mysql_get_proto_info()

mysql_get_server_info()

mysql_get_server_version()

mysql_get_ssl_cipher(

mysql_hex_string()

mysql_info()

mysql_init()

mysql_insert_id()

mysql_kill()

mysql_library_end()

mysql_library_init()mysql_list_dbs()

mysql_list_fields(

mysql_list_processes()

mysql_list_tables()

mysql_more_results()

mysql_next_result()

mysql_num_fields()

mysql_num_rows()

mysql_options()

mysql_ping()

mysql_query()

mysql_real_connect()

mysql_real_escape_string()

mysql_real_query()

mysql_refresh(

 mysql_reload()

mysql_rollback()

mysql_row_seek()

mysql_row_tell()

mysql_select_db()

mysql_set_character_set()

mysql_set_local_infile_default()

mysql_set_local_infile_handler()

mysql_set_server_option()

mysql_shutdown()

mysql_sqlstate()

mysql_ssl_set()

mysql_stat()

mysql_store_result()

mysql_thread_id()

mysql_use_result()

mysql_warning_count()

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

63

Graphics with GD library

6. Graphics with GD library

The ability to generate interesting images dynamically to suit the situation is an enjoyable,
challenging, and rewarding type of programming. We will be using Thomas Boutell's GD C library
which has been around for many years as an open systems project.

6.1 Generating binary content

Here we create an image and print into it the value of the TEXT= part of the QUERY STRING and
set our content type to image/gif. The gdImageGif function writes the binary image out to stdout
which is the output stream instead of to a file, so binary image data is sent back to the browser.

�������	�
��
�����
�������	�
� ������������������������������
�� �!�"
��#������"��$�%��&��!�"��'����
� �(%�������
���(������
��%��
")*+�
+���$�����
��"
��*������+
����
���	��������
������
�
� ���,���,
+	��$
,���-

���,"
+	��
,
+	��$
,��

http://bookboon.com/
http://bookboon.com/count/advert/57a1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

C Programming in Linux

64

Graphics with GD library

The program produces this output when called with cgi-bin/gdgraph1?TEXT=DavidHaskins

While this is not the most fancy or attractive exercise but does at least demonstrate the key principles
involved in generating graphical output. With the GD library you can load existing images and
generate them in many formats such as GIF, JPEG, PNG, WMBP and even create animated GIFS.

/***
* C Programming in Linux (c) David Haskins 2008
* chapter6_1.c *
***/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gd.h>
#include <gdfonts.h>
#include "c_in_linux.h"

int main(int argc, char *argv[], char *env[])
{
 int text=0,background=0,height=50,width=0;
 char value[255] = "";
 gdImagePtr im_out = NULL;

 decode_value("TEXT=", (char *) &value, 255);
 width = (strlen(value) * 10) + 5;
 im_out = gdImageCreate(width,height);
 background = gdImageColorAllocate(im_out, 255,0,255);
 text = gdImageColorAllocate(im_out,0,0,255);
 gdImageFilledRectangle(im_out, 0,0, width-1, height-1, background);
 gdImageString(im_out,gdFontGetSmall(),10,5,(unsigned char *)value, text);
 printf("Content-type: image/gif\n\n");
 gdImageGif(im_out,stdout);
 gdImageDestroy(im_out);
 return 0;
}

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

65

Graphics with GD library

If you have used PHP development tools you will recognise the GD library functions as they are pretty
well identical showing that PHP is a wrapper in this case around the same C library.

The text displayed here is using one of the internal fonts, Tiny, Small, Medium Bold, Large and Giant
which are adequate for simple labelling but you can also use TrueType fonts for more attractive
output.

Geometric drawing with lines or certain styles, filled and open polygons, and circles, arcs can be
created. The main thing to remember is that the origin of an image is the TOP left hand corner
which might seem unintuitive to anyone who has studies mathematics – quite why this is I have never
discovered but can only imagine that the first programmer to do anything in this area happened to not
know about graphs in which we think of the origin x=0, y=0 as being at the bottom left hand.

Colours are specified as RGB values in the range 0 to 255 so that white is 255,255,255 and red is
255,0,0. To work out fine-grained hues use a graphics tool like GNU GIMP which has colour pickers
so you can find out subtle RGB values. Palettes of colours from one image can be used in another and
the closest colour in a palette requested or created if there is space for it to be allocated.

DTU, Technical University of Denmark, is ranked as one
of the best technical universities in Europe, and offers
internationally recognised Master of Science degrees in
39 English-taught programmes.

DTU offers a unique environment where students have
hands-on access to cutting edge facilities and work

closely under the expert supervision of top international
researchers.

DTU’s central campus is located just north of Copenhagen
and life at the University is engaging and vibrant. At DTU,
we ensure that your goals and ambitions are met. Tuition
is free for EU/EEA citizens.

Visit us at www.dtu.dk

Study at one of Europe’s
leading universities

http://bookboon.com/
http://bookboon.com/count/advert/7daa994d-b45a-48c8-8273-a03800b9b4af

Download free eBooks at bookboon.com

C Programming in Linux

66

Graphics with GD library

6.2 Using TrueType Fonts

In this example we modify the previous program to generate a label using TrueType font.

/***
* C Programming in Linux (c) David Haskins 2008 * chapter6_2.c *
***/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gd.h>
#include <gdfonts.h>
#include "c_in_linux.h"

int main(int argc, char *argv[], char *env[]) {
 int text=0,background=0,height=50,width=0,x=0,y=0,size=30,string_rectangle[8];
 double angle=0.0;
 char value[255] = "";
 //OpenSuse TrueType Font
 char font[256] = "/usr/share/fonts/truetype/DejaVuSans.ttf";
 //Ubuntu TrueType Font
 // char font[256] =
 "/usr/share/fonts/truetype/ttf-dejavu/DejaVuSans.ttf";
 char *err = NULL;
 gdImagePtr im_out = NULL;

 decode_value("TEXT=", (char *) &value, 255);
 //call gdImageStringFT with NULL image to obtain size
 err = gdImageStringFT(NULL,&string_rectangle[0],0,
 font,size,angle,0,0,value);
 x = string_rectangle[2]-string_rectangle[6] + 6;
 y = string_rectangle[3]-string_rectangle[7] + 6;
 // create an image big enough for the string plus a little space
 im_out = gdImageCreate(x,y);
 //allocate colours
 background = gdImageColorAllocate(im_out, 0,0,0);
 text = gdImageColorAllocate(im_out,255,0,255);
 //get starting position
 x = 3 - string_rectangle[6];
 y = 3 - string_rectangle[7];
 //draw the string
 err = gdImageStringFT(im_out,&string_rectangle[0],
 text,font,size,angle,x,y,value);
 //output
 printf("Content-type: image/gif\n\n");
 gdImageGif(im_out,stdout);
 gdImageDestroy(im_out);
 return 0; }

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

67

Graphics with GD library

We call this program as before with cgi-bin/gdgraph1?TEXT=C+PROGRAMMING+IN+LINUX

to get this kind of output which you will probably see is more likely to be a useful kind of tool. The
location and contents of your systems fonts will vary but the code gives an example:

- OpenSuse /usr/share/fonts/truetype/*.ttf
- Ubuntu. /usr/share/fonts/truetype/ttf-dejavu/*.ttf

To get any good at using a library like GD you have to be prepared to experiment and take a lot of
time to understand the function parameters, looking in great detail at the available documentation at:
http://www.libgd.org/Documentation

Increase your impact with MSM Executive Education

For more information, visit www.msm.nl or contact us at +31 43 38 70 808

or via admissions@msm.nl
 the globally networked management school

For more information, visit www.msm.nl or contact us at +31 43 38 70 808 or via admissions@msm.nl

For almost 60 years Maastricht School of Management has been enhancing the management capacity

of professionals and organizations around the world through state-of-the-art management education.

Our broad range of Open Enrollment Executive Programs offers you a unique interactive, stimulating and

multicultural learning experience.

Be prepared for tomorrow’s management challenges and apply today.

Executive Education-170x115-B2.indd 1 18-08-11 15:13

http://bookboon.com/
http://bookboon.com/count/advert/74a3fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

C Programming in Linux

68

Graphics with GD library

6.3 GD function reference

A full detailed set of documentation is maintained at: http://www.libgd.org

GD contains a wealth of functionality for all kinds of drawing and many formats, as well as TrueType
fonts and animated Gif images. A categorised list of functions follows:

Image creation, destruction, loading and saving:

 gdImageCreate(int sx, int sy)
 gdImageCreateFromJpeg(FILE *in)
 gdImageCreateFromPng(FILE *in)
 gdImageCreateFromGif(FILE *in)
 gdImageCreateFromGd(FILE *in)
 gdImageCreateFromWBMP(FILE *in)
 gdImageDestroy(gdImagePt rim)
 void gdImageJpeg(gdImagePt rim, FILE*out, int quality)
 void gdImageGif(gdImagePt rim, FILE*out)
 void gdImagePng(gdImagePtr im, FILE*out)
 void gdImageWBMP(gdImagePtr im, int fg, FILE*out)
 void gdImageGd(gdImagePtr im, FILE*out)

Drawing Functions:

 void gdImageSetPixel(gdImagePtr im, int x, int y, int color)
 void gdImageLine(gdImagePtr im, int x1, int y1, int x2, int y2, int color)
 void gdImageDashedLine(gdImagePtr im, int x1, int y1, int x2, int y2, int color)
 void gdImagePolygon(gdImagePtr im, gdPoint Ptr point s, int point sTotal, int color)
 void gdImageOpenPolygon(gdImagePtr im, gdPoint Ptr point s, int point sTotal, int

color)
 void gdImageRectangle(gdImagePtr im, int x1, int y1, int x2, int y2, int color)
 void gdImageFilledPolygon(gdImagePtr im, gdPoint Ptr point s, int point sTotal, int

color)
 void gdImageFilledRectangle(gdImagePtr im, int x1, int y1, int x2, int y2, int color)
 void gdImageArc(gdImagePtr im, int cx, int cy, int w, int h, int s, int e, int color)
 void gdImageFilledArc(gdImagePtr im, int cx, int cy, int w, int h, int s, int e, int color,
 int style)
 void gdImageFilledEllipse(gdImagePtr im, int cx, int cy, int w, int h, int color)
 void gdImageFillToBorder(gdImagePtr im, int x, int y, int border, int color)
 void gdImageFill(gdImagePtr im, int x, int y, int color)
 void gdImageSetAntiAliased(gdImagePtr im, int c)
 void gdImageSetAntiAliasedDontBlend(gdImagePtr im, int c)
 void gdImageSetBrush(gdImagePtr im, gdImagePtr brush)
 void gdImageSetTile(gdImagePtr im, gdImagePtr tile)

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

69

Graphics with GD library

 void gdImageSetStyle(gdImagePtr im, int *style, int styleLength)
 void gdImageSetThickness(gdImagePtr im, int thickness)
 void gdImageAlphaBlending(gdImagePtr im, int blending)
 void gdImageSaveAlpha(gdImagePtr im, int saveFlag)
 void gdImageSetClip(gdImagePtr im, int x1, int y1, int x2, int y2)
 void gdImageGetClip(gdImagePtr im, int *x1P, int *y1P, int *x2P, int *y2P)

Query Functions:

 int gdImageAlpha(gdImagePtr im, int color)(MACRO)
 int gdImageGetPixel(gdImagePtr im, int x, int y)
 int gdImageBoundsSafe(gdImagePtr im, int x, int y)
 int gdImageGreen(gdImagePtr im, int color)(MACRO)
 int gdImageRed(gdImagePtr im, int color)(MACRO)
 int gdImageSX(gdImagePtr im)(MACRO)
 int gdImageSY(gdImagePtr im)(MACRO)
 int gdImageTrueColor(im)(MACRO)

http://bookboon.com/
http://bookboon.com/count/advert/f3a2fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

C Programming in Linux

70

Graphics with GD library

Text-handling functions:

 gdFontPtr gdFontGetSmall(void)
 gdFontPtr gdFontGetLarge(void)
 gdFontPtr gdFontGetMediumBold(void)
 gdFontPtr gdFontGetGiant(void)
 gdFontPtr gdFontGetTiny(void)
 void gdImageChar(gdImagePtr im, gdFontPtr font, int x, int y, int c, int color)
 void gdImageCharUp(gdImagePtr im, gdFontPtr font, int x, int y, int c, int color)
 void gdImageString(gdImagePtr im, gdFontPtr font, int x, int y, unsigned char*s, int

color)
 void gdImageString16(gdImagePtr im, gdFontPtr font, int x, int y, unsigned short *s,
 int color)
 void gdImageStringUp(gdImagePtr im, gdFontPtr font, int x, int y, unsigned char*s,
 int color)
 void gdImageStringUp16(gdImagePtr im, gdFontPtr font, int x, int y, unsigned

short*s, int color)

 char *gdImageStringFT(gdImagePtr im, int *brect, int fg, char *fontname, double
ptsize, double angle, int x, int y, char*string)

 char *gdImageStringFTEx(gdImagePtr im, int *brect, int fg, char *fontname, double
ptsize, double angle, int x, int y, gdFTString ExtraPtr strex)

 char *gdImageStringFTCircle(gdImagePtr im, int cx, int cy, double radius,
 double textRadius, double fillPortion, char*font, double point s,

char*top, char*bottom, int fgcolor)
 char *gdImageStringTTF(gdImagePtr im, int *brect, int fg, char *fontname,
 double ptsize, double angle, int x, int y, char *string)

Color-handling functions:

 int gdImageColorAllocate(gdImagePtr im, int r, int g, int b)
 int gdImageColorAllocateAlpha(gdImagePtr im, int r, int g, int b, int a)
 int gdImageColorClosest(gdImagePtr im, int r, int g, int b)
 int gdImageColorClosestAlpha(gdImagePtr im, int r, int g, int b, int a)
 int gdImageColorClosestHWB(gdImagePtr im, int r, int g, int b)
 int gdImageColorExact(gdImagePtr im, int r, int g, int b)
 int gdImageColorResolve(gdImagePtr im, int r, int g, int b)
 int gdImageColorResolveAlpha(gdImagePtr im, int r, int g, int b, int a)
 int gdImageColorsTotal(gdImagePtr im)(MACRO)
 int gdImageRed(gdImagePtr im, int c)(MACRO)
 int gdImageGreen(gdImagePtr im, int c)(MACRO)
 int gdImageBlue(gdImagePtr im, int c)(MACRO)
 int gdImageGetInterlaced(gdImagePtr im)(MACRO)
 int gdImageGetTransparent(gdImagePtr im)(MACRO)

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

71

Graphics with GD library

 void gdImageColorDeallocate(gdImagePtr im, int color)
 void gdImageColorTransparent(gdImagePtr im, int color)
 void gdTrueColor(int red, int green, int blue)(MACRO)
 void gdTrueColorAlpha(int red, int green, int blue, int alpha)(MACRO)

Resizing functions:

 void gdImageCopy(gdImagePtr dst, gdImagePtr src, int dstX, int dstY, int srcX, int
srcY, int w, int h)

 void gdImageCopyResized(gdImagePtr dst, gdImagePtr src, int dstX, int dstY, int
srcX, int srcY, int destW, int destH, int srcW, int srcH)

 void gdImageCopyResampled(gdImagePtr dst, gdImagePtr src, int dstX, int dstY, int
srcX, Int srcY, int destW, int destH, int srcW, int srcH)

 void gdImageCopyRotated(gdImagePtr dst, gdImagePtr src, doubledstX, doubledstY,
 int srcX, int srcY, int srcW, int srcH, int angle)
 void gdImageCopyMerge(gdImagePtr dst, gdImagePtr src, int dstX, int dstY, int srcX,
 int srcY, int w, int h, int pct)

GET THERE FASTER

Oliver Wyman is a leading global management consulting firm that combines

deep industry knowledge with specialized expertise in strategy, operations, risk

management, organizational transformation, and leadership development. With

offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and

executive teams of Global 1000 companies.

An equal opportunity employer.

Some people know precisely where they want to go. Others seek the adventure of
discovering uncharted territory. Whatever you want your professional journey to be,
you’ll find what you’re looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

DISCOVER
OUR WORLD

http://bookboon.com/
http://bookboon.com/count/advert/d1fde9ab-937d-4cfe-a21e-9f5700d8f159

Download free eBooks at bookboon.com

C Programming in Linux

72

Graphics with GD library

void gdImageCopyMergeGray(gdImagePtr dst, gdImagePtr src, int dstX, int dstY, int srcX,
 int srcY, int w, int h, int pct)
 void gdImagePaletteCopy(gdImagePtr dst, gdImagePtr src)
 void gdImageSquareToCircle(gdImagePtr im, int radius)
 void gdImageSharpen(gdImagePtr im, int pct)

Miscellaneous Functions:

 int gdImageCompare(gdImagePtr im1, gdImagePtr im2)
 gdImageInterlace(gdImagePtr im, int int erlace)
 gdFree(void *ptr)

In order to use a library like this you will need familiarity with the arguments which are often data
types defined within the library itself such as gdmagePtr which is a pointer to some kind of structure
containing all the data for an image to be processed or stored. These may all seem unusual but after a
while you will begin to get used to the syntax and on-line documentation and begin to see patterns in
the complexity.

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

73

Apache C modules

7. Apache C modules

7.1 Safer C web applications

In real life few web administrators would dream of letting anyone run C programs as CGI content
generators because of the risk of crashes and core dumps. However the Apache server is itself written
in C and there are simple utilities that come with its development tools that permit you to create code
stubs into which you can place your C programs and run them as Apache modules when they are
loaded as part of the server and managed safely in a kind of “sand-box”. Here we will take an earlier
example and turn it into an Apache module.

A utility called apxs2 is included in the Apache2 development libraries which can be invoked to
generate a code stub for a program which can be compiled into a module that is loaded and managed
by the Apache web server. These modules can be used to perform a huge variety of tasks but in our
case we will do something which is akin the an ISAPI DLL found in the IIS server. The exact location
of the apxs2 utility will change according to the Linux distribution you are using but with OpenSuse it
runs like this.

In a terminal type: /usr/sbin/apxs2 -n labelmaker –g

This creates a folder of the name you give it (labelmaker) and a Makefile, a modules.mk file which
can be used by the Make utility, and a file called mod_labelmaker.c.

The C file generated is kind of like a Hello World for Apache. It may look like a complex thing but it
does supply a long explanatory comment header which is worth reading. The idea is that when
Apache starts any modules in a specified location which are configured as needing to be loaded in the
server configuration files, will be loaded. The *_register_hooks function lists the names and
signatures of functions that can be called at specific stages in the Apache server process. In this case if
the name http://localhost/labelmaker is called this module will be asked to handle whatever happens in
the *_handler function.

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

74

Apache C modules

The configuration of the server can be a bit fiddly but in OpenSuse we have to add this to the file

/etc/apache2/default-server.conf

 <Location /labelmaker>
 SetHandler labelmaker
 </Location>

and in /etc/config.sys/apache2 we add the name of our module labelmaker to long comma-separated
list in the line starting

APACHE_MODULES=”.....,labelmaker”
Now go to the folder labelmaker and type:

sudo /usr/sbin/apxs2 -c -i mod_labelmaker.c
sudo /etc/init.d/apache2 restart

http://bookboon.com/
http://bookboon.com/count/advert/dba0fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

C Programming in Linux

75

Apache C modules

Call this in a browser like this:

#include "httpd.h"
#include "http_config.h"
#include "http_protocol.h"
#include "ap_config.h"

/* The sample content handler */
static int labelmaker_handler(request_rec *r)
{
 if (strcmp(r->handler, "labelmaker")) {
 return DECLINED;
 }
 r->content_type = "text/html";

 if (!r->header_only)
 ap_rputs("The sample page from mod_labelmaker.c\n", r);
 return OK;
}

static void labelmaker_register_hooks(apr_pool_t *p)
{
 ap_hook_handler(labelmaker_handler, NULL, NULL, APR_HOOK_MIDDLE);
}

/* Dispatch list for API hooks */
module AP_MODULE_DECLARE_DATA labelmaker_module = {
 STANDARD20_MODULE_STUFF,
 NULL, /* create per-dir config structures */
 NULL, /* merge per-dir config structures */
 NULL, /* create per-server config structures */
 NULL, /* merge per-server config structures */
 NULL, /* table of config file commands */
 labelmaker_register_hooks /* register hooks */
};

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

76

Apache C modules

7.2 Adding some functionality

Now we can plug in the work we did for the graphics library in Chapter 6 as a replacement handler
function (in the code Chapter7_1.c there are BOTH handlers, one commented out). Note the
(highlighted) call to a modified decode_value function that uses the r->args pointer to get the
QUERY_STRING rather than getenv() . Also Apache handles the output a bit differently too – get get
a pointer to the array of bytes in the image by calling gdImageGifPtr then the ap_rwrite function
outputs the data. We have to free the pointer with gdFree after the output call.

static int labelmaker_handler(request_rec *r)
{
 void *iptr;
 int sz = 0;

 if (strcmp(r->handler, "labelmaker")) {
 return DECLINED;
 }
 r->content_type = "Content-type: image/gif";
 if (!r->header_only){
 int text=0,background=0, x=0,y=0,size=30,string_rectangle[8];
 double angle=0.0;
 char value[255] = "Hello";
 char font[256] = "/usr/share/fonts/truetype/DejaVuSans.ttf";
 char *err = NULL;
 gdImagePtr im_out = NULL;
 decode_value(r,"TEXT=", (char *) &value, 255);
 err=gdImageStringFT(NULL,&string_rectangle[0],0,
 font,size,angle,0,0,value);
 x = string_rectangle[2]-string_rectangle[6] + 6;
 y = string_rectangle[3]-string_rectangle[7] + 6;
 im_out = gdImageCreate(x,y);
 background = gdImageColorAllocate(im_out, 0,0,0);
 text = gdImageColorAllocate(im_out,255,0,255);
 x = 3 - string_rectangle[6];
 y = 3 - string_rectangle[7];
 err = gdImageStringFT(im_out,&string_rectangle[0],text,
 font,size,angle,x,y,value);
 iptr = gdImageGifPtr(im_out,&sz);
 ap_rwrite(iptr, sz, r);
 gdFree(iptr);
 gdImageDestroy(im_out);
 }
 return OK;
}

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

77

Apache C modules

7.3 Apache Modules Conclusion

Whilst tricky to write and debug, this is probably the most rewarding and esoteric area where you can
do real, commerically useful and safely deployable web content generation. It is easy to see how this
example could be extended with parameters for colours and fonts to make a useful web content tool.

There is very little clear simple material about apache modukles but start with the on-line
documentation at http://httpd.apache.org/docs/2.2/developer/

One recent book worth looking at is “The Apache Modules Book” Nick Kew, Prentice Hall.

Hellmann’s is one of Unilever’s oldest brands having been popular for over 100 years.
If you too share a passion for discovery and innovation we will give you the tools and
opportunities to provide you with a challenging career. Are you a great scientist who
would like to be at the forefront of scientific innovations and developments? Then you will
enjoy a career within Unilever Research & Development. For challenging job opportunities,
please visit www.unilever.com/rdjobs.

Could you think of 101 new things
to do with eggs and oil?

http://bookboon.com/
http://bookboon.com/count/advert/f6a0fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

C Programming in Linux

78

The Ghost project

8. The Ghost project

8.1 A PHP web site generator project

The ability to write short programs in C to automate tedious tasks or to do things that would otherwise
take hours of fiddling about with cumbersome tools such as doing mail-merge, is one on the things
you will be most pleased you have learned how to do. This project is such a time-saver. Ghost is a
lightweight PHP generator for you to customise.

If you find yourself having to build PHP web sites all the time, a quick way to generate all the
parameter-passing, decoding, forms building and database management code in one step would be
useful. Tools like Ruby on Rails offer such functionality but are infinitely more complex to set up and
run and you end up with needing to learn yet another language to go any further.

Probably the best way to start with this tool is to compile and run it. Unzip the ghost.zip source into
your public_html folder which creates a folder called ghost. The Makefile contains a target g1 that
compiles and links ghost. So go to public_html/ghost and type: make g1 .

To run the site generator type:

- ./ghost testwebsite data1 data2 data1 data3 data4 data6 data6
- This will create:
- a folder public_html/testwebsite
- a mysql database table called testwebsite with text fields data1 data2 data1 data3 data4 data6

data6
- a testwebsite.css file
- empty header.html and footer.html pages
- index.php that demonstrates a form handling entry, edit & update, and delete to the database

table for the data items specified.

In a browser what you see is this at http://localhost/~yourname/testwebsite

http://bookboon.com/

Download free eBooks at bookboon.com

C Programming in Linux

79

The Ghost project

The idea behind this is that all the mechanical bits to create and manage the form content are done and
can be customised. This screen shot shows the result of submitting one record. Thde top row is for
entering new data, the lower row(s) allow editing or deleting of records. It is a framework that allows
you to take and use parts in your own website design.

Let us examine this code in sections.

The first section declares the required data and creates the folder and CSS file.

Next the header.html and footer.html files are generated. These files is loaded by the PHP file and
could be used as a generic common header and footers. The CSS file is referenced from the
header.html file.

int main(int argc, char *argv[])
{
 FILE *out = NULL;
 MYSQL *conn = NULL;
 MYSQL_RES *result = NULL;
 MYSQL_ROW row;
 MYSQL_FIELD *field;
 char SQL[STRINGSIZE]="";
 char BIT[STRINGSIZE]="";
 char SQLINSERT[STRINGSIZE]="";
 char SQLUPDATE[STRINGSIZE]="";
 char SQLDELETE[STRINGSIZE]="";
 int rc=0, i=0, num_fields=0;

 //CREATE DIRECTORY///////////////////////////////
 sprintf(BIT,"mkdir ~/public_html/%s",argv[1]);
 system(BIT);
 //BUILD CSS///////////////////////////////////////
 sprintf(BIT,"../%s/%s.css",argv[1],argv[1]);
 out = fopen(BIT,"w");
 fprintf(out,"table {width:800;vertical-align:top;}\n");
 fprintf(out,"th {font-size:80%;color:#fd9208;vertical-align:bottom;text-align:left;}\n");
 fprintf(out,"td {font-size:80%;color:#fd9208;vertical-align:bottom;text-align:left;}\n");
 fprintf(out,"input {font-size:80%;color:#196419;}\n");
 fprintf(out,"a {font-size:65%;color:#000000;}\n");
 fclose(out);

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

80

The Ghost project

 //BUILD HEADER HTML////////////////////////////////
 sprintf(BIT,"../%s/head.html",argv[1]);
 out = fopen(BIT,"w");
 fprintf(out,"<html>\n");
 fprintf(out,"<head>\n");
 fprintf(out,"<link rel=\"stylesheet\" type=\"text/css\"href=\"%s.css\" />\n",argv[1]);
 fprintf(out,"<title>%s</title>\n",argv[1]);
 fprintf(out,"</head>\n");
 fprintf(out,"<body>\n");
 fprintf(out,"<center>\n");
 fprintf(out,"<table><tr><td>\n");
 fprintf(out,"</td></tr></table>\n");
 fclose(out);
 //BUILD FOOT HTML///////////////////////////////////
 sprintf(BIT,"../%s/foot.html",argv[1]);
 out = fopen(BIT,"w");
 fprintf(out,"</body></html>\n");
 fclose(out);

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

C Programming in Linux

81

The Ghost project

Next we create the data base.

The complicated part starts now, of generating a php script. The best way to understand this is to
examine the actual output of the program when we view the source of the page in the browser.

The top row is a form with a text box for each column defined in the table generated by running the
ghost program.

 //OPEN DATABASE//////////////////////////////////////
 conn = mysql_init((MYSQL *) 0);
 mysql_options(conn,MYSQL_READ_DEFAULT_GROUP,"mysqlcapi");
 mysql_real_connect(conn, "localhost","","","test",0, NULL, 0);
 //CREATE TABLE///////////////////////////////////////
 sprintf(SQL,"drop table if exists %s",argv[1]);
 rc = mysql_query(conn,SQL);
 sprintf(SQL,"create table %s (ID varchar(255)",argv[1]);
 for(i=2; i < argc; i++)
 {
 sprintf(BIT,",%s varchar(255)",argv[i]);
 strcat(SQL,BIT);
 }
 strcat(SQL,");");
 rc = mysql_query(conn,SQL);

<tr>
<form><input type='hidden' name='MODE' value='INSERT'>
<td><input type=hidden name='ID' value='1'>1 </td>
<td><input type=text name='data1'></td>
<td><input type=text name='data2'></td>
<td><input type=text name='data3'></td>
<td><input type=text name='data4'></td>
<td><input type=text name='data5'></td>
<td><input type=text name='data6'></td>
<td><input type='submit' value='post'></td>
</form>
</tr>

http://bookboon.com/

Download free eBooks at bookboon.com

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

C Programming in Linux

82

The Ghost project

For each row in the table we now generate a form allowing editing of the data and an anchor link to do
a delete operation.

Close examination of the file index.php will allow you to see where all this happens, and to work
backward to find where in the ghost.c source code this PHP code is generated. A good idea is to use a
highlighter pen on a printout as we are embedding a language (HTML) inside another language (PHP)
which is in turn inside another language so very very careful use is made of the escape characters '\ 'to
express quotation marks both single and double where necessary to make it all work. This may seem
complex – but the speedy prototyping that ghost permits makes it worthwhile to spend time customising
the C code so the PHP that you want and the database you want come out the way you want it.

<tr>
<form><input type='hidden' name='MODE' value='UPDATE'>
<td><input type=hidden name='ID' value='0'>0</td>
<td><input type=text name='data1' value='aaaaaaaaaaaa'></td>
<td><input type=text name='data2' value='aaaaaaaaaaaaaaaa'></td>
<td><input type=text name='data3' value='aaaaaaaaaaaaaaa'></td>
<td><input type=text name='data4' value='aaaaaaaaaaaaaa'></td>
<td><input type=text name='data5' value='aaaaaaaaaaaaaaa'></td>
<td><input type=text name='data6' value='aaaaaaaaaaaa'></td>
<td><input type='submit' value='edit'></form>
delete</td
</tr>

http://bookboon.com/
http://bookboon.com/count/advert/a79f44a9-bd6e-444e-97c2-a02700c59d7f

Download free eBooks at bookboon.com

C Programming in Linux

83

The Ghost project

Here is the part of the PHP file index.php which generates the edit or delete rows. The static HTML is
highlighted and the other parts are inserted by MySQL PHP function calls.

As you can see a great deal of tedious and repetitive works has been automated. You can move on by
modifying the PHP code or go deeper to customise the C program which generates all of it.

I personally use ghost frequently to save time on site-building and this is why I wrote it. I got bored
making mistakes writing virtually identical code to decode HTML forms and populate or update
databases.

$result = mysql_query("select * from testwebsite");
while($row = mysql_fetch_array($result))
{
 echo "<tr>";
 echo "<form><input type='hidden' name='MODE' value='UPDATE'>";
 for($i=0;$i < mysql_num_fields($result); $i++)
 if($i==0)
 echo "<td><input type=hidden name='" .
 mysql_field_name($result,$i) . "' value='" .
$row[mysql_field_name($result,$i)] .
 "'>".
 $row[mysql_field_name($result,$i)] .
 "</td>";
 else
 echo "<td><input type=text name='" .
 mysql_field_name($result,$i) .
 "' value='" .
 $row[mysql_field_name($result,$i)] .
 "'></td>";
 echo "<td><input type='submit' value='edit'></form>";
 echo "<a href='?ID=" .
 $row[mysql_field_name($result,0)] .
 "&MODE=DELETE'>delete";
 echo "</td></tr>";
}
mysql_free_result($result);
mysql_close($con);

http://bookboon.com/

C Programming in Linux

84

Conclusion

Conclusion

Now you have worked through these simple examples I hope you can see why a knowledge of the C
language is always going to be a useful and continually practical skill.

After 25 years I still regularly write C programs to do everyday tasks quickly and effectively and once
written they form part of a set of durable tools that suit me and which are portable.

This short book contains a number of “tricks” that I have learned over the years for which there is little
explicit documentation, and it frankly presupposes a familiarity with Linux. After testing the material
with students of a wide range of experience I am confident that an attentive careful student will get all
this material working and can start from there to discover the joy of C. Many of my students say “This
is much more fun that Java, I can see what is really going on!” which is most gratifying and makes me
confident you will find the material useful.

Those interested might ask the publisher to commission me to write a companion volume :

C++ Standard Template Library Programming in Linux

Good luck and happy programming.

David
March 31st 2009

