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Preface

Preface
Typical algorithms and data structures textbooks are seven or eight hundred pages long, include chapters 
about software engineering and the programming language used in the book, and include appendices 
with yet more information about the programming language. Often they include lengthy case studies 
with tens of pages of specifications and code. Frequently they are hardcover books printed in two colors; 
sometimes they have sidebars with various sorts of supplementary material. All of these characteristics 
make these textbooks very expensive (and very heavy), but in my experience, relatively few students 
take advantage of the bulk of this material and few appreciate these books’ many features: much of the 
time and money lavished on these texts is wasted on their readers.

Students seem to prefer dealing with only essential material compressed into the fewest number of 
pages. Perhaps this is attributable to habits formed by life on the Internet, or perhaps it is due to extreme 
pragmatism. But whatever the reason, it seems very difficult to persuade most computer science students 
to engage with long texts, large examples, and extra material, no matter how well it is presented and 
illustrated. This text is a response to this tendency.

This text covers the usual topics in an introductory survey of algorithms and data structures, but it does so 
in well under 160 pages. There are relatively few examples and no large case studies. Code is presented in 
Ruby (more about this in a moment), but the book does not teach Ruby and it does not include reference 
material about the language. There are no sidebars and the book is in black and white. The book does includes 
features of pedagogical value: every chapter has review questions with answers, and a set of exercises. There 
is also a glossary at the end. The book (and versions of it using other programming languages) has been 
used successfully for several years to teach introductory algorithms and data structures at James Madison 
University. Many students have commented appreciatively regarding its brevity, clarity, and low cost.

At JMU, instructors are required to teach algorithms and data structures in a language different from the 
one used in our introductory courses, which happens to be Java. Ideally, a language for algorithms and 
data structures would be easy to learn (so as to leave time for learning algorithms and data structures), 
support data abstraction well, provide a good development environment, and engage students. Although 
Ruby is large and therefore a challenge to learn, a subset of it adequate for the needs of an introductory 
algorithms and data structures course can be learned fairly easily. Ruby is a pure object-oriented language 
so it does a good job supporting data abstraction. Unfortunately, Ruby is dynamically typed and does not 
provide assertions, so it is a bit dicey for novice programmers. On the other hand, it has a command-
line interpreter, a good Eclipse plug-in, and a very nice light-weight testing framework, all of which 
help students a great deal. Thanks to the popularity of Ruby on Rails and the apparent ease of writing 
code in an interpreted dynamically typed language, students find it interesting and fun to program in. 
Overall, Ruby is a good choice for teaching algorithms and data structure in a language new to students.
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Very few algorithms and data structures books do a good job teaching programming, and there is no 
reason for them to try. An algorithms and data structures book should concentrate on its main topic; 
students can learn the programming language from any of the many excellent books devoted to teaching 
it. Especially when an algorithms and data structures text is either free or only costs a few dollars, it is 
quite reasonable to expect students to also obtain a programming language tutorial. For Ruby, I highly 
recommend, Programming Ruby: The Pragmatic Programmer’s Guide by Dave Thomas, Chad Fowler, and 
Andy Hunt. Besides being an excellent tutorial, it also contains extensive reference materials, and new 
editions keep up with the latest releases of the language.

The text is informed by several themes:

Abstract data typing—All types are presented as implementations of abstract data types, and 
strong connections are made between the data structures used to represent values and the carrier 
set of the ADT, and the algorithms used to manipulate data and the operations of the ADT.

Contiguous versus linked representations—Two implementation strategies are considered for 
every ADT: one using contiguous memory locations (arrays), and one using linked structures.

Container hierarchy—A container hierarchy is built using the data structures studied in the 
text. Although modest, this hierarchy introduces the notion of a container library like the ones 
that students will encounter in many other languages, and it shows how various containers 
are related to one another.

Assertions—Preconditions, post-conditions, class invariants, and unreachable-code assertions 
are stated wherever appropriate, and exceptions are raised when assertions are violated.

All the code appearing in the book has been written and tested under Ruby version 1.9. Code 
implementing the container hierarchy and the searching and sorting algorithms covered in the book is 
viewable at https://users.cs.jmu.edu/foxcj/Public/ConciseNotesRuby/.

I thank Nathan Sprague for several constructive criticisms and error corrections that have improved the 
book. I also thank my students for suggestions and corrections, and for being willing to test the book 
for me.

Christopher Fox
September, 2012
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Introduction

1	 Introduction
1.1	 What Are Data Structures and Algorithms?

If this book is about data structures and algorithms, then perhaps we should start by defining these 
terms. We begin with a definition for “algorithm.”

Algorithm: A finite sequence of steps for accomplishing some computational task. An algorithm 
must

•	 Have steps that are simple and definite enough to be done by a computer, and
•	 Terminate after finitely many steps.

This definition of an algorithm is similar to others you may have seen in prior computer science courses. 
Notice that an algorithm is a sequence of steps, not a program. You might use the same algorithm in 
different programs, or express the same algorithm in different languages, because an algorithm is an 
entity that is abstracted from implementation details. Part of the point of this course is to introduce you 
to algorithms that you can use no matter what language you program in. We will write programs in a 
particular language, but we are really studying the algorithms, not their implementations.

The definition of a data structure is a bit more involved. We begin with the notion of an abstract data type.

Abstract data type (ADT): A set of values (the carrier set), and operations on those values.

Here are some examples of ADTs:

Boolean—The carrier set of the Boolean ADT is the set {true, false}. The operations on these 
values are negation, conjunction, disjunction, conditional, is equal to, and perhaps some others.

Integer—The carrier set of the Integer ADT is the set {…, -2, -1, 0, 1, 2, …}, and the operations 
on these values are addition, subtraction, multiplication, division, remainder, is equal to, is 
less than, is greater than, and so on. Note that although some of these operations yield other 
Integer values, some yield values from other ADTs (like true and false), but all have at least 
one Integer argument.

String—The carrier set of the String ADT is the set of all finite sequences of characters from 
some alphabet, including the empty sequence (the empty string). Operations on string values 
include concatenation, length of, substring, index of, and so forth.
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Bit String—The carrier set of the Bit String ADT is the set of all finite sequences of bits, 
including the empty strings of bits, which we denote λ. This set is {λ, 0, 1, 00, 01, 10, 11, 
000, …}. Operations on bit strings include complement (which reverses all the bits), shifts 
(which rotates a bit string left or right), conjunction and disjunction (which combine bits at 
corresponding locations in the strings), and concatenation and truncation.

The thing that makes an abstract data type abstract is that its carrier set and its operations are mathematical 
entities, like numbers or geometric objects; all details of implementation on a computer are ignored. 
This makes it easier to reason about them and to understand what they are. For example, we can decide 
how div and mod should work for negative numbers in the Integer ADT without having to worry about 
how to make this work on real computers. Then we can deal with implementation of our decisions as 
a separate problem.

Once an abstract data type is implemented on a computer, we call it a data type.

Data type: An implementation of an abstract data type on a computer.

Thus, for example, the Boolean ADT is implemented as the boolean type in Java, and the bool type 
in C++; the Integer ADT is realized as the int and long types in Java, and the Integer class in 
Ruby; the String ADT is implemented as the String class in Java and Ruby.

Abstract data types are very useful for helping us understand the mathematical objects that we use in our 
computations but, of course, we cannot use them directly in our programs. To use ADTs in programming, 
we must figure out how to implement them on a computer. Implementing an ADT requires two things:

•	 Representing the values in the carrier set of the ADT by data stored in computer memory, and
•	 Realizing computational mechanisms for the operations of the ADT.

Finding ways to represent carrier set values in a computer’s memory requires that we determine how 
to arrange data (ultimately bits) in memory locations so that each value of the carrier set has a unique 
representation. Such things are data structures.

Data structure: An arrangement of data in memory locations to represent values of the carrier 
set of an abstract data type.

Realizing computational mechanisms for performing operations of the type really means finding 
algorithms that use the data structures for the carrier set to implement the operations of the ADT. And 
now it should be clear why we study data structures and algorithms together: to implement an ADT, 
we must find data structures to represent the values of its carrier set and algorithms to work with these 
data structures to implement its operations.
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A course in data structures and algorithms is thus a course in implementing abstract data types. It 
may seem that we are paying a lot of attention to a minor topic, but abstract data types are really the 
foundation of everything we do in computing. Our computations work on data. This data must represent 
things and be manipulated according to rules. These things and the rules for their manipulation amount 
to abstract data types.

Usually there are many ways to implement an ADT. A large part of the study of data structures and 
algorithms is learning about alternative ways to implement an ADT and evaluating the alternatives to 
determine their advantages and disadvantages. Typically some alternatives will be better for certain 
applications and other alternatives will be better for other applications. Knowing how to do such 
evaluations to make good design decisions is an essential part of becoming an expert programmer.

1.2	 Structure of the Book

In this book we will begin by studying fundamental data types that are usually implemented for us 
in programming languages. Then we will consider how to use these fundamental types and other 
programming language features (such as references) to implement more complicated ADTs. Along the 
way we will construct a classification of complex ADTs that will serve as the basis for a class library of 
implementations. We will also learn how to measure an algorithm’s efficiency and use this skill to study 
algorithms for searching and sorting, which are very important in making our programs efficient when 
they must process large data sets.
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1.3	 The Ruby Programming Language

Although the data structures and algorithms we study are not tied to any program or programming 
language, we need to write particular programs in particular languages to practice implementing and using 
the data structures and algorithms that we learn. In this book, we will use the Ruby programming language.

Ruby is an interpreted, purely object-oriented language with many powerful features, such as garbage 
collection, dynamic arrays, hash tables, and rich string processing facilities. We use Ruby because it 
is a fairly popular, full-featured, object-oriented language, but it can be learned well enough to write 
substantial programs fairly quickly. Thus we will be able to use a powerful language and still have time to 
concentrate on data structures and algorithms, which is what we are really interested in. Also, it is free.

Ruby is dynamically typed, does not support design-by-contract, and has a somewhat frugal collection 
of features for object-oriented programming. Although this makes the language easier to learn and use, 
it also opens up many opportunities for errors. Careful attention to types and mechanisms to help detect 
type errors early, fully understanding preconditions for executing methods, and thoughtful use of class 
hierarchies are important for novice programmers, so we will pay close attention to these matters in 
our discussion of data structures and algorithms and we will, when possible, incorporate this material 
into Ruby code. This sometimes results in code that does not conform to the style prevalent in the Ruby 
community. However, programmers must understand and appreciate these matters so that they can 
handle data structures in more strongly typed languages such as Java, C++, or C#.

1.4	 Review Questions

1.	 What are the carrier set and some operations of the Character ADT?
2.	 How might the Bit String ADT carrier set be represented on a computer in some high level 

language?
3.	 How might the concatenation operation of the Bit String ADT be realized using the carrier set 

representation you devised for question two above?
4.	 What do your answers to questions two and three above have to do with data structures and 

algorithms?

1.5	 Exercises

1.	 Describe the carrier sets and some operations for the following ADTs:
a)	 The Real numbers
b)	 The Rational numbers
c)	 The Complex numbers
d)	 Ordered pairs of Integers
e)	 Sets of Characters
f)	 Grades (the letters A, B, C, D, and F)
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2.	 For each of the ADTs in exercise one, either indicate how the ADT is realized in some 
programming language, or describe how the values in the carrier set might be realized using 
the facilities of some programming language, and sketch how the operations of the ADT might 
be implemented.

1.6	 Review Question Answers

1.	 We must first choose a character set; suppose we use the ASCII characters. Then the carrier set 
of the Character ADT is the set of ASCII characters. Some operations of this ADT might be 
those to change character case from lower to upper and the reverse, classification operations to 
determine whether a character is a letter, a digit, whitespace, punctuation, a printable character, 
and so forth, and operations to convert between integers and characters.

2.	 Bit String ADT values could be represented in many ways. For example, bit strings might be 
represented in character strings of “0”s and “1”s. They might be represented by arrays or lists 
of characters, Booleans, or integers.

3.	 If bit strings are represented as characters strings, then the bit string concatenation operation 
is realized by the character string concatenation operation. If bit strings are represented by 
arrays or lists, then the concatenation of two bit strings is a new array or list whose size is the 
sum of the sizes of the argument data structures consisting of the bits from the first bit string 
copied into the initial portion of the result array or list, followed by the bits from the second 
bit string copied into the remaining portion.

4.	 The carrier set representations described in the answer to question two are data structures, 
and the implementations of the concatenation operation described in the answer to question 
three are (sketches of) algorithms.
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2	 Built-In Types
2.1	 Simple and Structured Types

Virtually every programming language has implementations of several ADTs built into it. We distinguish 
two sorts of built-in types:

Simple types: The values of the carrier set are atomic, that is, they cannot be divided into 
parts. Common examples of simple types are integer, Boolean, character, floating point, and 
enumerations. Some languages also provide string as a built-in simple type.

Structured types: The values of the carrier set are not atomic, consisting instead of several 
atomic values arranged in some way. Common examples of structured types are arrays, records, 
classes, and sets. Some languages treat strings as a built-in structured types.

Note that both simple and structured types are implementations of ADTs, it is simply a question of how 
the programming language treats the values of the carrier set of the ADT in its implementation. The 
remainder of this chapter considers some Ruby simple and structured types to illustrate these ideas.
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2.2	 Types in Ruby

Ruby is a pure object-oriented language, meaning that all types in Ruby are classes, and every value 
in a Ruby program is an instance of a class. This has several consequences for the way values can be 
manipulated that may seem odd to programmers familiar with languages that have values that are 
not objects. For example, values in Ruby respond to method calls: The expressions 142.even? and 
“Hello”.empty? are perfectly legitimate (the first expression is true and the second is false).

Ruby has many built-in types because it has many built-in classes. Here we only consider a few Ruby 
types to illustrate how they realize ADTs.

2.3	 Symbol: A Simple Type in Ruby

Ruby has many simple types, including numeric classes such as Integer, Fixnum, Bignum, Float, 
BigDecimal, Rational, and Complex, textual classes such as String, Symbol, and Regexp, 
and many more. One unusual and interesting simple type is Symbol, which we consider in more detail 
to illustrate how a type in a programming language realizes an ADT.

Ruby has a String class whose instances are mutable sequences of Unicode characters. Symbol class 
instances are character sequences that are not mutable, and consequently the Symbol class has far 
fewer operations than the String class. Ruby in effect has implementations of two String ADTs—we 
consider the simpler one, calling it the Symbol ADT for purposes of this discussion.

The carrier set of the Symbol ADT is the set of all finite sequences of characters over the Unicode 
characters set (Unicode is a standard character set of over 110,000 characters from 93 scripts). Hence 
this carrier set includes the string of zero characters (the empty string), all strings of one character, all 
strings of two characters, and so forth. This carrier set is infinite.

The operations of the Symbol ADT are the following.

a==b—returns true if and only if symbols a and b are identical.

a<=b—returns true if and only if either symbols a and b are identical, or symbol a precedes 
symbol b in Unicode collating sequence order.

a<b—returns true if and only if symbol a precedes symbol b in Unicode collating sequence order.

empty?(a)—returns true if and only if symbol a is the empty symbol.

a=~b—returns the index of the first character of the first portion of symbol a that matches the 
regular expression b. If there is no match, the result is undefined.
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caseCompare(a,b)—compares symbols a and b, ignoring case, and returns -1 if a<b, 0 if a==b, 
and 1 otherwise.

length(a)—returns the number of characters in symbol a.

capitalize(a)—returns the symbol generated from a by making its first character uppercase and 
making its remaining characters lowercase.

downcase(a)—returns the symbol generated from a by making all characters in a lowercase.

upcase(a)—returns the symbol generated from a by making all characters in a uppercase.

swapcase(a)—returns the symbol generated from a by making all lowercase characters in a 
uppercase and all uppercase characters in a lowercase.

charAt(a,i)—returns the one character symbol consisting of the character of symbol a at index 
i (counting from 0); the result is undefined if i is less than 0 or greater than or equal to the 
length of a.

charAt(a,i,c)—returns the substring of symbol a beginning at index i (counting from 0), and 
continuing for c characters; the result is undefined if i is less than 0 or greater than or equal to 
the length of a, or if c is negative. If i+c is greater than the length of a, the result is the suffix 
of symbol a beginning at index i.

succ(a)—returns the symbol that is the successor of symbol a. If a contains characters or letters, 
the successor of a is found by incrementing the right-most letter or digit according to the 
Unicode collating sequence, carrying leftward if necessary when the last digit or letter in the 
collating sequence is encountered. If a has no letters or digits, then the right-most character 
of a is incremented, with carries to the left as necessary.

toString(a)—returns a string whose characters correspond to the characters of symbol a.

toSymbol(a)—returns a symbol whose characters correspond to the characters of string a.

The Symbol ADT has no concatenation operations, but assuming we have a full-featured String ADT, 
symbols can be concatenated by converting them to strings, concatenating the strings, then converting 
the result back to a symbol. Similarly, String ADT operations can be used to do other manipulations. 
This explains why the Symbol ADT has a rather odd mix of operations: The Symbol ADT models the 
Symbol class in Ruby, and this class only has operations often used for Symbols, with most string 
operations appearing in the String class.
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The Ruby implementation of the Symbol ADT, as mentioned, hinges on making Symbol class instances 
immutable, which corresponds to the relative lack of operations in the Symbol ADT. Symbol values are 
stored in the Ruby interpreter’s symbol table, which guarantees that they cannot be changed. This also 
guarantees that only a single Symbol instance will exist corresponding to any sequence of characters, 
which is an important characteristic of the Ruby Symbol class that is not required by the Symbol ADT, 
and distinguishes it from the String class. 

All Symbol ADT operations listed above are implemented in the Symbol class, except toSymbol(), which 
is implemented in classes (such as String), that can generate a Symbol instance. When a result is 
undefined in the ADT, the result of the corresponding Symbol class method is nil. The names are 
sometimes different, following Ruby conventions; for example, toString() in the ADT becomes to_s() 
in Ruby, and charAt() in the ADT is []() in Ruby.

Ruby is written in C, so carrier set members (that is, individual symbols) are implemented as fixed-size arrays 
of characters (which is how C represents strings) inside the Symbol class. The empty symbol is an array of 
length 0, symbols of length one are arrays with a single element, symbols of length two are arrays with two 
elements, and so forth. Symbol class operations are either written to use these arrays directly, or to generate 
a String instance, do the operation on the string, and convert the result back into a Symbol instance.
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2.4	 Range: A Structured Type in Ruby

Ruby has a several structured types, including arrays, hashes, sets, classes, streams, and ranges. In this 
section we will only discuss ranges briefly as an example of a structured type.

The Range of T ADT represents a set of values of type T (called the base type) between two extremes. 
The start value is a value of type T that sets the lower bound of a range, and the end value is a value of 
type T that sets the upper bound of a range. The range itself is the set of values of type T between the 
lower and upper bounds. For example, the Range of Integers from 1 to 10 inclusive is the set of values 
{1, 2, 3, …, 10}.

A range can be inclusive, meaning that it includes the end value, or exclusive, meaning that it does not 
include the end value. Inclusive ranges are written with two dots between the extremes, and exclusive 
ranges with three dots. Hence the Range of Integers from 1 to 10 inclusive is written 1…10, and the 
Range of Integers from 1 to 10 exclusive (the set {1, 2, 3, …, 9}), is written 1…10.

A type can be a range base type only if it supports order comparisons. For example, the Integer, Real, 
and String types support order comparisons and so may be range base types, but Sets and Arrays do 
not, so they cannot be range base types.

The carrier set of a Range of T is the set of all sets of values v ∈ T such that for some start value s ∈ T 
and end value e ∈ T, either s ≤ v and v ≤ e (the inclusive ranges), or s ≤ v and

v < s (the exclusive ranges), plus the empty set. For example, the carrier set of the Range of Integer is 
the set of all sequences of contiguous integers. The carrier set of the Range of Real is the set of all sets 
of real number greater than or equal to a given number, and either less than or equal to another, or less 
than another. These sets are called intervals in mathematics.

The operations of the Range of T ADT includes the following, where a, b ∈ T and r and s are values of 
Range of T:

a…b—returns a range value (an element of the carrier set) consisting of all v ∈ T such that 
a ≤ v and v ≤ b.

a…b—returns a range value (an element of the carrier set) consisting of all.

v ∈ T such that a ≤ v and v < b.

r==s—returns true if and only if r and s have the same base type, start and end values, and are 
either both inclusive or both exclusive ranges.

min(r)—returns the smallest value in r. The result is undefined if r is the empty range.
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max(r)—returns the largest value in r. The result is undefined if r has no largest value (for 
example, the Range of Real 0…3 has no largest value because there is no largest Real number 
less than 3).

cover?(r, x)—returns true if and only if x ∈ r.

The Range of T ADT is a structured type because the values in its carrier set are composed of values of 
some other type, in this case, sets of value of the base type T.

Ruby implements the Range of T ADT in its Range class. Elements of the carrier set are represented 
in Range instances by recording internally the type, start, and end values of the range, along with an 
indication of whether the range is inclusive or exclusive. Ruby implements all the operations above, 
returning nil when the ADT operations are undefined. It is quite easy to see how to implement these 
operations given the representation elements of the carrier set. In addition, the Range class provides 
operations for accessing the begin and end values defining the range, which are easily accessible because 
they are recorded. Finally, the Range class has an include?()operation that tests range membership 
by stepping through the values of the range from start value to end value when the range is non-numeric. 
This gives slightly different results from cover?()in some cases (such as with String instances).

2.5	 Review Questions

1.	 What is the difference between a simple and a structured type?
2.	 What is a pure object-oriented language?
3.	 Name two ways that Symbol instances differ from String instances in Ruby.
4.	 Is String a simple or structured type in Ruby? Explain.
5.	 List the carrier set of Range of {1, 2, 3} (inclusive). In this type, what values are 1‥1, 2‥1, and 

1…3? What is max(1…3)?

2.6	 Exercises

1.	 Choose a language that you know well and list its simple and structures types.
2.	 Choose a language that you know well and compare its simple and structured types to those 

of Ruby. Does one language have a type that is simple while the corresponding type in the 
other language is structured? Which language has more simple types or more structured types?

3.	 Every Ruby type is a class, and every Ruby value is an instance of a class. What advantage and 
disadvantages do you see with this approach?

4.	 Write pseudocode to implement the cover?() operation for the Range class in Ruby.
5.	 Give an example of a Ruby String range r and String instance v such that r.cover?(v) 

and r.include?(v) differ.
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2.7	 Review Question Answers

1.	 The values of a simple type cannot be divided into parts, while the values of a structured type 
can be. For example, the values of the Integer type in Ruby cannot be broken into parts, 
while the values of a Range in Ruby can be (the parts are the individual elements of the ranges).

2.	 A pure object-oriented language is one whose types are all classes. Java and C++, for example, 
are not pure object-oriented languages because they include primitive data types, such as int, 
float, and char, that are not classes. Smalltalk and Ruby are pure object-oriented languages 
because they have no such types.

3.	 Symbol instances in Ruby are immutable while String instances are mutable. Symbol 
instances consisting of a particular sequence of characters are unique, while there may be 
arbitrarily many String instances with the same sequence of characters.

4.	 String is a simple type in Ruby because strings are not composed of other values—in Ruby 
there is no character type, so a String value cannot be broken down into parts composed 
of characters. If s is a String instance, then s[0] is not a character, but another String 
instance.

5.	 The carrier set of Range of {1, 2, 3} is { {}, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3} }. The value 1‥1 
is {1}, the value 2‥1 is {}, and the value 1…3 is {1, 2}, and max(1…3) is 2.
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3	 Arrays
3.1	 Introduction

A structured type of fundamental importance in almost every procedural programming language is the 
array.

Array: A fixed length, ordered collection of values of the same type stored in contiguous 
memory locations; the collection may be ordered in several dimensions.

The values stored in an array are called elements. Elements are accessed by indexing into the array: 
an integer value is used to indicate the ordinal value of the element. For example, if a is an array with 
20 elements, then a[6] is the element of a with ordinal value 6. Indexing may start at any number, but 
generally it starts at 0. In the example above a[6] is the seventh value in a when indexing start at 0.

Arrays are important because they allow many values to be stored in a single data structure while 
providing very fast access to each value. This is made possible by the fact that (a) all values in an array 
are the same type, and henokce require the same amount of memory to store, and that (b) elements are 
stored in contiguous memory locations. Accessing element a[i] requires finding the location where the 
element is stored. This is done by computing b+ (i × m,) where m is the size of an array element, and 
b is the base location of array a. This computation is obviously very fast. Furthermore, access to all the 
elements of the array can be done by starting a counter at b and incrementing it by m, thus yielding the 
location of each element in turn, which is also very fast.

Arrays are not abstract data types because their arrangement in the physical memory of a computer is 
an essential feature of their definition, and abstract data types abstract from all details of implementation 
on a computer. Nonetheless, we can discuss arrays in a “semi-abstract” fashion that abstracts some 
implementation details. The definition above abstracts away the details about how elements are stored 
in contiguous locations (which indeed does vary somewhat among languages). Also, arrays are typically 
types in procedural programming languages, so they are treated like realizations of abstract data types 
even though they are really not.

In this book, we will treat arrays as implementation mechanisms and not as ADTs.

3.2	 Varieties of Arrays

In some languages, the size of an array must be established once and for all at program design time and 
cannot change during execution. Such arrays are called static arrays. A chunk of memory big enough to hold 
all the values in the array is allocated when the array is created, and thereafter elements are accessed using 
the fixed base location of the array. Static arrays are the fundamental array type in most older procedural 
languages, such as Fortran, Basic, and C, and in many newer object-oriented languages as well, such as Java.
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Some languages provide arrays whose sizes are established at run-time and can change during execution. 
These dynamic arrays have an initial size used as the basis for allocating a segment of memory for 
element storage. Thereafter the array may shrink or grow. If the array shrinks during execution, then 
only an initial portion of allocated memory is used. But if the array grows beyond the space allocated 
for it, a more complex reallocation procedure must occur, as follows:

1.	 A new segment of memory large enough to store the elements of the expanded array is allocated.
2.	 All elements of the original (unexpanded) array are copied into the new memory segment.
3.	 The memory used initially to store array values is freed and the newly allocated memory is 

associated with the array variable or reference.

This reallocation procedure is computationally expensive, so systems are usually designed to minimize 
its frequency of use. For example, when an array expands beyond its memory allocation, its memory 
allocation might be doubled even if space for only a single additional element is needed. The hope is that 
providing a lot of extra space will avoid many expensive reallocation procedures if the array expands 
over time.

Dynamic arrays are convenient for programmers because they can never be too small—whenever more 
space is needed in a dynamic array, it can simply be expanded. One drawback of dynamic arrays is that 
implementing language support for them is more work for the compiler or interpreter writer. A potentially 
more serious drawback is that the expansion procedure is expensive, so there are circumstances when 
using a dynamic array can be dangerous. For example, if an application must respond in real time to 
events in its environment, and a dynamic array must be expanded when the application is in the midst 
of a response, then the response may be delayed too long, causing problems.

3.3	 Arrays in Ruby

Ruby arrays are dynamic arrays that expand automatically whenever a value is stored in a location 
beyond the current end of the array. To the programmer, it is as if arrays are unbounded and as many 
locations as are needed are available. Locations not assigned a value in an expanded array are initialized 
to nil by default. Ruby also has an interesting indexing mechanism for arrays. Array indices begin at 
0 so, for example, a[13] is the value in the 14th position of the array. Negative numbers are the indices 
of elements counting from the current end of the array, so a[-1] is the last element, a[-2] is the 
second to last element, and so forth. Array references that use an out-of-bound index return nil. These 
features combine to make it difficult to write an array reference that causes an indexing error. This is 
apparently a great convenience to the programmer, but actually it is not because it makes it so hard to 
find bugs: many unintended and erroneous array references are legal.

The ability to assign arbitrary values to arrays that automatically grow arbitrarily large makes Ruby arrays 
behave more like lists than arrays in other languages. We will discuss the List ADT later on.
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Another interesting feature of Ruby arrays has to do with the fact that Ruby is a pure object-oriented 
language. This means (in part) that every value in Ruby is an object, and hence every value in Ruby is an 
instance of Object, the super-class of all classes, or one of its sub-classes. Arrays hold Object values, 
so any value can be stored in any array! For example, an array can store some strings, some integers, some 
floats, and so forth. This appears to be a big advantage for programmers, but again this freedom has a 
price: it much harder to find bugs. For example, in Java, mistakenly assigning a string value to an array 
holding integers is flagged by the compiler as an error, but in Ruby, the interpreter does not complain.

Ruby arrays have many interesting and powerful methods. Besides indexing operations that go well 
beyond those discussed above, arrays have operations based on set operations (membership, intersection, 
union, and relative complement), string operations (concatenation, searching, and replacement), stack 
operations (push and pop), and queue operations (shift and append), as well as more traditional array-
based operations (sorting, reversing, removing duplicates, and so forth). Arrays are also tightly bound 
up with Ruby’s iteration mechanism, which will be discussed later.
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3.4	 Review Questions

1.	 If an array holds integers, each of which is four bytes long, how many bytes from the base 
location of the array is the location of the fifth element?

2.	 Is the formula for finding the location of an element in a dynamic array different from the 
formula for finding the location of an element in a static array?

3.	 When a dynamic array expands, why can’t the existing elements be left in place and extra 
memory simply be allocated at the end of the existing memory allocation?

4.	 If a Ruby array a has n elements, which element is a[n-1]? Which is element a[-1]?

3.5	 Exercises

1.	 Suppose a dynamic integer array a with indices beginning at 0 has 1000 elements and the line 
of code a[1000] = a[5] is executed. How many array values must be moved from one 
memory location to another to complete this assignment statement?

2.	 Memory could be freed when a dynamic array shrinks. What advantages or disadvantages 
might this have?

3.	 To use a static array, data must be recorded about the base location of the array, the size of the 
elements (for indexing), and the number of elements in the array (to check that indexing is 
within bounds). What information must be recorded to use a dynamic array?

4.	 State a formula to determine how far from the base location of a Ruby array an element with 
index i is when i is a negative number.

5.	 Give an example of a Ruby array reference that will cause an indexing error at run time.
6.	 Suppose the Ruby assignment a=(1̤100).to_a is executed. What are the values of the 

following Ruby expressions? Hint: You can check your answers with the Ruby interpreter.
a)	 a[5̤10]
b)	 a[5…10]
c)	 a[5, 4]
d)	 a[-5, 4]
e)	 a[100̤105]
f)	 a[5̤-5]
g)	 a[0, 3] + a[-3, 3]

8.	 Suppose that the following Ruby statement are executed in order. What is the value of array a 
after each statement? Hint: You can check your answers with the Ruby interpreter.
a)	 a = Array.new(5, 0)
b)	 a[1̤2] = []
c)	 a[10] = 10
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d)	 a[3, 7] = [1, 2, 3, 4, 5, 6, 7]
e)	 a[0, 2] = 5
f)	 a[0, 2] = 6, 7
g)	 a[0̤-2] = (1̤3).to_a

3.6	 Review Question Answers

1.	 If an array holds integers, each of which is four bytes long, then the fifth element is 16 bytes 
past the base location of the array.

2.	 The formula for finding the location of an element in a dynamic array is the same as the formula 
for finding the location of an element in a static array. The only difference is what happens 
when a location is beyond the end of the array. For a static array, trying to access or assign 
to an element beyond the end of the array is an indexing error. For a dynamic array, it may 
mean that the array needs to be expanded, depending on the language. In Ruby, for example, 
accessing the value of a[i] when i ≥ a.size produces nil, while assigning a value to 
a[i] when i ≥ a.size causes the array a to expand to size i+1.

3.	 The memory allocated for an array almost always has memory allocated for other data structures 
after it, so it cannot simply be increased without clobbering other data structures. A new chunk 
of memory must be allocated from the free memory store sufficient to hold the expanded 
array, and the old memory returned to the free memory store so it can be used later for other 
(smaller) data structures.

4.	 If a Ruby array a has n elements, then element a[n-1] and element a[-1] are both the last 
element in the array. In general, a[n-i] and a[-i] both access the same element.
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4	 Assertions
4.1	 Introduction

At each point in a program, there are usually constraints on the computational state that must hold for 
the program to be correct. For example, if a certain variable is supposed to record a count of how many 
changes have been made to a file, this variable should never be negative. It helps human readers to know 
about these constraints. Furthermore, if a program checks these constraints as it executes, it may find 
errors almost as soon as they occur. For both these reasons, it is advisable to record constraints about 
program state in assertions.

Assertion: A statement that must be true at a designated point in a program.

4.2	 Types of Assertions

There are three sorts of assertions that are particularly useful:

Preconditions—A precondition is an assertion that must be true at the initiation of an operation. 
For example, a square root operation cannot accept a negative argument, so a precondition of 
this operation is that its argument be non-negative. Preconditions most often specify restrictions 
on parameters, but they may also specify that other conditions have been established, such 
as a file having been created or a device having been initialized. Often an operation has no 
preconditions, meaning that it can be executed under any circumstances.

Post conditions—A post condition is an assertion that must be true at the completion of an 
operation. For example, a post condition of the square root operation is that its result, when squared, 
is within a small amount of its argument. Post conditions usually specify relationships between the 
arguments and the results, or restrictions on the results. Sometimes they specify that the arguments 
do not change, or that they change in certain ways. Finally, a post condition may specify what 
happens when a precondition is violated (for example, that an exception will be thrown).

Class invariants—A class invariant is an assertion that must be true of any class instance 
before and after calls of its exported operations. Usually class invariants specify properties of 
attributes and relationships between the attributes in a class. For example, suppose a Bin class 
models containers of discrete items, like apples or nails. The Bin class might have currentSize, 
spaceLeft, and capacity attributes. One of its class invariants is that currentSize and spaceLeft 
must always be between zero and capacity; another is that currentSize + spaceLeft = capacity.

A class invariant may not be true during execution of a public operation, but it must be true 
between executions of public operations. For example, an operation to add something to a 
container must increase the size and decrease the space left attributes, and for a moment during 
execution of this operation their sum might not be correct, but when the operation is done, 
their sum must be the capacity of the container.
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Other sorts of assertions may be used in various circumstances. An unreachable code assertion is an 
assertion that is placed at a point in a program that should not be executed under any circumstances. 
For example, the cases in a switch statement often exhaust the possible values of the switch expression, so 
execution should never reach the default case. An unreachable code assertion can be placed at the default case; 
if it is every executed, then the program is in an erroneous state. A loop invariant is an assertion that must 
be true at the start of a loop on each of its iterations. Loop invariants are used to prove program correctness. 
They can also help programmers write loops correctly, and understand loops that someone else has written.

4.3	 Assertions and Abstract Data Types

Although we have defined assertions in terms of programs, the notion can be extended to abstract data 
types (which are mathematical entities). An ADT assertion is a statement that must always be true of 
the carrier set values or the operations in the ADT. ADT assertions can describe many things about 
an ADT, but usually they help describe the operations of the ADT. Especially helpful in this regard are 
operation preconditions, which usually constrain the parameters of operations, operation post conditions, 
which define the results of the operations, and axioms, which make statements about the properties of 
operations, often showing how operations are related to one another. For examples, consider the Natural 
ADT whose carrier set is the set of non-negative integers and whose operations are the usual arithmetic 
operations. A precondition of the mod (%) operation is that the modulus not be zero; if it is zero, the 
result of the operation is undefined. A post condition of the mod operation is that its result is between 
zero and the modulus less one. An axiom of this ADT is that for all natural numbers a, b, and m > 0,

Designed for high-achieving graduates across all disciplines, London Business School’s Masters 
in Management provides specific and tangible foundations for a successful career in business. 

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM 
employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to 
work in consulting or financial services. 

As well as a renowned qualification from a world-class business school, you also gain access 
to the School’s network of more than 34,000 global alumni – a community that offers support and 
opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or 
give us a call on +44 (0)20 7000 7573.

Masters in Management

The next step for  
top-performing  
graduates

*  Figures taken from London Business School’s Masters in Management 2010 employment report
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(a+b) % m = ((a % m) + b) % m

This axiom shows how the addition and mod operations are related.

We will often use ADT assertions, and especially preconditions, in specifying ADTs. Usually, ADT 
assertions translate into assertions about the data types that implement the ADTs, which helps insure 
that our ADT implementations are correct.

4.4	 Using Assertions

When writing code, programmer should state pre- and subtle post conditions for public operations, 
state class invariants, and insert unreachable code assertions and loop invariants wherever appropriate.

Some languages have facilities to directly support assertions and some do not. If a language does not 
directly support assertions, then the programmer can mimic their effect. For example, the first statements 
in a class method can test the preconditions of the method and throw an exception if they are violated. 
Post conditions can be checked in a similar manner. Class invariants are more awkward to check because 
code for them must be inserted at the start and end of every exported method. For this reasons, it is 
often not practical to do this. Unreachable code assertions occur relatively infrequently and they are 
easy to insert, so they should always be used. Loop invariants are mainly for documenting and proving 
code, so they can be stated in comments at the tops of loops.

Often efficiency issues arise. For example, the precondition of a binary search is that the array searched 
is sorted, but checking this precondition is so expensive that one would be better of using a sequential 
search. Similar problems often occur with post conditions. Hence many assertions are stated in comments 
and are not checked in code, or are checked during development and then removed or disabled when 
the code is compiled for release.

Languages that support assertions often provide different levels of support. For example, Java has an 
assert statement that takes a boolean argument; it throws an exception if the argument is not 
true. Assertion checking can be turned off with a compiler switch. Programmers can use the assert 
statement to write checks for pre- and post conditions, class invariants, and unreachable code, but this 
is all up to the programmer.

The languages Eiffel and D provide constructs in the language for invariants and pre- and post conditions 
that are compiled into the code and are propagated down the inheritance hierarchy. Thus Eiffel and D 
make it easy to incorporate these checks into programs. A compiler switch can disable assertion checking 
for released programs.
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4.5	 Assertions in Ruby

Ruby provides no support for assertions whatever. Furthermore, because it is weakly typed, Ruby does 
not even enforce rudimentary type checking on operation parameters and return values, which amount 
to failing to check type pre- and post conditions. This puts the burden of assertion checking firmly on 
the Ruby programmer.

Because it is so burdensome, it is not reasonable to expect programmers to perform type checking 
on operation parameters and return values. Programmers can easily document other pre- and post 
conditions and class invariants, however, and insert code to check most value preconditions, and 
some post conditions and class invariants. Checks can also be inserted easily to check that supposedly 
unreachable code is never executed. Assertion checks can raise appropriate exceptions when they fail, 
thus halting erroneous programs.

For example, suppose that the function f(x) must have a non-zero argument and return a positive 
value. We can document these pre- and post conditions in comments and incorporate a check of the 
precondition in this function’s definition, as shown below.

# Explanation of what f(x) computes
# @pre: x != 0
# @post: @result > 0
def f(x)
  raise ArgumentError if x == 0
  …
end

Figure 1: Checking a Precondition in Ruby

Ruby has many predefined exceptions classes (such as ArgumentError) and new ones can be created 
easily by sub-classing StandardError, so it is easy to raise appropriate exceptions.

We will use assertions frequently when discussing ADTs and the data structures and algorithms that 
implement them, and we will put checks in Ruby code to do assertion checking. We will also state pre- 
and post conditions and class invariants in comments using the following symbols.

Use Symbol

Mark a precondition @pre:

Mark a post condition @post:

Mark a class invariant @inv:

Specify a return value @result

Specify the value of @attr after an operation executes @attr

Specify the value of @attr before an operation executes old.@attr
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4.6	 Review Questions

1.	 Name and define in your own words three kinds of assertions.
2.	 What is an axiom?
3.	 How can programmers check preconditions of an operation in a language that does not support 

assertions?
4.	 Should a program attempt to catch assertion exceptions?
5.	 Can assertion checking be turned off easily in Ruby programs as it can in Eiffel or D programs?

4.7	 Exercises

1.	 Consider the Integer ADT with the set of operations { +, -, *, /, %, == }. Write preconditions 
for those operations that need them, post conditions for all operations, and at least four axioms.

2.	 Consider the Real ADT with the set of operations { +, -, *, /, n√x, xn }, where x is a real number 
and n is an integer. Write preconditions for those operations that need them, post conditions 
for all operations, and at least four axioms.

Consider the following fragment of a class declaration in Ruby.

Destination MMU
MMU is proud to be one of the most popular universities in the UK. 
Some 34,000 students from all parts of the globe select from its 
curricula of over 1,000 courses and qualifications. 

We are based in the dynamic yet conveniently compact city of Manchester, 
located at the heart of a sophisticated transport network including a major 
international airport on the outskirts. Parts of the campus are acclaimed for 
their architectural style and date back over 150 years, in direct contrast to 
our teaching style which is thoroughly  modern, innovative and 
forward-thinking. 

MMU offers undergraduate and postgraduate courses in 
the following subject areas: 

• Art, Design & Performance 
• Computing, Engineering & Technology 
• Business & Management 
• Science, Environmental Studies & Geography 
• Law, Education & Psychology 
• Food, Hospitality, Tourism & Leisure Studies 
• Humanities & Social Science 

For more details or an application form
please contact MMU International.
email: international@mmu.ac.uk
telephone: +44 (0)161 247 1022
www.mmu.ac.uk/international
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NUM_LOCKERS = 138

class Storage

  # Set up the locker room data structures
  def initialize
    @lockerIsRented = new Array(NUM_LOCKERS, false)
    @numLockersAvailable = NUM_LOCKERS
  end

  # Find an empty locker, mark it rented, return its number
  def rentLocker
    …
  end

  # Mark a locker as no longer rented
  def releaseLocker(lockerNumber)
    …
  end

  # Say whether a locker is for rent
  def isFree(lockerNumber)
    …
  end

  # Say whether any lockers are left to rent
  def isFull?
    …
  end

end

This class keeps track of the lockers in a storage facility at an airport. Lockers have numbers 
that range from 0 to 137. The Boolean array keeps track of whether a locker is rented. Use this 
class for the following exercises.

3.	 Write a class invariant comment for the Storage class.
4.	 Write precondition comments and Ruby code for all the operations that need them in the 

Storage class. The precondition code may use other operations in the class.
5.	 Write post condition comments for all operations that need them in the Storage class. The 

post condition comments may use other operations in the class.
6.	 Implement the operations in the Storage class in Ruby.
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4.8	 Review Question Answers

1.	 A precondition is an assertion that must be true when an operation begins to execute. A post 
condition is an assertion that must be true when an operation completes execution. A class 
invariant in an assertion that must be true between executions of the operations that a class 
makes available to clients. An unreachable code assertion is an assertion stating that execution 
should never reach the place where it occurs. A loop invariant is an assertion true whenever 
execution reaches the top of the loop where it occurs.

2.	 An axiom is a statement about the operations of an abstract data type that must always be 
true. For example, in the Integer ADT, it must be true that for all Integers n, 
n * 1 = n, and n + 0 = n, in other words, that 1 is the multiplicative identity and 0 is the 
additive identity in this ADT.

3.	 Preconditions can be checked in a language that does not support assertions by using 
conditionals to check the preconditions, and then throwing an exception, returning an error 
code, calling a special error or exception operation to deal with the precondition violation, or 
halting execution of the program when preconditions are not met.

4.	 Programs should not attempt to catch assertion exceptions because they indicate errors in the 
design and implementation of the program, so it is better that the program fail than that it 
continue to execute and produce possibly incorrect results.

5.	 Assertion checking cannot be turned off easily in Ruby programs because it is completely 
under the control of the programmer. Assertion checking can be turned of easily in Eiffel and 
D because assertions are part of the programming language, and so the compiler knows what 
they are. In Ruby, assertions are not supported, so all checking is (as far as the compiler is 
concerned) merely code.
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5	 Containers
5.1	 Introduction

Simple abstract data types are useful for manipulating simple sets of values, like integers or real numbers, 
but more complex abstract data types are crucial for most applications. A category of complex ADTs 
that has proven particularly important is containers.

Container: An entity that holds finitely many other entities.

Just as containers like boxes, baskets, bags, pails, cans, drawers, and so forth are important in everyday 
life, containers such as lists, stacks, and queues are important in programming.

5.2	 Varieties of Containers

Various containers have become standard in programming over the years; these are distinguished by 
three properties:

Structure—Some containers hold elements in some sort of structure, and some do not. Containers 
with no structure include sets and bags. Containers with linear structure include stacks, queues, 
and lists. Containers with more complex structures include multidimensional matrices.

Get Internationally Connected 
at the University of Surrey 
MA Intercultural Communication with International Business
MA Communication and International Marketing

MA Intercultural Communication with International Business

Provides you with a critical understanding of communication in contemporary 
socio-cultural contexts by combining linguistic, cultural/media studies and 
international business and will prepare you for a wide range of careers.

MA Communication and International Marketing

Equips you with a detailed understanding of communication in contemporary 
international marketing contexts to enable you to address the market needs of 
the international business environment.

For further information contact:
T: +44 (0)1483 681681
E: pg-enquiries@surrey.ac.uk
www.surrey.ac.uk/downloads 
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Access Restrictions—Structured containers with access restrictions only allow clients to add, 
remove, and examine elements at certain locations in their structure. For example, a stack only 
allows element addition, removal, and examination at one end, while lists allow access at any point. 
A container that allows client access to all its elements is called traversable, enumerable, or iterable.

Keyed Access—A collection may allow its elements to be accessed by keys. For example, maps 
are unstructured containers that allows their elements to be accessed using keys.

5.3	 A Container Taxonomy

It is useful to place containers in a taxonomy to help understand their relationships to one another and as 
a basis for implementation using a class hierarchy. The root of the taxonomy is Container. A Container 
may be structured or not, so it cannot make assumptions about element location (for example, there 
may not be a first or last element in a container). A Container may or may not be accessible by keys, so 
it cannot make assumptions about element retrieval methods (for example, it cannot have a key-based 
search method). Finally, a Container may or may not have access restrictions, so it cannot have addition 
and removal operations (for example, only stacks have a push() operation), or membership operations.

The only things we can say about Containers is that they have some number of elements. Thus a 
Container can have a size() operation. We can also ask (somewhat redundantly) whether a Container 
is empty. And although a Container cannot have specific addition and removal operations, it can have 
an operation for emptying it completely, which we call clear().

A Container is a broad category whose instances are all more specific things; there is never anything that 
is just a Container. In object-oriented terms, a Container is an interface, not a class. These considerations 
lead to the UML class diagram in Figure 1 below.

«interface» 
Container

size() : integer
empty?() : Boolean
clear()

Figure 1: The Container Interface

There are many ways that we could construct our container taxonomy from here; one way that works 
well is to make a fundamental distinction between traversable and non-traversable containers:

Collection: A traversable container.

Dispenser: A non-traversable container.
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Collections include lists, sets, and maps; dispensers include stacks and queues. With this addition, our 
container hierarchy appears in Figure 2.

Figure 2: Top of the Container Taxonomy

Dispensers are linearly ordered and have access restrictions. As noted, Dispensers include stacks 
and queues. We turn in the next chapter to detailed consideration of these non-traversable containers.

5.4	 Interfaces in Ruby

Recall that in object-oriented programming, an interface is a collection of abstract operations that cannot 
be instantiated. Although Ruby is object-oriented, it does not have interfaces. Interface-like classes can 
be constructed in Ruby by creating classes whose operations have empty bodies. These pseudo-interface 
classes can be used as super-classes of classes that implement the interface. Pseudo-interface classes can 
still be instantiated, and their operations can still be called without overriding them, so they are only a bit 
like real interfaces. One way to make them more like interfaces, however, is to implement the operations 
in the pseudo-interface so that they raise exceptions if they are called. This forces sub-classes to override 
the operations in these pseudo-interface classes before they can be used.

This is the approach we will take in implementing interfaces in Ruby: we will make super-classes whose 
operations raise NotImplementedError exceptions. Classes implementing a pseudo-interface will 
then have to inherit from it and override its operations.

5.5	 Review Questions

1.	 Are sets structured? Do sets have access restrictions? Do sets have keyed access?
2.	 If c is a Container and c.clear() is called, what does c.empty?() return? What does c.size() 

return?
3.	 What would happen if you tried to instantiate a pseudo-interface class implemented as suggested 

above in Ruby?
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5.6	 Exercises

1.	 Consider a kind of Container called a Log that is an archive for summaries of transactions. 
Summaries can be added to the end of a Log, but once appended, they cannot be deleted or 
changed. When a summary is appended to a Log, it is time-stamped, and summaries can be 
retrieved from a Log by their time stamps. The summaries in a Log can also be examined in 
arbitrary order.
a)	 Is a Log structured? If so, what kind of structure does a Log have?
b)	 Does a Log have access restrictions?
c)	 Does a Log provide keyed access? If so, what is the key?
d)	 In the container hierarchy, would a Log be a Collection or a Dispenser?

2.	 Consider a kind of Container called a Shoe used in an automated Baccarat program. When 
a Shoe instance is created, it contains eight decks of Cards in random order. Cards can be 
removed one at a time from the front of a Shoe. Cards cannot be placed in a Shoe, modified, 
or removed from any other spot. No Cards in a Shoe can be examined.
a)	 Is a Shoe structured? If so, what kind of structure does a Shoe have?
b)	 Does a Shoe have access restrictions?
c)	 Does a Shoe provide keyed access? If so, what is the key?
d)	 In the container hierarchy, would a Shoe be a Collection or a Dispenser?
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3.	 Consider a kind of Container called a Randomizer used to route packets in an anonymizer. 
Packets go into the Randomizer at a single input port, and come out randomly at one of 
n output ports, each of which sends packets to different routers. Packets can only go into a 
Randomizer at the single input port, and can only come out one of the n output ports. Packets 
come out of a single output port in the order they enter a Randomizer. Packets cannot be 
accessed when they are inside a Randomizer.
a)	 Is a Randomizer structured? If so, what kind of structure does a Randomizer have?
b)	 Does a Randomizer have access restrictions?
c)	 Does a Randomizer provide keyed access? If so, what is the key?
d)	 In the container hierarchy, would a Randomizer be a Collection or a Dispenser?

5.7	 Review Question Answers

1.	 Sets are not structured—elements appear in sets or not, they do not have a position or location 
in the set. Sets do not have access restrictions: elements can be added or removed arbitrarily. 
Elements in sets do not have keys (they are simply values), so there is no keyed access to 
elements of a set.

2.	 When a Container c is cleared, it contains no values, so c.empty?() returns true, and c.size() 
returns 0.

3.	 A pseudo-interface class implemented in Ruby with operations that raise 
NotImplementedError exceptions when they are called could be instantiated without 
any problem, but such objects could not be used for anything useful. The only thing that such a 
class would be good for would be as a super-class of classes that override its operations, which 
is pretty much what an interface is good for as well.
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6	 Stacks
6.1	 Introduction

Stacks have many physical metaphors: shirts in a drawer, plates in a plate holder, box-cars in a dead-
end siding, and so forth. The essential features of a stack are that it is ordered and that access to it is 
restricted to one end.

Stack: A dispenser holding a sequence of elements that can be accessed, inserted, or removed 
at only one end, called the top.

Stacks are also called last-in-first-out (LIFO) lists. Stacks are important in computing because of their 
applications in recursive processing, such as language parsing, expression evaluation, runtime function 
call management, and so forth.

6.2	 The Stack ADT

Stacks are containers, and as such they hold values of some type. We must therefore speak of the ADT 
stack of T, where T is the type of the elements held in the stack. The carrier set of this type is the set of 
all stacks holding elements of type T. The carrier set thus includes the empty stack, the stacks with one 
element of type T, the stacks with two elements of type T, and so forth. The essential operations of the 
type are the following, where s is a stack of T, and e is a T value. If an operation’s precondition is not 
satisfied, its result is undefined.

push(s,e)—Return a new stack just like s except that e has been added at the top of s.

pop(s)—Remove the top element of s and return the resulting (shorter) stack. The precondition 
of the pop() operation is that the stack s is not empty.

empty?(s)—Return the Boolean value true just in case s is empty.

top(s)—Return the top element of s without removing it. Like pop(), this operation has the 
precondition that the stack s is not empty.

Besides the precondition assertions mentioned in the explanation of the stack ADT operations above, 
we can also state some axioms to help us understand the stack ADT. For example, consider the following 
axioms.

For any stack s and element e, pop(push(s,e)) = s.

For any stack s and element e, top(push(s,e)) = e.

For any stack s, and element e, empty?(push(s,e)) = false.
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The first axiom tells us that the pop() operation undoes what the push() operation achieves. The second 
tells us that when an element is pushed on a stack, it becomes the top element on the stack. The third 
tells us that pushing an element on an empty stack can never make it empty. With the right axioms, we 
can completely characterize the behavior of ADT operations without having to describe them informally 
in English (the problem is to know when we have the right axioms). Generally, we will not pursue such 
an axiomatic specification of ADTs, though we may use some axioms from time to time to explain some 
ADT operations.

6.3	 The Stack Interface

The stack ADT operations map stacks into one another, and this is done by having stacks as operation 
arguments and results. This is what one would expect from mathematical functions that map values from 
the carrier set of an ADT to one another. However, when implementing stacks in an object-oriented 
language that allows us to create a stack class with stack instances, there is no need to pass or return stack 
values—the stack instances hold values that are transformed into other values by the stack operations. 
Consequently, when we specify an object-oriented implementation of the stack ADT, all stack arguments 
and return values vanish. The same thing occurs as we study other ADTs and their implementations 
throughout this book: ADT carrier set arguments and return values will vanish from operation signatures 
in ADT implementation classes, and instead instances will be transformed from one carrier set value to 
another as operations are executed.

The Stack interface is a sub-interface of Dispenser, which is a sub-interface of Container, so it already 
contains an empty?() operation that it has inherited from Container. The Stack interface need only 
add operations for pushing elements, popping elements, and peeking at the top element of the stack. 
The diagram in Figure 1 shows the Stack interface.

 Figure 1: The Stack Interface

Note that a generic or type parameter is used to generalize the interface for any element type, shown in 
UML as a dashed box in the upper right-hand corner of the class icon. Note also that the preconditions 
of operations that need them are shown as UML properties enclosed in curly brackets to the right of the 
operation signatures. Finally, because pop() no longer needs to return a stack, it can return nothing, or 
as a convenience, it can return the element that is popped from the stack, which is what the operation 
in the Stack interface is designed to do.
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6.4	 Using Stacks—An Example

When sending a document to a printer, one common option is to collate the output, in other words, to 
print the pages so that they come out in the proper order. Generally, this means printing the last page 
first, the next to last next, and so forth. Suppose a program sends several pages to a print spooler (a 
program that manages the input to a printer) with the instruction that they are to be collated. Assuming 
that the first page arrives at the print spooler first, the second next, and so forth, the print spooler must 
keep the pages in a container until they all arrive so that it can send them to the printer in reverse order. 
One way to do this is with a Stack. Consider the pseudocode in Figure 2 describing the activities of 
the print spooler.

def printCollated(j : Job)
  Stack stack = Stack.new
  for each Page p in j do stack.
push(p)
  while !stack.empty?
    print(stack.pop)
  end
end

Figure 2: Using A Stack to Collate Pages for Printing

A Stack is the perfect container for this job because it naturally reverses the order of the data placed 
into it.
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6.5	 Contiguous Implementation of the Stack ADT

There are two approaches to implementing the carrier set for the stack ADT: a contiguous implementation 
using arrays, and a linked implementation using singly linked lists; we consider each in turn.

Implementing stacks of elements of type T using arrays requires a T array to hold the contents of the 
stack and a marker to keep track of the top of the stack. The marker can record the location of the top 
element, or the location where the top element would go on the next push() operation; it does not matter 
as long as the programmer is clear what the marker denotes and writes code accordingly.

If a static (fixed-size) array is used, then the stack can become full; if a dynamic (resizable) array is used, 
then the stack is essentially unbounded. Usually, resizing an array is an expensive operation because new 
space must be allocated, the contents of the old array copied to the new, and the old space deallocated, 
so this flexibility is acquired at a cost.

We will use a dynamic array called store to hold stack elements, and a marker called count to keep 
track of the top of the stack. Figure 3 below illustrates this data structure.

 Figure 3: Implementing a Stack With an Array

The marker is called count because it keeps track of the number of items currently in the stack. When 
array indices begin at zero, this also happens to be the array location where the top element will go the 
next time push() is executed.

The store array holds capacity elements; this is the maximum number of items that can be placed on 
the stack before it must be expanded. The diagram shows two elements in the stack, designated by the 
cross-hatched array locations, and the value of the count variable. Note how the count variable indicates 
the array location where the next element will be stored when it is pushed onto the stack. The stack is 
empty when count is 0 and must be expanded when count equals capacity and another element is 
pushed on the stack.
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Implementing the operations of the stack ADT using this data structure is quite straightforward. For 
example, to implement the push() operation, a check is first made to see whether the store must be 
expanded by testing whether count equals capacity. If so, the store is expanded. Then the pushed 
value is assigned to location store[count] and then count is incremented.

A class realizing this implementation might be called ArrayStack(T). It would implement the Stack(T) 
interface and have the store array and the count variable as private attributes and the stack operations as 
public methods. Its constructor would create an empty stack. The capacity variable could be maintained 
by the ArrayStack class or be part of the implementation of dynamic arrays in the implementation 
language.

6.6	 Linked Implementation of the Stack ADT

A linked implementation of a stack ADT uses a linked data structure to represent values of the ADT 
carrier set. Lets review the basics of linked data structures.

Node: An aggregate variable with data and link (pointer or reference) fields.

Linked (data) structure: A collection of nodes formed into a whole through its constituent 
node link fields.

Nodes may contain one or more data and link fields depending on the need, and the references may 
form a collection of nodes into linked data structures of arbitrary shapes and sizes. Among the most 
important linked data structures are the following.

Singly linked list: A linked data structure whose nodes each have a single link field used to 
form the nodes into a sequence. Each node link but the last contains a reference to the next 
node in the list; the link field of the last node contains nil (a special reference value that does 
not refer to anything).

Doubly linked list: A linked structure whose nodes each have two link fields used to form the 
nodes into a sequence. Each node but the first has a predecessor link field containing a reference 
to the previous node in the list, and each node but the last has a successor link containing a 
reference to the next node in the list.

Linked tree: A linked structure whose nodes form a tree.

The linked structure needed for a stack is very simple, requiring only a singly linked list, so list nodes 
need only contain a value of type T and a link to the next node. The top element of the stack is stored 
at the head of the list, so the only data that the stack data structure must keep track of is the reference 
to the head of the list. Figure 4 illustrates this data structure.
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 Figure 4: Implementing a Stack With a Singly Linked List

The reference to the head of the list is called topNode. Each node has an item field (for values of type T) 
and a next field (for the links). The figure shows a stack with three elements; the top of the stack, of 
course, is the first node on the list. The stack is empty when topNode is nil; the stack never becomes 
full (unless memory is exhausted).

Implementing the operations of the stack ADT using a linked data structure is quite simple. For example, 
to implement the push() operation, a new node is created with its item field set to the new top element 
and its next field set to the current value of topNode. The topNode variable is then assigned a reference 
to the new node.

A class realizing this implementation might be called LinkedStack(T). It would implement the Stack(T) 
interface and have topNode as a private attribute and the stack operations as public methods. It might 
also have a private inner Node class for node instances. Its constructor would create an empty stack. As 
new nodes are needed when values are pushed onto the stack, new Node instances would be instantiated 
and used in the list. When values are popped off the stack, Node instances would be freed and their space 
reclaimed. A LinkedStack would thus use only as much space as was needed for the elements it holds.
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6.7	 Summary and Conclusion

Both ways of implementing stacks are simple and efficient, but the contiguous implementation either 
places a size restriction on the stack or uses an expensive reallocation technique if a stack grows too 
large. If contiguously implemented stacks are made extra large to make sure that they don’t overflow, 
then space may be wasted.

A linked implementation is essentially unbounded, so the stack never becomes full. It is also very 
efficient in its use of space because it only allocates enough nodes to store the values actually kept in 
the stack. Overall, then, the linked implementation of stacks is generally preferable to the contiguous 
implementation.

6.8	 Review Questions

1.	 The pop() operation in the stack ADT returns a stack, while the pop() operation in the Stack 
interface returns a value of type T. Why are these so different?

2.	 Should the size() operation from the Container interface return the capacity of a Stack or 
the number of elements currently in a Stack? What value should be returned by this operation 
in the ArrayStack implementation?

3.	 The nodes in a LinkedStack hold a reference for every stack element, increasing the space 
needed to store data. Does this fact invalidate the claim that a LinkedStack uses space more 
efficiently than an ArrayStack?

6.9	 Exercises

1.	 State three more axioms about the stack of T ADT.
2.	 Suppose that an ArrayStack is implemented so that the top elements is always stored at 

store[0]. What are the advantages or disadvantages of this approach?
3.	 What should happen if a precondition of a Stack operation is violated?
4.	 How can a programmer who is using an ArrayStack or a LinkedStack make sure that his 

code will not fail because it violates a precondition?
5.	 Should a LinkedStack have a count attribute? Explain why or why not.
6.	 Suppose a LinkedStack has a count attribute. State a class invariant relating the count and 

topNode attributes.
7.	 Could the top element be stored at the tail of a LinkedStack? What consequences would this 

have for the implementation?
8.	 A LinkedStack could be implemented using a doubly-linked list. What are the advantages or 

disadvantages of this approach?
9.	 As noted before, every Ruby value is an object, so every Ruby value has the same type (in a 

broad sense). What consequences does this have in implementing the stack of T ADT?
10.	Implement the Stack interface and the ArrayStack and LinkedStack classes in Ruby.
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6.10	 Review Question Answers

1.	 The stack ADT pop() operation is a mathematical function that shows how elements of the 
carrier set of the ADT are related to one another, specifically, it returns the stack that is the 
result of removing the top element of the stack that is its argument. The pop() operation of 
the Stack interface is an operation that alters the data stored in a stack container by removing 
the top element stored. The new value of the ADT is represented by the data in the container, 
so it need not be returned as a result of the operation. For convenience, pop() returns the 
value that is removes.

2.	 The Container size() operation, which is inherited by the Stack interface and must thus be 
implemented in all Stacks, should return the number of elements currently stored in a Stack. 
If a Stack has an unspecified capacity (such as a resizable ArrayStack or a LinkedStack), 
then the capacity of the Stack is not even well defined, so it would not make sense for the 
size() operation to return the capacity.

3.	 Each node in a LinkedStack contains both an item and a link, so a LinkedStack does use 
more space (perhaps twice as much space) as an ArrayStack to store a single element. On the 
other hand, an ArrayStack typically allocates far more space than it uses at any given moment 
to store data—usually there will be at least as many unused elements of the store array as there 
are used elements. This is because the ArrayStack must have enough capacity to accommodate 
the largest number of elements that could ever be pushed on the stack, but most of the time 
relatively little of this space is actually in use. On balance, then, ArrayStacks will typically 
use more space than LinkedStacks.
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7	 Queues
7.1	 Introduction

Queues are what we usually refer to as lines, as in “please get in line for a free lunch.” The essential 
features of a queue are that it is ordered and that access to it is restricted to its ends: things can enter a 
queue only at the rear and leave the queue only at the front.

Queue: A dispenser holding a sequence of elements that allows insertions only at one end, 
called the back or rear, and deletions and access to elements at the other end, called the front.

Queues are also called first-in-first-out, or FIFO, lists. Queues are important in computing because of 
the many cases where resources provide service on a first-come-first-served basis, such as jobs sent to 
a printer, or processes waiting for the CPU in a operating system.

7.2	 The Queue ADT

Queues are containers and they hold values of some type. We must therefore speak of the ADT queue 
of T, where T is the type of the elements held in the queue. The carrier set of this type is the set of all 
queues holding elements of type T. The carrier set thus includes the empty queue, the queues with one 
element of type T, the queues with two elements of type T, and so forth. The essential operations of the 
type are the following, where q is a queue of T and e is a T value.

enter(q,e)—Return a new queue just like q except that e has been added at the rear of q.

leave(q)—Remove the front element of q and return the resulting (shorter) queue. The 
precondition of the leave() operation is that q is not empty.

empty?(q)—Return the Boolean value true just in case q is empty.

front(q)—Return the front element of q without removing it. Like leave(), this operation has 
the precondition that q is not empty.

The queue ADT operations thus transform queues into one another. When implemented, a single data 
structure stores the values in the queue, so there is generally no need to return queues once they have 
been changed. Hence the operations of a queue type usually have slightly different parameters and return 
types when implemented, as we will see next.
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7.3	 The Queue Interface

A Queue interface is a sub-interface of Dispenser, which is a sub-interface of Container, so it already 
contains an empty?() operation inherited from Container. The Queue interface need only add 
operations for entering elements, removing elements, and peeking at the front element of the queue. 
The diagram in Figure 1 shows the Queue interface.

Note that a generic or template is used to generalize the interface for any element type. Note also that 
preconditions have been added for the operations that need them.

 Figure 1: The Queue Interface
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7.4	 Using Queues—An Example

When sending a document to a printer, it may have to be held until the printer finishes whatever job 
it is working on. Holding jobs until a printer is free is generally the responsibility of a print spooler 
(a program that manages the input to a printer). Print spoolers hold jobs in a Queue until the printer 
is free. This provides fair access to the printer and guarantees that no print job will be held forever. The 
pseudocode in Figure 2 describes the main activities of a print spooler.

Queue(Job) queue;

def spool(Document d) {
  queue.enter(Job.new(d))
}

def run {
  while (true) {
   if (printer.isFree && !queue.empty?)
    printer.print(queue.leave)
  }
}

Figure 2: Using A Queue to Spool Pages for Printing

The print spooler has a job queue stored in the variable queue. A client can ask the spooler to print a 
document for it using the spool() operation and the spooler will add the document to its job queue. 
Meanwhile, the spooler is continuously checking the printer and its job queue; whenever the printer is 
free and there is a job in queue, it will remove the job from queue and send it to the printer.

7.5	 Contiguous Implementation of the Queue ADT

There are two approaches to implementing the carrier set for the queue ADT: a contiguous implementation 
using arrays, and a linked implementation using singly linked lists; we consider each in turn.

Implementing queues of elements of type T using arrays requires a T array to hold the contents of the 
queue and some way to keep track of the front and the rear of the queue. We might, for example, decide 
that the front element of the queue would always be stored at location 0, and record the size of the 
queue, implying that the rear element would be at location size-1. This approach requires that the data 
be moved forward in the array every time an element leaves, which is not very efficient.

A clever solution to this problem is to allow the data in the array to “float” upwards as elements enter and 
leave, and then wrap around to the start of the array when necessary. It is as if the locations in the array 
are in a circular rather than a linear arrangement. Figure 3 illustrates this solution. Queue elements are 
held in the store array. The variable frontIndex keeps track of the array location holding the element 
at the front of the queue, and count holds the number of elements in the queue. The capacity is the 
size of the array and hence the number of elements that can be stored in the queue.
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 Figure 3: Implementing a Queue With a Circular Array

In Figure 3, data occupies the regions with an X in them: there are three elements in the queue, with the 
front element at store[2] (as indicated by the frontIndex variable) and the rear at store[4] (because 
frontIndex+count-1 is 4). The next element entering the queue would be placed at store[5]; in 
general, elements enter the queue at

store[(frontIndex+count) % capacity]

The modular division is what makes the queue values wrap around the end of the array to its beginning. 
This trick of using a circular array is the standard approach to implementing queues in contiguous 
locations.

If a static array is used, then the queue can become full; if a dynamic array is used, then the queue 
is essentially unbounded. As we have mentioned before, resizing an array is an expensive operation 
because new space must be allocated, the contents of the array copied, and the old space deallocated, so 
this flexibility is acquired at a cost. Care must also be taken to move elements properly to the expanded 
array—remember that the front of the queue may be somewhere in the middle of the full array, with 
elements wrapping around to the front.

Implementing the operations of the queue ADT using this data structure is quite straightforward. For 
example, to implement the leave() operation, a check is first made that the precondition of the operation 
(that the queue is not empty) is not violated by testing whether count equals 0. If not, then the value at 
store[frontIndex] is saved in a temporary variable, frontIndex is set to (frontIndex+1) % capacity, 
count is decremented, and the value stored in the temporary variable is returned.

A class realizing this implementation might be called ArrayQueue(T). It would implement the 
Queue(T) interface and have the store array and the frontIndex and count variables as private 
attributes. The queue operations would be public methods. Its constructor would create an empty 
queue. The value of capacity could be a constant defined at compile time, or a constructor parameter 
(if dynamic arrays are available).
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7.6	 Linked Implementation of the Queue ADT

A linked implementation of a queue ADT uses a linked data structure to represent values of the ADT 
carrier set. A singly linked list is all that is required, so list nodes need only contain a value of type T 
and a link to the next node. We could keep a reference to only the head of the list, but this would require 
moving down the list from its head to its tail whenever an operation required manipulation of the other 
end of the queue, so it is more efficient to keep a reference to each end of the list. We will thus use both 
frontNode and rearNode references to keep track of both ends of the list.

If rearNode refers to the head of the list and frontNode to its tail, it will be impossible to remove 
elements from the queue without walking down the list from its head; in other words, we will have 
gained nothing by using an extra reference. Thus we must have frontNode refer to the head of the list, 
and rearNode to its tail. Figure 4 illustrates this data structure. Each node has an item field (for values 
of type T) and a next field (for the links). The figure shows a queue with three elements. The queue is 
empty when the frontNode and rearNode references are both nil; the queue never becomes full (unless 
memory is exhausted).
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 Figure 4: Implementing a Queue With a Linked List

Implementing the operations of the Queue ADT using a linked data structure is quite simple, though 
some care is needed to keep frontNode and rearNode synchronized. For example, to implement the 
leave() operation, a check is first made that the queue is not empty. If not, then the item field of 
the front node is assigned to a temporary variable. The frontNode variable is then assigned the next 
field of the first node, which removes the first node from the list. If frontNode is nil, then the list 
has become empty, so rearNode must also be assigned nil. Finally, the value saved in the temporary 
variable is returned.

A class realizing this implementation might be called LinkedQueue(T). It would implement the 
Queue(T) interface and have frontNode and rearNode as private attributes. It might also have a 
private inner Node class for node instances. Its constructor would create an empty queue. As new 
nodes are needed when values enter the queue, new Node instances would be allocated and used in 
the list.

7.7	 Summary and Conclusion

Both queue implementations are simple and efficient, but the contiguous implementation either places 
a size restriction on the queue or uses an expensive reallocation technique if a queue grows too large. 
If contiguously implemented queues are made extra large to make sure that they don’t overflow, then 
space may be wasted.

A linked implementation is essentially unbounded, so the queue never becomes full. It is also very 
efficient in its use of space because it only allocates enough nodes to store the values actually kept in 
the queue. Overall, the linked implementation of queues is preferable to the contiguous implementation.

7.8	 Review Questions

1.	 Which operations of the queue ADT have preconditions? Do these preconditions translate to 
the Queue interface?

2.	 Why should storage be thought of as a circular rather than a linear arrangement of storage 
locations when implementing a queue using contiguous memory locations?

3.	 Why is there a reference to both ends of the linked list used to store the elements of a queue?
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7.9	 Exercises

1.	 In the contiguous storage implementation of a queue, is it possible to keep track of only the 
location of the front element (using a variable frontIndex) and the rear element (using a 
variable rearIndex), with no count variable? If so, explain how this would work.

2.	 Suppose that an ArrayQueue is implemented so that the array is reallocated when a client 
attempts to enter() an element when the array is full. Assume that the reallocated array is 
twice as large as the full array, and write Ruby code for the enter() operation that includes 
arranging the data where it needs to be in the newly allocated array.

3.	 Write a class invariant for a LinkedQueue class whose attributes are frontNode, rearNode, 
and count.

4.	 Write a version of the LinkedQueue class that does not have a count attribute.
5.	 A circular singly linked list is a singly linked list in which the last node in the list holds a 

references to the first element rather than nil. It is possible to implement a LinkedQueue 
efficiently using only a single reference into a circular singly linked list rather than two references 
into a (non-circular) singly linked list as we did in the text. Explain how this works and write 
Ruby code for the enter() and leave() operations to illustrate this technique.

6.	 A LinkedQueue could be implemented using a doubly-linked list. What are the advantages 
or disadvantages of this approach?

7.	 Implement the Queue interface and the ArrayQueue class in Ruby.
8.	 Implement the LinkedQueue class in Ruby.

7.10	 Review Question Answers

1.	 The leave() and front() operations both have as their precondition that the queue q not be 
empty. This translates directly into the precondition of the leave() and front() operations of 
the Queue interface that the queue not be empty.

2.	 If storage is linear, then the data in a queue will “bump up” against the end of the array as 
the queue grows, even if there is space at the beginning of the array for queue elements. This 
problem can be solved by copying queue elements downwards in the array (inefficient), or by 
allowing the queue elements to wrap around to the beginning of the array, which effectively 
treats the array as a circular rather than a linear arrangement of memory locations.

3.	 In a queue, alterations are made to both ends of the container. It is not efficient to walk down 
the entire linked list from its beginning to get to the far end when an alteration must be made 
there. Keeping a reference to the far end of the list obviates this inefficiency and makes all 
queue operations very fast.
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8	 Stacks and Recursion
8.1	 Introduction

Before moving on from discussing dispensers to discussing collections, we must discuss the strong 
connection between stacks and recursion. Recall that recursion involves operations that call themselves.

Recursive operation: An operation that either calls itself directly, or calls other operations 
that call it.

Recursion and stacks are intimately related in the following ways:

•	 Every recursive operation (or group of mutually recursive operations) can be rewritten without 
recursion using a stack.

•	 Every algorithm that uses a stack can be rewritten without a stack using one or more recursive 
operations.

To establish the first point, note that computers do not support recursion at the machine level—most 
processors can move data around, do a few simple arithmetic and logical operations, and compare values 
and branch to different points in a program based on the result, but that is all. Yet many programming 
language support recursion. How is this possible? At runtime, compiled programs use a stack that stores 
data about the current state of execution of a sub-program, called an activation record. When a sub-
program is called, a new activation record is pushed on the stack to hold the sub-program’s arguments, 
local variables, return address, and other book-keeping information. The activation record stays on the 
stack until the sub-program returns, when it is popped off the stack. Because every call of a sub-program 
causes a new activation record to be pushed on the stack, this mechanism supports recursion: every 
recursive call of a sub-program has its own activation record, so the data associated with a particular 
sub-program call is not confused with that of other calls of the sub-program. Thus the recursive calls 
can be “unwound” onto the stack, and a non-recursive machine can implement recursion.

The second point is not quite so easy to establish, but the argument goes like this: when an algorithm 
would push data on a stack, a recursive operation can preserve the data that would go on the stack in 
local variables and then call itself to continue processing. The recursive call returns just when it is time 
to pop the data off the stack, so processing can continue with the data in the local variables just as it 
would if the data had been popped off the stack.

In some sense, then, recursion and stacks are equivalent. It turns out that some algorithms are easier to 
write with recursion, some are easier to write with stacks, and some are just as easy (or hard) one way 
as the other. But in any case, there is always a way to write algorithms either entirely recursively without 
any stacks, or without any recursion using stacks.
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In the remainder of this chapter we will illustrate the theme of the equivalence of stacks and recursion 
by considering a few examples of algorithms that need either stacks or recursion, and we will look at 
how to implement these algorithms both ways.

8.2	 Balanced Brackets

Because of its simplicity, we begin with an example that doesn’t really need a stack or recursion to solve, 
but illustrates how both can be used with equal facility: determining whether a string of brackets is 
balanced or not. The strings of balanced brackets are defined as follows:

1.	 The empty string and the string “[]” are both strings of balanced brackets.
2.	 If A is a string of balanced brackets, then so it “[”A “]”.
3.	 If A and B are strings of balanced brackets, then so is AB.

So, for example, [[[][]][]] is a string of balanced brackets, but [[[]][]][]] is not.

The recursive algorithm in Figure 1, written in Ruby, checks whether a string of brackets is balanced.
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def recursive_balanced?(string)
  return true if string.empty?
  source = StringEnumerator.new(string)
  check_balanced?(source) && source.empty?
end

def check_balanced?(source)
  return false unless source.current == '['
  loop do
    if source.next == '['
     return false if !check_balanced?(source)
    end
    return false unless source.current == ']'
    break if source.next != '['
  end
  true
end

Figure 1: Recursive Algorithm For Checking String of Balanced Brackets

The recursive_balanced?() operation has a string argument containing only brackets. It does 
some initial and final processing, but most of the work is done by the recursive helper function check_
balanced?(). Note that a StringEnumerator is created from the string argument and passed to 
the check_balanced?() operation. We will discuss enumerators later, but for now it suffices to say 
that a StringEnumerator is a class that provides characters from a string one by one when asked 
for them. It also indicates when all the characters have been provided, signalling the end of the string.

The algorithm is based on the recursive definition of balanced brackets. If the string is empty, then it is a 
string of balanced brackets. This is checked right away by recursive_balanced?(). If the string is 
not empty, then check_balanced?() is called to check the string. It first checks the current character 
to see whether it is a left bracket, and returns false if it is not. It then considers the next character. If it is 
another left bracket, then there is a nested string of balanced brackets, which is checked by a recursive call. 
In any case, a check is then made for the right bracket matching the initial left bracket, which takes care 
of the other basis case in the recursive definition. The loop is present to handle the case of a sequence of 
balanced brackets, as allowed by the recursive definition. Finally, when check_balanced?() returns 
its result to recursive_balanced?(), the latter checks to make sure that the string has all been 
consumed, which guarantees that there are no stray brackets at the end of the string.
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This same job could be done just as well with a non-recursive algorithm using a stack. In the code in 
Figure 2 below, again written in Ruby, a stack is used to hold left brackets as they are encountered. If a 
right bracket is found for every left bracket on the stack, then the string of brackets is balanced. Note 
that the stack must be checked to make sure it is not empty as we go along (which would mean too 
many right brackets), and that it is empty when the entire string is processed (which would mean too 
many left brackets).

def stack_balanced?(string)
  stack = LinkedStack.new
  string.chars do | ch |
    case
    when ch == '['
      stack.push(ch)
    when ch == ']'
      return false if stack.empty?
      stack.pop
    else
      return false
    end
  end
  stack.empty?
end

Figure 2: Non-Recursive Algorithm For Checking Strings of Balanced Brackets

In this case the recursive algorithm is about as complicated as the stack-based algorithm. In the examples 
below, we will see that sometimes the recursive algorithm is simpler, and sometimes the stack-based 
algorithm is simpler, depending on the problem.

8.3	 Infix, Prefix, and Postfix Expressions

The arithmetic expressions we learned in grade school are infix expressions, but other kinds of expressions, 
called prefix or postfix expressions, might also be used.

Infix expression: An expression in which the operators appear between their operands.

Prefix expression: An expression in which the operators appear before their operands.

Postfix expression: An expression in which the operators appear after their operands.

In a prefix expression, the operands of an operator appear immediately to its right, while in a postfix 
expression, they appear immediately to its left. For example, the infix expression (4 + 5) * 9 can be 
rewritten in prefix form as * + 4 5 9 and in postfix form as 4 5 + 9 *. An advantage of pre- and postfix 
expressions over infix expressions is that the latter don’t need parentheses.
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Many students are confused by prefix and postfix expressions the first time they encounter them, so lets 
consider a few more examples. In the expressions in the table below, all numbers are one digit long and 
the operators are all binary. All the expressions on a row are equivalent.

Infix Prefix Postfix

(2 + 8) * (7 % 3) * + 2 8 % 7 3 2 8 + 7 3 % *

((2 * 3) + 5) % 4 % + * 2 3 5 4 2 3 * 5 + 4 %

((2 * 5) % (6 / 4)) + (2 * 3) + % * 2 5 / 6 4 * 2 3 2 5 * 6 4 / % 2 3 * +

1 + (2 + (3 + 4)) + 1 + 2 + 3 4 1 2 3 4 + + +

((1 + 2) + 3) + 4 + + + 1 2 3 4 1 2 + 3 + 4 +

Note that all the expressions have the digits in the same order. This is necessary because order matters for 
the subtraction and division operators. Also notice that the order of the operators in a prefix expression 
is not necessarily the reverse of its order in a postfix expression; sometimes operators are in the opposite 
order in these expressions, but not always. The systematic relationship between the operators is that the 
main operator always appears within the fewest number of parentheses in the infix expression, is first 
in the prefix expression, and is last in the postfix expression. Finally, in every expression, the number of 
constant arguments (digits) is always one more than the number of operators.
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Let’s consider the problem of evaluating prefix and postfix expressions. It turns out that sometimes it is 
much easier to write a recursive evaluation algorithm, and sometimes it is much easier to write a stack-
based algorithm. In particular, 

•	 It is very easy to write a recursive prefix expression evaluation algorithm, but somewhat harder 
to write this algorithm with a stack.

•	 It is very easy to write a stack-based postfix expression evaluation algorithm, but very hard to 
write this algorithm recursively.

To establish these claims, we will consider a few of the algorithms. An algorithm in Ruby to evaluate prefix 
expressions recursively appears in Figure 3 below. The main operation recursive_eval_prefix() 
accepts a string as an argument. Its job is to create a StringEnumeration object to pass along to 
the recursive helper function, and to make sure that the string has all been read (if not, then there are 
extra characters at the end of the expression). The real work is done by the eval_prefix() operation, 
which is recursive.

It helps to consider the recursive definition of a prefix expression to understand this algorithm:

A prefix expression is either a digit, or if A and B are prefix expressions and op is an operator, 
then an expression of the form op A B.

The eval_prefix() operation first checks to see whether the string is exhausted and throws an 
exception if it is (because the empty string is not a prefix expression). Otherwise, it fetches the current 
character and advances to the next character to prepare for later processing. If the current character is a 
digit, this is the basis case of the recursive definition of a prefix expression, so it simply returns the integer 
value of the digit. Otherwise, the current character is an operator. According to the recursive definition, 
the operator should be followed by two prefix expressions, so the algorithm applies this operator to the 
result of recursively evaluating the following left and right arguments. If these arguments are not there, 
or are ill-formed, then one of these recursive calls will throw an exception that is propagated to the caller. 
The evaluate() operation is a helper function that simply applies the operation indicated in its op 
argument to its left_arg and right_arg values.
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def recursive_eval_prefix(string)
  source = StringEnumerator.new(string)
  result = eval_prefix(source)
  raise "Too many arguments" unless source.empty?
  result
end

def eval_prefix(source)
  raise "Missing argument" if source.empty?
  ch = source.current
  source.next
  if ch =~ /\d/
    return ch.to_i
  else
    left_arg = eval_prefix(source)
    right_arg = eval_prefix(source)
    return evaluate(ch,left_arg, right_arg)
  end
end

Figure 3: Recursive Algorithm to Evaluate Prefix Expressions
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This recursive algorithm is extremely simple, yet is does a potentially very complicated job. In contrast, 
algorithms to evaluate prefix expressions using a stack are quite a bit more complicated. One such an 
algorithm is shown below in Figure 4. This algorithm has two stacks: one for (integer) left arguments, 
and one for (character) operators.

def stack_eval_prefix(string)
  raise "Bad characters" if string =~ INVALID_CHARACTERS
  raise "Missing expression" if string == nil || string.empty?
  op_stack = LinkedStack.new
  val_stack = LinkedStack.new
  string.chars do | ch |
    case
    when ch =~ OPERATORS
      op_stack.push(ch)
    when ch =~ /\d/
      right_arg = ch.to_i
      loop do
        break if op_stack.empty? || op_stack.top != 'v'
        op_stack.pop
        raise "Missing operator" if op_stack.empty?
        right_arg = evaluate(op_stack.pop,val_stack.pop,right_arg)
      end
      op_stack.push('v')
      val_stack.push(right_arg)
    end
  end
  raise "Missing argument" if op_stack.empty?
  op_stack.pop
  raise "Missing expression" if val_stack.empty?
  result = val_stack.pop
  raise "Too many arguments" unless val_stack.empty?
  raise "Missing argument" unless op_stack.empty?
  result
end

Figure 4: Stack-Based Algorithm to Evaluate Prefix Expressions

The strategy of this algorithm is to process each character from the string in turn, pushing operators on 
the operator stack as they are encountered and values on the value stack as necessary to preserve left 
arguments. The placement of values relative to arguments is noted in the operator stack with a special v 
marker. An operator is applied as soon as two arguments are available. Results are pushed on the value 
stack and marked in the operator stack. Once the string is exhausted, the value stack should hold a 
single (result) value and the operator stack should hold a single v marker—if not, then there are either 
too many or too few arguments.
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Clearly, this stack-based evaluation algorithm is more complicated than the recursive evaluation 
algorithm. In contrast, a stack-based evaluation algorithm for postfix expressions is quite simple, while 
a recursive algorithm is quite complicated. To illustrate, consider the stack-based postfix expression 
evaluation algorithm in Figure 5 below.

def stack_eval_postfix(string)
  stack = LinkedStack.new
  string.chars do | ch |
    case
    when ch =~ /\d/
      stack.push(ch.to_i)
    when ch =~ /[+\-*\/%]/
      raise "Missing argument" if stack.empty?
      right_arg = stack.pop
      raise "Missing argument" if stack.empty?
      left_arg = stack.pop
      stack.push( evaluate(ch, left_arg, right_arg) )
    end
  end
  raise "Missing expresion" if stack.empty?
  raise "Too many arguments" unless stack.size == 1
  stack.pop
end

Figure 5: Stack-Based Algorithm to Evaluate Postfix Expressions

The strategy of this algorithm is quite simple: there is a single stack that holds arguments, and values 
are pushed on the stack whenever they are encountered in the input string. Whenever an operator is 
encountered, the top two values are popped of the stack, the operator is applied to them, and the result 
is pushed back on the stack. This continues until the string is exhausted, at which point the final value 
should be on the stack. If the stack becomes empty along the way, or there is more than one value on 
the stack when the input string is exhausted, then the input expression is not well-formed.

The recursive algorithm for evaluating postfix expressions is quite complicated. The strategy is to 
remember arguments in local variables, making recursive calls as necessary until an operator is 
encountered. We leave this algorithm as a challenging exercise.

The lesson of all these examples is that although it is always possible to write an algorithm using either 
recursion or stacks, in some cases a recursive algorithm is easier to develop, and in other cases a stack-
based algorithm is easier. Each problem should be explored by sketching out both sorts of algorithms, 
and then choosing the one that appears easiest for detailed development.
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8.4	 Tail Recursive Algorithms

We have claimed that every recursive algorithms can be replaced with a non-recursive algorithm using 
a stack. This is true, but it overstates the case: sometimes a recursive algorithm can be replaced with 
a non-recursive algorithm that does not even need to use a stack. If a recursive algorithm is such that 
at most one recursive call is made as the final step in each execution of the algorithm’s body, then the 
recursion can be replaced with a loop. No stack is needed because data for additional recursive calls is 
not needed—there are no additional recursive calls. A simple example is a recursive algorithm to search 
an array for a key, like the one in Figure 6.

def recursive_search(a, key)
  return false if a.size == 0
  return true if a[0] == key
  return recursive_search(a[1̤-1],key)
end

Figure 6: A Recursive Factorial Algorithm

The recursion in this algorithm can be replaced with a simple loop as shown in Figure 7.

Increase your impact with MSM Executive Education

For more information, visit www.msm.nl or contact us at +31 43 38 70 808 

or via admissions@msm.nl
 the globally networked management school

For more information, visit www.msm.nl or contact us at +31 43 38 70 808 or via admissions@msm.nl

For almost 60 years Maastricht School of Management has been enhancing the management capacity 

of professionals and organizations around the world through state-of-the-art management education.

Our broad range of Open  Enrollment Executive Programs offers you a unique interactive, stimulating and 

multicultural  learning experience.

Be prepared for tomorrow’s  management challenges and  apply today.  

Executive Education-170x115-B2.indd   1 18-08-11   15:13

http://bookboon.com/
http://bookboon.com/count/advert/74a3fd82-96d7-e011-adca-22a08ed629e5


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

69 

Stacks and Recursion

def search(a, key)
  a.each { | v | return true if v == key }
  return false
end

Figure 7: A Non-Recursive Factorial Algorithm

Algorithms that only call themselves at most once as the final step in every execution of their bodies, 
like the array search algorithm, are called tail-recursive.

Tail recursive algorithm: A recursive algorithm that calls itself at most once as the last step 
in every execution of its body.

Recursion can always be removed from tail-recursive algorithms without using a stack.

8.5	 Summary and Conclusion

Algorithms that use recursion can always be replaced by algorithms that use a stack, and vice versa, so 
stacks and recursion are in some sense equivalent. However, some algorithms are much easier to write 
using recursion, while others are easier to write using a stack. Which is which depends on the problem. 
Programmers should evaluate both alternatives when deciding how to solve individual problems.

8.6	 Review Questions

1.	 Which of the algorithms for determining whether a string of brackets is balanced is easiest to 
for you to understand?

2.	 What characteristics do prefix, postfix, and infix expressions share?
3.	 Which is easier: evaluating a prefix expression with a stack or using recursion?
4.	 Which is easier: evaluating a postfix expression with a stack or using recursion?
5.	 Is the recursive algorithm to determine whether a string of brackets is balanced tail recursive? 

Explain why or why not.

8.7	 Exercises

1.	 We can slightly change the definition of strings of balanced brackets to exclude the empty 
string. Restate the recursive definition and modify the algorithms to check strings of brackets 
to see whether they are balanced to incorporate this change.

2.	 Fill in the following table with equivalent expressions in each row.

Infix Prefix Postfix

(((2 * 3) - 4) * (8 / 3)) + 2

% + 8 * 2 6 - 8 4
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Infix Prefix Postfix

8 2 - 3 * 4 5 + 8 % /

3.	 Write a recursive algorithm to evaluate postfix expressions as discussed in this chapter.
3.	 Write a recursive algorithm to evaluate infix expressions. Assume that operators have equal 

precedence and are left-associative so that, without parentheses, operations are evaluated from 
left to right. Parentheses alter the order of evaluation in the usual way.

4.	 Write a stack-based algorithm to evaluate infix expressions as defined in the last exercise.
5.	 Which of the algorithms for evaluating infix expressions is easier to develop?
6.	 Write a non-recursive algorithm that does not use a stack to determine whether a string of 

brackets is balanced. Hint: count brackets.

8.8	 Review Question Answers

1.	 This answer depends on the individual, but most people probably find the stack-based algorithm 
a bit easier to understand because its strategy is so simple.

2.	 Prefix, postfix, and infix expressions list their arguments in the same order. The number of 
operators in each is always one less than the number of constant arguments. The main operator 
in each expression and sub-expression is easy to find: the main operator in an infix expression 
is the left-most operator inside the fewest number of parentheses; the main operator of a prefix 
expression is the first operator; the main operator of a postfix expression is the last operator.

3.	 Evaluating a prefix expression recursively is much easier than evaluating it with a stack.
4.	 Evaluating a postfix expression with a stack is much easier than evaluating it recursively.
5.	 The recursive algorithm to determine whether a string of brackets is balanced calls itself at 

most once on each activation, but the recursive call is not the last step in the execution of the 
body of the algorithm—there must be a check for the closing right bracket after the recursive 
call. Hence this operation is not tail recursive and it cannot be implemented without a stack. 
(There is a non-recursive algorithm to check for balanced brackets without using a stack, but 
it uses a completely different approach from the recursive algorithms—see exercise 7).
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9	 Collections
9.1	 Introduction

Recall that we have defined a collection as a type of container that is traversable, that is, a container that 
allows access to all its elements. The process of accessing all the elements of a collection is also called 
iteration. Iteration over a collection may be supported in several ways depending on the agent that 
controls the iteration and where the iteration mechanism resides. In this chapter we examine iteration 
design alternatives and discuss how collections and iteration work in Ruby. Based on this discussion, we 
will decide how to support collection iteration in our container hierarchy and how to add collections 
to the hierarchy.

9.2	 Iteration Design Alternatives

There are two ways that iteration may be controlled.

Internal iteration—When a collection controls iteration over its elements, then iteration is said 
to be internal. A client wishing to process each element of a collection packages the process 
in some way (typically in a function or a block), and passes it to the collection, perhaps with 
instruction about how iteration is to be done. The collection then applies the processing to each 
of its elements. This mode of control makes it easier for the client to iterate over a collection, 
but with less flexibility in dealing with issues that may arise during iteration.

External iteration—When a client controls iteration over a collection, the iteration is said 
to be external. In this case, a collection must provide operations that allow an iteration to be 
initialized, to obtain the current element from the collection, to move on to the next element 
in the collection, and to determine when iteration is complete. This mode of control imposes 
a burden on the client in return for more flexibility in dealing with the iteration.

In addition to issues of control, there are also alternatives for where the iteration mechanism resides.

In the language—An iteration mechanism may be built into a language. For example, Java, 
Visual Basic, and Ruby have special looping control structures that provide means for external 
iteration over collections. Ruby has a special control structure for yielding control to a block 
passed to an operation that provides support for internal iteration.
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In the collection—An iteration mechanism may reside in a collection. In the case of a collection 
with an external iteration mechanism, the collection must provide operations to initialize 
iteration, return the current element, advance to the next element, and indicate when iteration 
is complete. In the case of a collection with an internal iteration mechanism, the collection 
must provide an operation that accepts a packaged process and applies it to each of its elements.

In an iterator object—An iteration mechanism may reside in a separate entity whose job is to 
iterate over an associated collection. In this case the operations mentioned above to support 
internal or external iteration are in the iterator object and the collection usually has an operation 
to create iterators.

Combining these design alternatives gives six ways that iteration can be done: internal iteration residing 
in the language, in the collection, or in an iterator object, and external iteration residing in the language, 
in the collection, or in an iterator object. Each of these alternatives has advantages and disadvantages, 
and various languages and systems have incorporated one or more of them. For example, most object-
oriented languages have external iteration residing in iterators (this is known as the Iterator design 
pattern). Nowadays many languages provide external iteration in control structures, as mentioned above. 
Ruby provides five of the six alternatives! We will now consider the Iterator design pattern, and then 
iteration in Ruby.
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9.3	 The Iterator Design Pattern

A software design pattern is an accepted solution to a common design problem that is proposed as a 
model for solving similar problems.

Software design pattern: A model proposed for imitation in solving a software design problem.

Design patterns occur at many levels of abstraction. For examples, a particular algorithm or data structure 
is a low-level design pattern, and the overall structure of a very large program (such as a client-server 
structure) is a high-level design pattern. The Iterator pattern is a mid-level design pattern that specifies 
the composition and interactions of a few classes and interfaces.

The Iterator pattern consists of an Iterator class whose instances are created by an associated collection 
and provided to clients. The Iterator instances house an external iteration mechanism. Although 
Iterator class functionality can be packaged in various ways, Iterator classes must provide the following 
functionality.

Initialization—Prepare the Iterator object to traverse its associated collection. This operation 
will set the current element (if there is one).

Completion Test—Indicate whether traversal by this Iterator is complete.

Current Element Access—Provide the current collection element to the client. The precondition 
for this operation is that iteration is not complete.

Current Element Advance—Make the next element in the collection the current element. This 
operation has no effect once iteration is complete. However, iteration may become complete 
when it is invoked—in other words, if the current item is the last, executing this operation 
completes the iteration, and calling it again does nothing.

The class diagram in Figure 1 below presents the static structure of the Iterator pattern. The four operations 
in the Iterator interface correspond to the four functions listed above. The iterator() operation in the 
Collection interface creates and returns a new concrete iterator for the particular collection in which it 
occurs; this is called a factory method because it manufactures a class instance.
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 Figure 1: The Iterator Pattern

The interfaces and classes in this pattern are templated with the type of the elements held in the collection. 
The arrow from the ConcreteIterator to the ConcreteCollection indicates that the ConcreteIterator 
must have some sort of reference to the collection with which it is associated so that it can access its elements.

A client uses an iterator by asking a ConcreteCollection for one by calling its iterator() operation. The 
client can then rewind the iterator and use a while loop to access its elements. The pseudocode below 
in Figure 2 illustrates how this is done.

c = ConcreteCollection.new
…
i = c.iterator
i.rewind
while !i.empty?
  element = i.current
  // process element
  i.next
end

Figure 2: Using an Iterator

Note that if the programmer decided to switch from one ConcreteCollection to another, only one line 
of this code would have to be changed: the first. Because of the use of interfaces, the code would still 
work even though a different ConcreteIterator would be used to access the elements of the collection.

9.4	 Iteration in Ruby

As mentioned, Ruby supports five of the six alternatives for doing iteration: there is no support in Ruby 
for external iteration residing in collections. This is probably because there are so many other ways to 
iterate over collections that there is no need for this alternative. Lets now consider the five different ways 
of doing iteration in Ruby.
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Internal iteration supported by the language. A block of code may be passed as a special parameter 
to any Ruby operation, and this operation may then yield control (along with data arguments) 
to the block. This mechanism, which is not tied to collections but can be used anywhere in 
the language, can be considered a special form of internal iteration with control residing in 
the language itself. This is also the way that internal iterators are implemented for collections 
defined by programmers.

External iteration provided by the language. Ruby has a for/in loop that can be used with any 
collection. Each element of the collection is assigned in turn to a loop variable, and the body of 
the loop can then access and process the elements of the collection through this loop variable.

Internal iteration in a collection. This is the preferred collection traversal mechanism in Ruby. 
Enumerable is a special mixin module that provides over twenty internal iteration operations. 
All built-in collections mix in this module (and user-defined collections should as well). The 
internal iteration operations all accept parameterized blocks as the packaged process and apply 
the block to each element of the collection.
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Internal and external iterator objects. In Ruby, an enumerator is an entity whose job is to 
iterate over a collection; in other words, an enumerator is an iterator object. Enumerators are 
created from any object that implements the each() operation by calling to_enum() or 
enum_for(). All enumerators mix in the Enumerable module, so they include all the 
internal collection iterator operations. Hence they are internal iteration objects. Furthermore, 
they also include operations for external iteration: rewind() initializes an enumerator in 
preparation for iteration and next() fetches the next object in the iteration (thus combining 
the actions of fetching the current element and advancing to the next element). If next() 
is called after iteration is complete, it raises a StopIteration exception, which is how 
iteration is terminated. The loop control structure catches this exception and terminates 
automatically, so explicitly handling exceptions is often not necessary when using an enumerator 
as an external iterator.

Although Ruby offers so many alternative forms of iteration, it is clearly designed to favor internal 
iteration. Usually, this is not a problem, but occasionally external iterators are needed to increase control 
over iteration. Ironically, the external iteration mechanisms in Ruby do not provide much additional 
flexibility. The for/in construct is quite rigid, and enumerators lack a non-exception based means 
of determining iteration termination. We will enrich our container hierarchy by adding better external 
iteration facilities.

9.5	 Collections, Iterators, and Containers

There are many sorts of collections, including simple linear sequences (lists), unordered aggregates (sets), 
and aggregates with keyed access (maps). There are not many operations common to this wide variety of 
collections that should be included in the Collection interface. For example, although one must be able 
to add elements to every collection, how elements are added varies. Adding an element to an unordered 
collection simply involves the element added. Adding to a list requires specifying where the element is 
to be added, and adding to a map requires that the access key be specified.

Two operations do come to mind, however: we may ask of a collection whether it contains some element, 
and we may compare collections to see whether they are equal. Although the Ruby Object class includes 
equality operations, adding one to the Collection interface will force concrete collections to implement 
it. We also add a collection containment query operation to the Collection interface.

In the spirit of Ruby, it seems wise to mix the Ruby Enumerable module into the Collection interface. 
This provides a rich variety of internal iterators. Given the drawbacks of internal iteration, it might be 
advisable to include external iterators based on the Iterator design pattern as well. Hence we include an 
iterator() factory method in the Collection interface.

http://bookboon.com/


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

77 

Collections

Figure 3 shows the final Collection interface and its place in the Container hierarchy, along with the 
Ruby Enumerable mixin, which is indicated in UML using a dependency arrow.

 Figure 3: The Collection Interface in the Container Hierarchy

9.6	 Summary and Conclusion

Collections are traversable containers and hence require some sort of iteration facility. There are many 
alternative designs for such a facility. The Iterator design pattern, a way to use external iterator objects, 
is a powerful possibility, but Ruby favors and supports internal iteration. We will incorporate both Ruby 
internal iterators and external iterator objects from the Iterator design pattern in our Collection interface.

Collections should also include an equality operation that indicates whether two collections are the 
same, along with a collection containment operation. Both of these operations appear in our Collection 
interface.

9.7	 Review Questions

1.	 What are the alternatives for controlling iteration?
2.	 Where might iteration mechanisms reside?
3.	 What are the six alternatives for designing collection iteration facilities?
4.	 What is a software design pattern?
5.	 What functions must an external Iterator object provide in the Iterator pattern?
6.	 Which of the six iteration design alternatives does Ruby not support?
7.	 What is the Enumerable module in Ruby?
8.	 What does the contains?() operation return when a Collection is empty?
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9.8	 Exercises

1.	 What is the point of an iterator when each element of a list can already be accessed one by 
one using indices?

2.	 Explain why a Dispenser does not have an associated iterator.
3.	 Java has an iterators, but the Java Iterator interface does not have a rewind() operation. 

Why not?
4.	 Would it be possible to have an Iterator interface with only a single operation? If so, how 

could the four Iterator functions be realized?
5.	 How might external iterators residing in collections be added to Ruby?
6.	 Write a generic Ruby implementation of the Collection contains?() operation using

a)	 an internal collection iterator
b)	 an external iterator object
c)	 an internal iterator object
d)	 the for/in loop construct

7.	 What happens to an iterator (any iterator) when its associated collection changes during 
iteration?

8.	 Consider the problem of checking whether two collections contain the same values. Can this 
problem be solved using collection internal iterators? Can it be solved using iterator objects?
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9.9	 Review Question Answers

1.	 There are two alternatives for controlling iteration: the collection may control it (internal 
iteration) or the client may control it (external iteration).

2.	 Iteration mechanisms can reside in three places: in the language (in the form of control 
structures), in the collection (as a set of operations), or in a separate iterator object (with 
certain operations).

3.	 The six alternatives for designing collection iteration facilities are generated by combining 
control alternatives with residential alternatives, yielding the following six possibilities: (1) 
internal control residing in the language, (2) external control residing in a language, (3) internal 
control residing in the collection, (4) external control residing in the collection, (5) internal 
control residing in an iterator object, (5) external control residing in an iterator object.

4.	 A software pattern is model proposed for imitation in solving a software design problem. In 
other words, a pattern is a way of solving a design or implementation problem that has been 
found to be successful, and that can serve as a template for solving similar problems.

5.	 An Iterator must provide four functions: a way to initialize the Iterator object to prepare 
to traverse its associated Collection, a way to fetch the current element of the Collection, a 
way to advance to the next element of the Collection, and a way to indicate that all elements 
have been accessed.

6.	 Ruby does not support external iteration residing in the collection.
7.	 The Enumerable module is used to mix in operations for internal iteration to other classes. 

It is used to add internal iteration facilities to collections and to enumerators, which are iterator 
objects.

8.	 If a Collection is empty, then it contains nothing so the contains?() operation returns false 
no matter what its argument.
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10	Lists
10.1	 Introduction

Lists are simple linearly ordered collections. Some things we refer to in everyday life as lists, such as 
shopping lists or laundry lists, are really sets because their order doesn’t matter. Order matters in lists. 
A to-do list really is a list if the tasks to be done are in the order in which they are supposed to be 
completed (or some other order).

List: An ordered collection.

Because order matters in lists, we must specify a location, or index, of elements when we modify the 
list. Indices can start at any number, but we will follow convention and give the first element of a list 
index 0, the second index 1, and so forth.

10.2	 The List ADT

Lists are collections of values of some type, so the ADT is list of T, where T is the type of the elements 
in the list. The carrier set of this type is the set of all sequences or ordered tuples of elements of type T. 
The carrier set thus includes the empty list, the lists with one element of type T (one-tuples), the lists 
with two elements of type T (ordered pairs), and so forth. Hence the carrier set of this ADT is the set 
of all tuples of type T, including the empty tuple.

There are many operations that may be included in a list ADT; the following operations are common. 
In the list below, s and t are lists of T, i is an index, and e is a T value, n is a length, and the value nil is 
a special value that indicates that a result is undefined.

size(t)—Return the length of list t.

insert(t,i,e)—Return a list just like t except that e has been inserted at index i, moving elements 
with larger indices up in the list if necessary. The precondition of this operation is that i be a 
valid index position: -size(t) ≤ i ≤ size(t). When i is negative, elements are counted backwards 
from the end of the list starting at -1, and e is inserted after the element; when i is 0, e is inserted 
at the front of the list; and when i is size(t), e is appended to the end of the list.

delete_at(t,i)—Remove the element at index i of t and return the resulting (shorter) list. The 
precondition of this operation is that i be a valid index position, with negative indices indicating 
a location relative to the end of the list: -size(t) ≤ i < size(t).
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t[i]—Return the value at index i of t. Its precondition is that i be a valid index position: -size(t) 
≤ i < size(t).

t[i]=e—Replace the element at index i of t and return the resulting (same sized) list. The 
precondition is that i be a valid index position: -size(t) ≤ i < size(t).

index(t,e)—Return the index of the first occurrence of e in t. If e is not in t, return nil.

slice(t, i, n)—Return a new list that is a sub-list of t whose first element is the value at index i 
of t and whose length is n. The precondition of this operation is that i is valid and n is non-
negative: -size(t) ≤ i < size(t) and 0 ≤ n. The sub-list does not extend past the end of t no 
matter how large n is.

t==s—Return true if and only if s and t have the same elements in the same order.

As with the ADTs we have studied before, an object-oriented implementation of these operations as 
instance methods will include the list as an implicit parameter so the signatures of these operations will 
vary somewhat when they are implemented.

Hellmann’s is one of Unilever’s oldest brands having been popular for over 100 years. 
If you too share a passion for discovery and innovation we will give you the tools and 
opportunities to provide you with a challenging career. Are you a great scientist who 
would like to be at the forefront of scientific innovations and developments? Then you will 
enjoy a career within Unilever Research & Development. For challenging job opportunities, 
please visit www.unilever.com/rdjobs.
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10.3	 The List Interface

A List interface is a sub-interface of Collection, which is a sub-interface of Container, so it has several 
operations that it has inherited from its ancestors. The diagram in Figure 1 shows the List interface.

 Figure 1: The List Interface

Note that a template parameter is used to generalize the interface for any element type. Note also that 
preconditions have been added, though they differ slightly from those in the ADT. In particular, when 
querying a list, if an index is out of bounds, then nil is returned. When inserting or replacing an element in 
a list, if the index is beyond the upper bound, then the list is extended with nil values until it is large enough, 
and then the operation is performed. If delete_at() is given an out of bounds index, nothing is changed.

10.4	 An Example of Using Lists

Suppose a calendar program has a to-do list whose elements are ordered by precedence, so that the first 
element on the list must be done first, the second next, and so forth. The items in the to-do list are all 
visible in a scrollable display; items can be added, removed, or moved around in the list freely. Mousing 
over list items displays details about the item, which can be changed. Users can ask to see or print 
sub-lists (like the last ten items on the list), or they can ask for details about a list item with a certain 
precedence (like the fifth element).

Clearly, a List is the right sort of container for to-do lists. Iteration over a List to display its contents is 
easy with an internal or external iterator. The insert() and delete_at() operations allow items to be 
inserted into the list, removed from it, or moved around in it. The [] operation can be used to obtain 
a list element for display during a mouse-over event, and the []= operation can replace a to-do item’s 
record if it is changed. The slice() operation produces portions of the list for display or printing, and 
the index() operation can determine where an item lies in the list.

http://bookboon.com/


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

83 

Lists

10.5	 Contiguous Implementation of the List ADT

Lists are very easy to implement with arrays. Static arrays impose a maximum list size, while dynamic 
arrays allow lists to grow without limit. The implementation is similar in either case. An array is allocated 
to hold the contents of the list, with the elements placed into the array in order so that the element at 
index i of the list is at index i of the array. A counter maintains the current size of the list. Elements 
added at index i require that the elements in the slice from i to the end of the list be moved upwards in 
the array to make a “hole” into which the inserted value is placed. When element i is removed, the slice 
from i+1 to the end of the list is copied down to close the hole left when the value at index i is removed.

Static arrays have their size set at compile time so an implementation using a static array cannot 
accommodate lists of arbitrary size. In contrast, an implementation using a dynamic array can allocate 
a larger array if a list exceeds the capacity of the current array during execution. Reallocating the array 
is an expensive operation because the new, larger array must be created, the contents of the old, smaller 
array must be copied into the new array, and the old array must be deallocated. To avoid this expense, the 
number of array reallocations should be kept to a minimum. One popular approach is to double the size of 
the array whenever it needs to be made larger. For examples, suppose a list begins with a capacity of 10. As 
it expands, its capacity is changed to 20, then 40, then 80, and so forth. The array never becomes smaller.

Iterators for lists implemented with an array are also very easy to code. The iterator object need merely 
keep a reference to the list and the current index during iteration, which acts as a cursor marking the 
current element during iteration.

Cursor: A variable marking a location in a data structure.

Accessing the element at index i of an array is almost instantaneous, so the [] and []= list operations 
are very fast using a contiguous implementation. But adding and removing elements requires moving 
slices of the list up or down in the array, which can be very slow. Hence for applications where list 
elements are often accessed but not too often added or removed, the contiguous implementation will 
be very efficient; applications that have the opposite behavior will be much less efficient, especially if 
the lists are long.

10.6	 Linked Implementation of the List ADT

A linked implementation of the list ADT uses a linked data structure to represent values of the ADT 
carrier set. A singly or multiply linked list may be used, depending on the needs of clients. We will 
consider using singly or doubly linked lists to illustrate implementation alteratives.

Suppose a singly-linked list is used to hold list elements. It consists of a variable, traditionally called 
head, holding nil when the list is empty and a reference to the first node in the list otherwise. The length 
of list is also typically recorded.
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Most list operations take an index i as an argument, so most algorithms to implement these operations 
will have to begin by walking down the list to locate the node at position i or position i-1. (Why i-1? 
Because for addition and removal, the link field in the node preceding node i will have to be changed.) 
In any case, if lists are long and there are many changes towards the end of the list, much processing 
will be done simply finding the right spot in the list to do things.

This difficulty can be alleviated by keeping a special cursor consisting of an index number and a reference 
into the list. The cursor is used to find the node that some operation needs to do its job. The next time 
an operation is called, it may be able to use the existing value of the cursor, or use it with slight changes, 
thus saving time. For example, suppose that a value is added at the end of the list. The cursor is used to 
walk down to the end of the list and make the addition; when this task is done, the cursor marks the 
node at, let us say, location size-2 in the list. If another addition is made, the cursor only needs to be 
moved forward one node to the end of the list to mark the node whose link field must be changed—the 
walk down the list from its beginning has been avoided.

It may be useful to maintain a reference to the end of the list. Then operations at the end of the list can 
be done quickly in exchange for the slight extra effort of maintaining the extra reference. If a client does 
many operations at the end of a list, the extra work will be justified.

Another way to make list operations faster is to store elements in a doubly linked list in which each 
node (except those at the ends) has a link to both its successor and its predecessor nodes. Figure 2 below 
illustrates this setup. Using a cursor with a doubly linked list can speed things up considerably because 
the links make it possible to move both backwards and forwards in the list. If an operation needs to get 
to node i and the cursor marks node j, which is closer to node i than node i is to the head of the list, 
following links from the cursor can get to node i more quickly than following links from the head of 
the list. Keeping a reference to the end of the list makes things faster still: it is possible to start walking 
toward a node from three points: the front of the list, the back of the list, or the cursor, which is often 
somewhere in the middle of the list.

 Figure 2: A Doubly Linked List

Another trick is to make the list circular: have the pred link of the first node point to the last node 
rather than containing nil, and have the succ link of the last node point to the fist node rather than 
containing nil. Then there is no need for a separate reference to the end of the list: the head reference 
can be used to get to both the front and the rear of the list.
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Iterators for the linked implementation of lists must obtain a reference to the head of the list, which can 
be passed to the instance constructor. Then it is merely a question of maintaining a cursor and walking 
down the list as the Iterator.next() operation is called.

Modifying linked implementations of lists is very fast once the nodes to operate on have been found, 
and using doubly linked lists with cursors can make node finding fairly fast. A linked implementation 
is a good choice when a variety of list operations are needed.

10.7	 Implementing Lists in Ruby

The Ruby array is already very similar to a contiguously implemented list; it lacks only contains?() 
and iterator() operations. Hence the simplest way to implement an ArrayList in Ruby is to make 
the ArrayList a sub-class of the built-in Ruby Array class and add the two missing operations. Of 
course, the iterator() factory method must return an instance of an Iterator that traverses the 
ArrayList, so an ArrayListIterator class must also be written.

A LinkedList can be implemented in Ruby by making linked lists using a Node class containing 
data and link fields and writing operations to perform list operations as discussed above. In this case 
LinkedList is a sub-class of List, an interface that is a sub-class of Collection, which in turn 
is a sub-class of Container.
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10.8	 Summary and Conclusion

The contiguous implementation of lists is very easy to program and quite efficient for element access, but 
quite slow for element addition and removal. The linked implementation is considerably more complex 
to program, and can be slow if operations must always locate nodes by walking down the list from its 
head, but if double links and a cursor are used, list operations can be quite fast across the board. The 
contiguous implementation is preferable for lists that don’t change often but must be accessed quickly, 
while the linked implementation is better when these characteristics don’t apply.

10.9	 Review Questions

1.	 Does it matter where list element numbering begins?
2.	 What does the list ADT index(t,e) operation return when e is not in list t?
3.	 What is a cursor?
4.	 Under what conditions does the contiguous implementation of the list ADT not perform well?
5.	 What advantage does a doubly linked list provide over a singly linked list?
6.	 What advantage does a circular doubly-linked list provide over a non-circular list?
7.	 What advantage does a cursor provide in the linked implementation of lists?
8.	 In an application where long lists are changed infrequently but access to the middle of the lists 

are common, would a contiguous or linked implementation be better?

10.10	 Exercises

1.	 Do we really need iterators for lists? Explain why or why not.
2.	 Would it be worthwhile to maintain a cursor for a contiguously implemented list? Explain 

why or why not.
3.	 What should happen if a precondition of a List operation is violated?
4.	 In the List interface, why do the delete_at() and []() operations not have preconditions while 

the insert(), []=(), and slice() operations do have preconditions?
5.	 An Iterator must have a reference to the Collection with which it is associated. How is such 

a connection made if a concrete iterator class is separate from its associated collection class? 
For example, suppose the ArrayListIterator is a class entirely separate from the ArrayList 
class. How can an ArrayListIterator instance obtain a connection to the particular ArrayList 
instance it is supposed to traverse?

6.	 A ListIterator is a kind of Iterator that (a) allows a client to start iteration at the end of list 
and go through it backwards, (b) change the direction of iteration during traversal, and (c) 
obtain the index as well as the value of the current element. Write an interface for ListIterator 
that is a sub-interface of Iterator.

7.	 Write ArrayList and ArrayListIterator implementations in Ruby. Note that the List interface 
is almost entirely implemented by the Ruby Array class: all that is missing is the iterator() 
and contains?() operations.
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8.	 Write an ArrayListListIterator to go along with the implementation in the last exercise.
9.	 Write a LinkedList implementation in Ruby that uses a singly-linked list, no reference to the 

end of the list, and a cursor. Write a LinkedListIterator to go along with it.
10.	Write a LinkedListListIterator to go along with the LinkedList class in the previous exercise.
11.	Write a LinkedList implementation in Ruby that uses a doubly-linked circular list and a cursor. 

Write a LinkedListIterator to along with it.
12.	Write a LinkedListListIterator to go along with the LinkedList class in the previous exercise.

10.11	 Review Question Answers

1.	 It does not matter where list element numbering begins: it may begin at any value. However, 
it is usual in computing to start at zero, and in everyday life to start at one, so one of these 
values is preferable.

2.	 The list ADT index(t,e) operation cannot return an index when e is not in list t. It should return 
a value indicating that the result is undefined, namely nil.

3.	 A cursor is a variable marking a location in a data structure. In the case of a List, a cursor is 
a data structure marking a particular element in the List. For an ArrayList, a cursor might 
be simply an index. For a LinkedList, it is helpful for the cursor to hold both the index and a 
reference to the node where the item is stored.

4.	 A contiguous implementation of the list ADT does not perform well when the list is long and 
it is changed near its beginning often. Every change near the beginning of a long contiguously 
implemented list requires that many list elements be copied up or down the list, which is 
expensive.

5.	 A doubly linked list makes it faster to move around than in a singly linked list, which can 
speed up the most expensive part of linked list operations: finding the nodes in the list where 
the operation must do its job.

6.	 A circular doubly-linked list makes it possible to follow links quickly from the list head to the 
end of the list. This can only be done in a non-circular list if a reference to the end of the list 
is maintained.

7.	 A cursor helps to speed up linked list operations by often making it faster to get to the nodes 
where the operations must do their work. Even in a circular doubly-linked list, it is expensive to 
get to the middle of the list. If a cursor is present and it ends up near the middle of a list after 
some list operation, then it can be used to get to a node in the middle of the list very quickly.

8.	 In an application where long lists are changed infrequently but are accessed near their middle 
often, a contiguous implementation will likely be better than a linked implementation because 
access to the middle of a contiguously implemented list (no matter how long) is instantaneous, 
while access to the middle of a linked list will almost always be slower, and could be extremely 
slow (if link following must begin at one end of the list).
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11	Analyzing Algorithms
11.1	 Introduction

We have so far been developing algorithms in implementing ADTs without worrying too much about 
how good the algorithms are, except perhaps to point out in a vague way that certain algorithms will be 
more or less efficient than others. We have not considered in any rigorous and careful way how efficient 
our algorithms are in terms of how much work they need to do and how much memory they consume; 
we have not done a careful algorithm analysis.

Algorithm analysis: The process of determining, as precisely as possible, how much of various 
resources (such as time and memory) an algorithm consumes when it executes.

In this chapter we will lay out an approach for analyzing algorithms and demonstrate how to use it on 
several simple algorithms. We will mainly be concerned with analyzing the amount of work done by 
algorithms; occasionally we will consider how much memory they consume as well.
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11.2	 Measuring the Amount of Work Done

An obvious measure of the amount of work done by an algorithm is the amount of time the algorithm 
takes to do some task. Before we get out our stopwatches, however, we need to consider several problems 
with this approach.

To measure how much time an algorithm takes to run, we must code it up in a program. This introduces 
the following difficulties:

•	 A program must be written in a programming language. How can we know that the language 
or its compiler or interpreter have not introduced some factors that artificially increase or 
decrease the running time of the algorithm?

•	 The program must run on a machine under the control of an operating system. Machines 
differ in their speed and capacity, and operating systems may introduce delays; other processes 
running on the machine may also interfere with program timings.

•	 Programs must be written by programmers; some programmers write very fast code and others 
write slower code.

Without finding some way to eliminate these confounding factors, we cannot have trustworthy 
measurements of the amount of work done by algorithms—we will only have measurements of the 
running times of various programs written by particular programmers in particular languages run on 
certain machines with certain operating systems supporting particular loads.

In response to these difficulties, we begin by abandoning direct time measurements of algorithms 
altogether, instead focussing on algorithms in abstraction from their realization in programs written 
by programmers to run on particular machines running certain operating systems. This immediately 
eliminates most of the problems we have considered, but it leads to the question: if we can’t measure 
time, what can we measure?

Another way to think about the amount of work done by an algorithm is to consider how many operations 
the algorithm executes. For example, consider the subtraction algorithm that elementary children learn. 
The input comes in the form of two numbers written one above the other. The algorithm begins by 
checking whether the value in the units column of the bottom number is greater than the value in the 
units column of the top number (a comparison operation). If the bottom number is greater, a borrow 
is made from the tens column of the top number (a borrow operation). Then the values are subtracted 
and the result written down beneath the bottom number (a subtraction operation). These steps are 
repeated for the tens column, then the hundreds column, and so forth, until the entire top number has 
been processed. For example, subtracting 284 from 305 requires three comparisons, one borrow, and 
three subtractions, for a total of seven operations.
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In counting the number of operations required to do this task, you probably noticed that the number 
of operations is related to the size of the problem: subtracting three digit numbers requires between six 
and eight operations (three comparison, three subtractions, and zero to two borrows), while subtracting 
nine digit numbers requires between 18 and 26 operations (nine comparisons, nine subtractions, and 
zero to eight borrows). In general, for n digit numbers, between 2n and 3n-1 operations are required.

How did the algorithm analysis we just did work? We simply figured out how many operations were 
done in terms of the size of the input to the algorithm. We will adopt this general approach for deriving 
measure of work done by an algorithm:

To analyze the amount of work done by an algorithm, produce measures that express a count of 
the operations done by an algorithm as a function of the size of the input to the algorithm.

11.3	 The Size of the Input

How to specify the size of the input to an algorithm is usually fairly obvious. For example, the size of 
the input to an algorithm that searches a list will be the size of the list, because it is obvious that the 
size of the list, as opposed to the type of its contents, or some other characteristic, is what determines 
how much work an algorithm to search it will do. Likewise for algorithms to sort a list. An algorithm to 
raise b to the power k (for some constant b) obviously depends on k for the amount of work it will do.

11.4	 Which Operations to Count

In most cases, certain operations are done far more often than others by an algorithm. For example, in 
searching and sorting algorithms, although some initial assignment and arithmetic operations are done, 
the operations that are done by far the most often are loop control variable increments, loop control 
variable comparisons, and key comparisons. These are (usually) each done approximately the same 
number of times, so we can simply count key comparisons as a stand-in for the others. Thus counts of 
key comparisons are traditionally used as the measure of work done by searching and sorting algorithms.

This technique is also part of the standard approach to analyzing algorithms: one or perhaps two basic 
operations are identified and counted as a measure of the amount of work done.

Basic operation: An operation fundamental to an algorithm used to measure the amount of 
work done by the algorithm.

As we will see when we consider function growth rates, not counting initialization and bookkeeping 
operations (like loop control variable incrementing and comparison operations), does not affect the 
overall efficiency classification of an algorithm.
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11.5	 Best, Worst, and Average Case Complexity

Algorithms don’t always do the same number of operations on every input of a certain size. For example, 
consider the following algorithm to search an array for a certain value.

def find(key, array)
  array.each { |e| return true if key == e }
  return false
end

Figure 1: An Array Searching Algorithm

The measure of the size of the input is the array size, which we will label n. Let us count the number 
of comparisons between the key and the array elements made in the body of the loop. If the key is 
the very first element of the array, then the number of comparisons is only one; this is the best case 
complexity. We use B(n) to designate the best case complexity of an algorithm on input of size n, so in 
this case B(n) = 1.

In contrast, suppose that the key is not present in the array at all, or is the last element in the array. 
Then exactly n comparisons will be made; this is the worst case complexity, which we designate W(n), 
so for this algorithm, W(n) = n.
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Sometimes the key will be in the array, and sometimes it will not. When it is in the array, it may be 
at any of its n locations. The number of operations done by the algorithm depends on which of these 
possibilities obtains. Often we would like to characterize the behavior of an algorithm over a wide range 
of possible inputs, thus producing a measure of its average case complexity, which we designate A(n). 
The difficulty is that it is often not clear what constitutes an “average” case. Generally an algorithm 
analyst makes some reasonable assumptions and then goes on to derive a measure for the average case 
complexity. For example, suppose we assume that the key is in the array, and that it is equally likely to 
be at any of the n array locations. Then the probability that it is in position i, for 0 ≤ i < n, is 1/n. If the 
key is at location zero, then the number of comparisons is one; if it is at location one, then the number 
of comparisons is two; in general, if the key is at position i, then the number of comparisons is i+1. 
Hence the average number of comparisons is given by the following equation.

A(n) = ∑i=0 to n-1 1/n ∙ (i+1) = 1/n ∙ ∑i=1 to n i

You may recall from discrete mathematics that the sum of the first n natural numbers is n(n+1)/2, so 
A(n) = (n+1)/2. In other words, if the key is in the array and is equally likely to be in any location, then 
on average the algorithm looks at about half the array elements before finding it, which makes sense.

Lets consider what happens when we alter our assumptions about the average case. Suppose that the key 
is not in the array half the time, but when it is in the array, it is equally likely to be at any location. Then 
the probability that the key is at location i is 1/2 ∙ 1/n = 1/2n. In this case, our equation for A(n) is the 
sum of the probability that the key is not in the list (1/2) times the number of comparisons made when 
the key is not in the list (n), and the sum of the product of the probability that the key is in location i 
times the number of comparisons made when it is in location i:

A(n) = n/2 + ∑i=0 to n-1 1/2n ∙ (i+1) = n/2 + 1/2n ∙ ∑i=1 to n i = n/2 + (n+1)/4 = (3n+1)/4

In other words, if the key is not in the array half the time, but when it is in the array it is equally likely 
to be in any location, then the algorithm looks about three-quarters of the way through the array on 
average. Said another way, it looks all the way through the array half the time (when the key is absent), 
and half way through the array half the time (when the key is present), so overall it looks about three 
quarters of the way through the array. This makes sense too.

We have now completed an analysis of the algorithm above, which is called sequential search.

Sequential search: An algorithm that looks through a list from beginning to end for a key, 
stopping when it finds the key.

Sometimes a sequential search returns the index of the key in the list, and -1 or nil if the key is not 
present—the index() operation in our List interface is intended to embody such a version of the 
sequential search algorithm.
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Not every algorithm has behavior that differs based on the content of its inputs—some algorithms behave 
the same on inputs of size n in all cases. For example, consider the algorithm in Figure 2.

def max(array)
  return nil if array.empty?
  result = array[0]
  1.upto(array.size-1).each do | index |
    result = array[index] if result < array[index]
  end
  return result
end

Figure 2: Maximum-Finding Algorithm

This algorithm, the maximum-finding algorithm, always examines every element of the array after the 
first (as it must, because the maximum value could be in any location). Hence on an input of size n (the 
array size), it always makes n-1 comparisons (the basic operation we are counting). The worst, best, and 
average case complexity of this algorithm are all the same. The every-case complexity of an algorithm 
is a the number of basic operations performed by the algorithm when it does the same number of 
basic operations on all inputs of size n. We will use C(n) to designate every-case complexity, so for the 
maximum-finding algorithm, C(n) = n-1.

11.6	 Summary and Conclusion

We define the various kinds of complexity we have discussed as follows.

Computational complexity: The time (and perhaps the space) requirements of an algorithm.

Every-case complexity C(n): The number of basic operations performed by an algorithm as a 
function of the size of its input n when this value is the same for any input of size n.

Worst case complexity W(n): The maximum number of basic operations performed by an 
algorithm for any input of size n.

Best case complexity B(n): The minimum number of basic operations performed by an 
algorithm for any input of size n.

Average case complexity A(n): The average number of basic operations performed by an 
algorithm for all inputs of size n, given assumptions about the characteristics of inputs of size n.
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We can summarize the process for analyzing an algorithm as follows:

1.	 Choose a measure for the size of the input.
2.	 Choose a basic operation to count.
3.	 Determine whether the algorithm has different complexity for various inputs of size n; if so, 

then derive measures for B(n), W(n), and A(n) as functions of the size of the input; if not, then 
derive a measure for C(n) as a function of the size of the input.

We will consider how to do step 3 in more detail later.

11.7	 Review Questions

1.	 Give three reasons why timing programs is insufficient to determine how much work an 
algorithm does.

2.	 How is a measure of the size of the input to an algorithm determined?
3.	 How are basic operations chosen?
4.	 Why is it sometimes necessary to distinguish the best, worst and average case complexities of 

algorithms?
5.	 Does best case complexity have anything to do with applying an algorithm to smaller inputs?
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11.8	 Exercises

1.	 Determine measures of the size of the input and suggest basic operations for analyzing 
algorithms to do the following tasks.
a)	 Finding the average value in a list of numbers.
b)	 Finding the number of 0s in a matrix.
c)	 Searching a text for a string.
d)	 Finding the shortest path between two nodes in a network.
e)	 Finding a way to color the countries in a map so that no adjacent countries are the same 

color.
2.	 Write a Ruby sequential search method that finds the index of a key in an array.
3.	 Consider the Ruby code below.

def max_char_sequence(string)
  return 0 if string.empty?
  max_len = 0
  this_len = 1
  last_char = nil
  string.each_char do | this_char |
    if this_char == last_char
      this_len += 1 
    else
      max_len = this_len if max_len < this_len
      this_len = 1
    end
    last_char = this_char
  end
  return (max_len < this_len) ? this_len : max_len
end

a)	 What does this algorithm do?
b)	 In analyzing this algorithm, what would be a good measure of input size?
c)	 What would be a good choice of basic operation?
d)	 Does this algorithm behave differently for different inputs of size n?
e)	 What are the best and worst case complexities of this algorithm?

4.	 Compute the average case complexity of sequential search under the assumption that the 
likelihood that the key is in the list is p (and hence the likelihood that it is not in the list is 
1-p), and that if in the list, the key is equally likely to be at any location.
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11.9	 Review Question Answers

1.	 Timing depends on actual programs running on actual machines. The speed of a real program 
depends on the skill of the programmer, the language the program is written in, the efficiency 
of the code generated by the compiler or the efficiency of program interpretation, the speed 
of the hardware, and the ability of the operating system to accurately measure the CPU time 
consumed by the program. All of these are confounding factors that make it very difficult to 
evaluate algorithms by timing real programs.

2.	 The algorithm analyst must choose a measure that reflects aspects of the input that most 
influence the behavior of the algorithm. Fortunately, this is usually not hard to do.

3.	 The algorithm analyst must choose one or more operations that are done most often during 
execution of the algorithm. Generally, basic operations will be those used repeatedly in inner 
loops. Often several operations will be done roughly the same number of times; in such cases, 
only one operation need be counted (for reasons to be explained in the next chapter about 
function growth rates).

4.	 Algorithms that behave differently depending on the composition of inputs of size n can do 
dramatically different amounts of work, as we saw in the example of sequential search. In 
such cases, a single value is not sufficient to characterize an algorithm’s behavior, and so we 
distinguish best, worst, and average case complexities to reflect these differences.

5.	 Best case complexity has to do with the behavior of an algorithm for inputs of a given size, not 
with behavior as the size of the input varies. The complexity functions we produce to count 
basic operations are already functions of the size of the input. Best, worst, average, and every-
case behavior are about differences in behavior given input of a certain size.
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12	Function Growth Rates
12.1	 Introduction

We have set up an approach for determining the amount of work done by an algorithm based on 
formulating functions expressing counts of basic operations in terms of the size of the input to the 
algorithm. By concentrating on basic operations, our analysis framework introduces a certain amount of 
imprecision. For example, an algorithm whose complexity is C(n) = 2n-3 may actually run slower than 
an algorithm whose complexity is C(n) = 12n+5, because uncounted operations in the former may slow 
its actual execution time. Nevertheless, both of these algorithms would surely run much more quickly 
than an algorithm whose complexity is C(n) = n2 as n becomes large; the running times of the first two 
algorithms are much closer to each other than they are to the third algorithm.

In comparing the efficiency of algorithms, we are more interested in big differences that manifest 
themselves as the size of the input becomes large than we are in small differences in running times 
that vary by a constant or a multiple for inputs of all sizes. The theory of the asymptotic growth rate of 
functions, also called the order of growth of functions, provides a basis for partitioning algorithms into 
groups with equivalent efficiency, as we will now see.
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12.2	 Definitions and Notation

Our goal is to classify functions into groups such that all the functions in a group grow no faster than 
some reference function for the group. Informally, O(f ) (read big-oh of f)is the set of functions that 
grows no faster than f (n) (that is, those that grow more slowly than f (n) or at the same rate as f (n)).

Formally, let f (n) and g(n) be functions from the natural numbers to the non-negative real numbers.

Definition: The function g is in the set O(f ), denoted g ∈ O(f ), if there exist some positive 
constant c and non-negative integer n0 such that

g(n) ≤ c ∙ f (n) for all n ≥ n0

In other words, g is in O(f ) if at some point g(n) is never greater than some multiple of f (n). The 
following are examples.

8n+5 ∈ O(n)
8n+5 ∈ O(n2)

6n2+23n-14 ∈ O(4n2-18n+65)
nk ∈ O(np) for all k ≤ p

log n ∈ O(n)
2n ∈ O(n!)

It is important to realize the huge difference between the growth rates of functions in sets with different 
orders of growth. The table below shows the values of functions in sets with increasing growth rates. 
Blank spots in the table indicate absolutely enormous numbers. (The function lg n is log2 n.)

n lg n n n lg n n2 n3 2n n!

10 3.3 10 33 100 1000 1024 3,628,800

100 6.6 100 660 10,000 1,000,000 1.3 ∙ 1030 9.3 ∙ 10157

1000 10 1000 10,000 1,000,000 109

10,000 13 10,000 130,000 108 1012

100,000 17 100,000 1,700,000 1010 1015

1,000,000 20 1,000,000 2 ∙ 107 1012 1018

Table 1: Values of Functions of Different Orders of Growth

As this table suggests, algorithms whose complexity is characterized by functions in the first several 
columns are quite efficient, and we can expect them to complete execution quickly for even quite large 
inputs. Algorithms whose complexity is characterized by functions in the last several columns must do 
enormous amounts of work even for fairly small inputs, and for large inputs, they simply will not be 
able to finish execution before the end of time, even on the fastest possible computers.
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12.3	 Establishing the Order of Growth of a Function

When confronted with the question of whether some function g is in O(f ), we can use the definition 
directly to decide, but there is an easier way embodied in the following theorem.

Theorem: g ∈ O(f ) if limn->∞ g(n)/f (n) = c, for c ≥ 0.

For example, to show that 3n2+2n-1 ∈ O(n2) we need to consider limn->∞ (3n2+2n-1)/n2:

limn->∞ (3n2+2n-1)/n2 = limn->∞3n2/n2 + limn->∞2n/n2 - limn->∞ 1/n2

		       = limn->∞ 3 + limn->∞ 2/n - limn->∞ 1/n2 = 3

Because this limit is not infinite, 3n2+2n-1 ∈ O(n2).

Another theorem that is very useful in solving limit problems is L’HÔpital’s Rule:

Theorem: If limn->∞ f (n) = limn->∞ g(n) = ∞, and the derivatives f ’ and g’ exist, then limn->∞ 
f (n)/g(n) = limn->∞ f ’(n)/g’(n).

To illustrate the use of L’HÔpital’s Rule, lets determine whether n2 ∈ O(n lg n). First note that limn->∞ n2 

= limn->∞ n lg n = ∞, and the first derivatives of both of these functions exist, so L’HÔpital’s Rule applies.

limn->∞ n2/(n lg n) = limn->∞ n/(lg n)
= (using L’HÔpital’s Rule) limn->∞ 1/((lg e)/n)

= limn->∞ n/(lg e) = ∞

Because this limit is infinite, we know that n2 ∉ O(n lg n), that is, we know that n2 grows faster than n 
lg n. It is easy to use L’HÔpital’s Rule to show that n lg n ∈ O(n2), however.

12.4	 Applying Orders of Growth

In our discussion of complexity we determined that for sequential search, W(n) = (n+1)/2, B(n) = 1, 
and A(n) = (3n+ 1)/4. Clearly, these functions are all in O(n); we say that sequential search is a linear 
algorithm. Similarly, we determined that for the maximum-finding algorithm, C(n) = n-1. This function 
is also in O(n), so this is also a linear algorithm. We will soon see algorithms whose complexity is in 
sets with higher orders of growth.
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12.5	 Summary and Conclusion

Our algorithm analysis approach has three steps:

1.	 Choose a measure for the size of the input.
2.	 Choose a basic operation to count.
3.	 Determine whether the algorithm has different complexity for various inputs of size n; if so, 

then derive measures for B(n), W(n), and A(n) as functions of the size of the input; if not, then 
derive a measure for C(n) as a function of the size of the input.

We now add a fourth step:

4.	 Determine the order of growth of the complexity measures for the algorithm.

Usually this last step is quite simple. In evaluating an algorithm, we are often most interested in the order 
of its worst case complexity or (if there is no worst case) basic complexity because this places an upper 
bound on the behavior of the algorithm: though it may perform better, we know it cannot perform worse 
than this. Sometimes we are also interested in average case complexity, though the assumptions under 
which such analyses are done may sometimes not be very plausible.
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12.6	 Review Questions

1.	 Why is the order of growth of functions pertinent to algorithm analysis?
2.	 If a function g is in O(f ), can f also be in O(g)?
3.	 What function is lg n?
4.	 Why is L’HÔpital’s Rule important for analyzing algorithms?

12.7	 Exercises

1.	 Some algorithms have complexity lg lg n (that is lg (lg n)). Make a table like Table 1 above 
showing the rate of growth of lg lg n as n becomes larger.

2.	 Show that n3+n-4 ∉ O(2n2-3).
3.	 Show that lg 2n ∈ O(n).
4.	 Show that n lg n ∈ O(n2).
5.	 Show that if a, b ≥ 0 and a ≤ b, then na ∈ O(nb).

12.8	 Review Question Answers

1.	 The order of growth of functions is pertinent to algorithm analysis because the amount of 
work done by algorithms whose complexity functions have the same order of growth is not 
very different, while the amount of work done by algorithms whose complexity functions 
have different orders of growth is dramatically different. The theory of the order of growth 
of functions provides a theoretical framework for determining significant differences in the 
amount of work done by algorithms.

2.	 If g and f grow at the same rate, then g ∈ O(f ) because g grows no faster than f, and f ∈ O(g) 
because f grows no faster than g. For any functions f and g with the same order of growth, f 
∈ O(g) and g ∈ O(f ).

3.	 The function lg n is log2 n. that is, the logarithm base two of n. 
4.	 L’HÔpital’s Rule is important for analyzing algorithms because if makes it easier to compute the 

limit of the ratio of two functions of n as n goes to infinity, which is the basis for determining 
their comparative growth rates. For example, it is not clear what the value of limn->∞(lg n)2/n 
is. Using L’HÔpital’s Rule twice to differentiate the numerators and denominators, we get

limn->∞(lg n)2/n = limn->∞(2 lg e ∙ lg n)/n = limn->∞(2 (lg e)2)/n = 0.

This shows that (lg n)2 ∈ O(n).
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13	Basic Sorting Algorithms
13.1	 Introduction

Sorting is one of the most fundamental and important data processing tasks.

Sorting algorithm: An algorithm that rearranges records in lists so that they follow some 
well-defined ordering relation on values of keys in each record.

An internal sorting algorithm works on lists in main memory, while an external sorting algorithm works 
on lists stored in files. Some sorting algorithms work much better as internal sorts than external sorts, 
but some work well in both contexts. A sorting algorithm is stable if it preserves the original order of 
records with equal keys.

Many sorting algorithms have been invented; in this chapter we will consider the simplest sorting 
algorithms. In our discussion in this chapter, all measures of input size are the length of the sorted lists 
(arrays in the sample code), and the basic operation counted is comparison of list elements (also called 
keys).

13.2	 Bubble Sort

One of the oldest sorting algorithms is bubble sort. The idea behind it is to make repeated passes through 
the list from beginning to end, comparing adjacent elements and swapping any that are out of order. 
After the first pass, the largest element will have been moved to the end of the list; after the second pass, 
the second largest will have been moved to the penultimate position; and so forth. The idea is that large 
values “bubble up” to the top of the list on each pass.

A Ruby implementation of bubble sort appears in Figure 1.

def bubble_sort(array)
  (array.size-1).downto(1).each do | j | 
    1.upto(j).each do | i |
      if array[i] < array[i-1]
        array[i], array[i-1] = array[i-1], array[i]
      end
    end
  end
  return array
end

Figure 1: Bubble Sort
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It should be clear that the algorithm does exactly the same key comparisons no matter what the contents 
of the array, so we need only consider its every-case complexity.

On the first pass through the data, every element in the array but the first is compared with its predecessor, 
so n-1 comparisons are made. On the next pass, one less comparison is made, so n-2 comparisons are 
made. This continues until the last pass, where only one comparison is made. The total number of 
comparisons is thus given by the following summation.

C(n) = ∑i=1 to n-1i = n(n-1)/2

Clearly, n(n-1)/2 ∈ O(n2).

Bubble sort is not very fast. Various suggestions have been made to improve it. For example, a Boolean 
variable can be set to false at the beginning of each pass through the list and set to true whenever a 
swap is made. If the flag is false when the pass is completed, then no swaps were done and the array 
is sorted, so the algorithm can halt. This gives exactly the same worst case complexity, but a best case 
complexity of only n. The average case complexity is still in O(n2), however, so this is not much of an 
improvement.
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13.3	 Selection Sort

The idea behind selection sort is to make repeated passes through the list, each time finding the largest 
(or smallest) value in the unsorted portion of the list, and placing it at the end (or beginning) of the 
unsorted portion, thus shrinking the unsorted portion and growing the sorted portion. The algorithm 
works by repeatedly “selecting” the item that goes at the end of the unsorted portion of the list.

A Ruby implementation of selection sort appears in Figure 2.

def selection_sort(array)
  0.upto(array.size-2).each do | j | 
    min_index = j
    (j+1).upto(array.size-1).each do | i | 
      min_index = i if array[i] < array[min_index]
    end
    array[j], array[min_index] = array[min_index], array[j]
  end
  return array
end

Figure 2: Selection Sort

This algorithm finds the minimum value in the unsorted portion of the list n-1 times and puts it where 
it belongs. Like bubble sort, it does exactly the same thing no matter what the contents of the array, so 
we need only consider its every-case complexity.

On the first pass through the list, selection sort makes n-1 comparisons; on the next pass, it makes n-2 
comparisons; on the third, it makes n-3 comparisons, and so forth. It makes n-1 passes altogether, so 
its complexity is

C(n) = ∑i=1 to n-1i = n(n-1)/2

As noted before, n(n-1)/2 ∈ O(n2).

Although the number of comparisons that selection sort makes is identical to the number that bubble 
sort makes, selection sort usually runs considerable faster. This is because bubble sort typically makes 
many swaps on every pass through the list while selection sort makes only one. Nevertheless, neither 
of these sorts is particularly fast.

13.4	 Insertion Sort

Insertion sort works by repeatedly taking an element from the unsorted portion of a list and inserting 
it into the sorted portion of the list until every element has been inserted. This algorithm is the one 
usually used by people when sorting piles of papers.
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A Ruby implementation of insertion sort appears in Figure 3.

def insertion_sort(array)
  1.upto(array.size-1).each do | j | 
    element = array[j]
    i = j
    while 0 < i && element < array[i-1]
      array[i] = array[i-1]
      i -= 1
    end
    array[i] = element
  end
  return array
end

Figure 3: Insertion Sort

A list with only one element is already sorted, so the elements inserted begin with the second element 
in the array. The inserted element is held in the element variable and values in the sorted portion 
of the array are moved up to make room for the inserted element in the same loop that finds the right 
place to make the insertion. Once that spot is found, the loop ends and the inserted element is placed 
into the sorted portion of the array.

Insertion sort does different things depending on the contents of the list, so we must consider its worst, 
best, and average case behavior. If the list is already sorted, one comparison is made for each of n-1 
elements as they are “inserted” into their current locations. So the best case behavior of insertion sort is

B(n) = n-1

The worst case occurs when every inserted element must be placed at the beginning of the already 
sorted portion of the list; this happens when the list is in reverse order. In this case, the first element 
inserted requires one comparison, the second two, the third three, and so forth, and n-1 elements must 
be inserted. Hence

W(n) = ∑i=1 to n-1i = n(n-1)/2

To compute the average case complexity, let’s suppose that the inserted element is equally likely to end 
up at any location in the sorted portion of the list, as well as the position it initially occupies. When 
inserting the element with index j, there are j+1 locations where the element may be inserted, so the 
probability of inserting into each location is 1/(j+1). Hence the average number of comparison to insert 
the element with index j is given by the following expression.
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1/(j+1) + 2/(j+1) + 3/(j+1) + … + j/(j+1) + j/(j+1)
= 1/(j+1) ∙ ∑i=1 to j i + j/(j+1)
= 1/(j+1) ∙ j(j+1)/2 + j/(j+1)

= j/2 + j/(j+1)
≈ j/2 + 1

The quantity j/(j+1) is always less than one and it is very close to one for large values of j, so we simplify 
the expression as noted above to produce a close upper bound for the count of the average number of 
comparisons done when inserting the element with index j. We will use this simpler expression in our 
further computations because we know that the result will always be a close upper bound on the number 
of comparisons.

We see that when inserting an element into the sorted portion of the list we have to make comparisons 
with about half the elements in that portion of the list, which makes sense.

Armed with this fact, we can now write down an equation for the approximate average case complexity:

A(n) = ∑j=1 to n-1
 (j/2 + 1)

= ½ ∑j=1 to n-1 j + ∑j=1 to n-1 1
= ½ (n(n-1)/2) + (n-1)

= (n2 + 3n - 4)/4

Designed for high-achieving graduates across all disciplines, London Business School’s Masters 
in Management provides specific and tangible foundations for a successful career in business. 

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM 
employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to 
work in consulting or financial services. 

As well as a renowned qualification from a world-class business school, you also gain access 
to the School’s network of more than 34,000 global alumni – a community that offers support and 
opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or 
give us a call on +44 (0)20 7000 7573.

Masters in Management

The next step for  
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graduates

*  Figures taken from London Business School’s Masters in Management 2010 employment report
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In the average case, insertion sort makes about half as many comparisons as it does in the worst case. 
Unfortunately, both these functions are in O(n2), so insertion sort is not a great sort. Nevertheless, 
insertion sort is quite a bit better than bubble and selection sort on average and in the best case, so it is 
the best of the three O(n2) sorting algorithms.

Insertion sort has one more interesting property to recommend it: it sorts nearly sorted lists very fast. A 
k-nearly sorted list is a list all of whose elements are no more than k positions from their final locations 
in the sorted list. Inserting any element into the already sorted portion of the list requires at most k 
comparisons. A close upper bound on the worst case complexity of insertion sort on a k-nearly sorted list is:

W(n) = ∑i=1 to n-1 k = k ∙ (n-1)

Because k is a constant, W(n) is in O(n), that is, insertion sort always sorts a nearly sorted list in linear 
time, which is very fast indeed.

13.5	 Shell Sort

Shell sort is an interesting variation of insertion sort invented by Donald Shell in 1959. It works by 
insertion sorting the elements in a list that are h positions apart for some h, then decreasing h and doing 
the same thing over again until h = 1.

A version of Shell sort in Ruby appears in Figure 4.

def shell_sort(array)
  # compute the starting value of h
  h = 1;
  h = 3*h + 1 while h < a.size/9

  # insertion sort using decreasing values of h
  while 0 < h do
    h.upto(array.size-1).each do | j | 
      element = array[j]
      i = j
      while 0 < i && element < array[i-h]
        array[i] = array[i-h]
        i -= h
      end
      array[i] = element
    end
    h /= 3
  end
  return array
end

Figure 4: Shell Sort
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Although Shell sort has received much attention over many years, no one has been able to analyze it yet! 
It has been established that for many sequences of values of h (including those used in the code above), 
Shell sort never does more than n1.5 comparisons in the worst case. Empirical studies have shown that 
it is quite fast on most lists. Hence Shell sort is the fastest sorting algorithm we have considered so far.

13.6	 Summary and Conclusion

For small lists of less than a few hundred elements, any of the algorithms we have considered in this 
chapter are adequate. For larger lists, Shell sort is usually the best choice, except in a few special cases:

•	 If a list is nearly sorted, use insertion sort;
•	 If a list contains large records that are very expensive to move, use selection sort because it 

does the fewest number of data moves (of course, the fast algorithms we study in a later chapter 
are even better).

Never use bubble sort: it makes as many comparisons as any other sort, and usually moves more data 
than any other sort, so it is generally the slowest of all.

13.7	 Review Questions

1.	 What is the difference between internal and external sorts?
2.	 The complexity of bubble sort and selection sort is exactly the same. Does this mean that there 

is no reason to prefer one over the other?
3.	 Does Shell sort have a best case that is different from its worst case?

13.8	 Exercises

1.	 Rewrite the bubble sort algorithm to incorporate a check to see whether the array is sorted 
after each pass, and to stop processing when this occurs.

2.	 An alternative to bubble sort is the Cocktail Shaker sort, which uses swaps to move the largest 
value to the top of the unsorted portion, then the smallest value to the bottom of the unsorted 
portion, then the largest value to the top of the unsorted portion, and so forth, until the array 
is sorted.
a)	 Write code for the Cocktail Shaker sort.
b)	 What is the complexity of the Cocktail Shaker sort?
c)	 Does the Cocktail Shaker sort have anything to recommend it (besides its name)?

3.	 Adjust the selection sort algorithm presented above to sort using the maximum rather than 
the minimum element in the unsorted portion of the array.

4.	 Every list of length n is n-nearly sorted. Using the formula for the worst case complexity of 
insertion sort on a k-nearly sorted list with k = n, we get W(n) = n(n-1). Why is this result 
different from W(n) = n(n-1)/2, which we calculated elsewhere?
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5.	 Shell sort is a modified insertion sort and insertion sort is very fast for nearly sorted lists. Do 
you think that Shell sort would sort nearly sorted lists even faster than insertion sort? Explain 
why or why not.

6.	 The sorting algorithms presented in this chapter are written for ease of analysis and do not take 
advantage of all the features of Ruby. Rewrite the sorting algorithms using as many features of 
Ruby as possible to shorten the algorithms or make them faster.

7.	 A certain data collection program collects data from seven remote stations that it contacts over 
the Internet. Every minute, the program sends a message to the remote stations prompting 
each of them to collect and return a data sample. Each sample is time stamped by the remote 
stations. Because of transmission delays, the seven samples do not arrive at the data collection 
program in time stamp order. The data collection program stores the samples in an array in 
the order in which it receives them. Every 24 hours, the program sorts the samples by time 
stamp and stores them in a database. Which sorting algorithm should the program use to sort 
samples before they are stored: bubble, selection, insertion, or Shell sort? Why?

13.9	 Review Question Answers

1.	 An internal list processes lists stored in main memory, while an external sorts processes lists 
stored in files.

2.	 Although the complexity of bubble sort and selection sort is exactly the same, in practice they 
behave differently. bubble sort tends to be significantly slower than selection sort, especially 
when list elements are large entities, because bubble sort moves elements into place in the 
list by swapping them one location at a time while selection sort merely swaps one element 
into place on each pass. bubble sort makes O(n2) swaps on average, while selection sort O(n) 
swaps in all cases. Had we chosen swaps as a basic operation, this difference would have been 
reflected in our analysis.

3.	 Shell sort does different things when the data in the list is different so it has best, worst, and 
average case behaviors that differ from one another. For example, it will clearly do the least 
amount of work when the list is already sorted, as is the case for insertion sort.
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14	Recurrences
14.1	 Introduction

It is relatively easy to set up equations, typically using summations, for counting the basic operations 
performed in a non-recursive algorithm. But this won’t work for recursive algorithms in which much 
computation is done in recursive calls rather than in loops. How are basic operations to be counted in 
recursive algorithms?

A different mathematical techniques must be used; specifically, a recurrence relation must be set up to 
reflect the recursive structure of the algorithm.

Recurrence relation: An equation that expresses the value of a function in terms of its value 
at another point.

Destination MMU
MMU is proud to be one of the most popular universities in the UK. 
Some 34,000 students from all parts of the globe select from its 
curricula of over 1,000 courses and qualifications. 

We are based in the dynamic yet conveniently compact city of Manchester, 
located at the heart of a sophisticated transport network including a major 
international airport on the outskirts. Parts of the campus are acclaimed for 
their architectural style and date back over 150 years, in direct contrast to 
our teaching style which is thoroughly  modern, innovative and 
forward-thinking. 

MMU offers undergraduate and postgraduate courses in 
the following subject areas: 

• Art, Design & Performance 
• Computing, Engineering & Technology 
• Business & Management 
• Science, Environmental Studies & Geography 
• Law, Education & Psychology 
• Food, Hospitality, Tourism & Leisure Studies 
• Humanities & Social Science 

For more details or an application form
please contact MMU International.
email: international@mmu.ac.uk
telephone: +44 (0)161 247 1022
www.mmu.ac.uk/international
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For example, consider the recurrence relation F(n) = n ∙ F(n-1), where the domain of F  is the non-
negative integers (all our recurrence relations will have domains that are either the non-negative integers 
or the positive integers). This recurrence relation says that the value of F is its value at another point 
times n. Ultimately, our goal will be to solve recurrence relations like this one by removing recursion but, 
as it stands, it has infinitely many solutions.  To pin down the solution to a unique function, we need 
to indicate the value of the function at some particular point or points. Such specifications are called 
initial conditions. For example, suppose the initial condition for function F  is F(0) = 1. Then we have 
the following values of the function.

F(0) = 1
F(1) = 1 ∙ F(0) = 1
F(2) = 2 ∙ F(1) = 2
F(3) = 3 ∙ F(2) = 6
…

We thus recognize F  as the factorial function. A recurrence relation plus one or more initial conditions 
form a recurrence.

Recurrence: a recurrence relation plus one or more initial conditions that together recursively 
define a function.

14.2	 Setting Up Recurrences

Lets consider a few recursive algorithms to illustrate how to use recurrences to analyze them. The Ruby 
code in Figure 1 implements an algorithm to reverse a string.

def reverse(s)
  return s if s.size <= 1
  return reverse(s[1̤-1]) + s[0]
end

Figure 1: Recursively Reversing a String

If the string parameter s is a single character or the empty string, then it is its own reversal and it is 
returned. Otherwise, the first character of s is concatenated to the end of the result of reversing s with 
its first character removed.

The size of the input to this algorithm is the length n of the string parameter. We will count string 
concatenation operations. This algorithm always does the same thing no matter the contents of the string, 
so we need only derive its every-case complexity C(n). If n is 0 or 1, that is, if the string parameter s of 
reverse() is empty or only a single character, then no concatenations are done, so C(0) = C(1) = 0. 
If n > 1, then the number of concatenations is one plus however many are done during the recursive 
call on the substring, which has length n-1, giving us the recurrence relation
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C(n) = 1 + C(n-1)

Putting these facts together, we have the following recurrence for this algorithm.

C(n) = 0			   for n = 0 or n = 1
C(n) = 1 + C(n-1)		  for n > 1

Lets consider a slightly more complex example. The Towers of Hanoi puzzle is a famous game in which 
one must transfer a pyramidal tower of disks from one peg to another using a third as auxiliary, under 
the constraint that no disk can be placed on a smaller disk. The algorithm in Figure 2 solves this puzzle 
in the least number of steps.

def move_tower(src, dst, aux, n)
  if n == 1
    move_disk(src,dst)
  else
    move_tower(src, aux, dst, n-1)
    move_disk(src, dst)
    move_tower(aux, dst, src, n-1)
  end
end

Figure 2: Towers of Hanoi Algorithm

The last parameter of the move_tower() function is the number of disks to move from the src peg 
to the dst peg. To solve the problem, execute

move_tower(src, dst, aux, src.size)

Our measure of the size of the input is the number of disks on the source peg. The algorithm always 
does the same thing for a given value of n, so we compute the every-case complexity C(n). When n = 1, 
only one disk is moved, so C(1) = 1. When n is greater than one, then the number of disks moved is the 
number moved to shift the top n-1 disks to the auxiliary peg, plus one move to put the bottom disk on 
the destination peg, plus the number moved to shift n-1 disks from the auxiliary peg to the destination 
peg. This gives the following recurrence.

C(1) = 1			   for n = 1
C(n) = 1 + 2 ∙ C(n-1)		  for n > 1

Although recurrences are nice, they don’t tell us in a closed form the complexity of our algorithms—in 
other words, the only way to calculate the value of a recurrence for n is to start with the initial conditions 
and work our way up to the value for n using the recurrence relation, which can be a lot of work. We would 
like to come up with solutions to recurrences that don’t use recursion so that we can compute them easily.
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14.3	 Solving Recurrences

There are several ways to solve recurrences but we will consider only one called the method of backward 
substitution. This method has the following steps.

1.	 Expand the recurrence relation by substituting it into itself several times until a pattern emerges.
2.	 Characterize the pattern by expressing the recurrence relation in terms of n and an arbitrary 

term i.
3.	 Substitute for i an expression that will remove the recursion from the equation.
4.	 Manipulate the result to achieve a final closed form for the defined function.

To illustrate this technique, we will solve the recurrences above, starting with the one for the string 
reversal algorithm. Steps one and two for this recurrence appear below.

C(n)	 = 1 + C(n-1)
	 = 1 + (1 + C(n-2)) = 2 + C(n-2)
	 = 2 + (1 + C(n-3)) = 3 + C(n-3)
	 = …
	 = i + C(n-i)

The last expression characterizes the recurrence relation for an arbitrary term i. C(n-i) is equal to an 
initial condition for i = n-1. We can substitute this into the equation as follows.

Get Internationally Connected 
at the University of Surrey 
MA Intercultural Communication with International Business
MA Communication and International Marketing

MA Intercultural Communication with International Business

Provides you with a critical understanding of communication in contemporary 
socio-cultural contexts by combining linguistic, cultural/media studies and 
international business and will prepare you for a wide range of careers.

MA Communication and International Marketing

Equips you with a detailed understanding of communication in contemporary 
international marketing contexts to enable you to address the market needs of 
the international business environment.

For further information contact:
T: +44 (0)1483 681681
E: pg-enquiries@surrey.ac.uk
www.surrey.ac.uk/downloads 
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C(n)	 = i + C(n-i)
	 = n-1 + C(n - (n-1))
	 = n-1 + C(1)
	 = n-1 + 0
	 = n-1

This solves the recurrence: the number of concatenations done by the reverse() function on a string 
of length n is n-1 (which makes sense if you think about it).

Now lets do the same thing for the recurrence we generated for the Towers of Hanoi algorithm:

C(n)	 = 1 + 2 ∙ C(n-1)
	 = 1 + 2 ∙ (1 + 2 ∙C(n-2))		 = 1 + 2 + 4 ∙ C(n-2)
	 = 1 + 2 + 4 ∙ (1 + 2 ∙ C(n-3))	 = 1 + 2 + 4 + 8 ∙ C(n-3)
	 = …
	 = 1 + 2 + 4 + … + 2i ∙ C(n-i)

The initial condition for the Towers of Hanoi problem is C(1) = 1, and if we set i to n-1, then we can 
achieve this initial condition and thus remove the recursion:

C(n)	 = 1 + 2 + 4 + … + 2i ∙ C(n-i)
	 = 1 + 2 + 4 + … + 2n-1 ∙ C(n-(n-1))
	 = 1 + 2 + 4 + … + 2n-1 ∙ C(1)
	 = 2n - 1

Thus the number of moves made to solve the Towers of Hanoi puzzle for n disks is 2n - 1, which is 
obviously in O(2n).

14.4	 Summary and Conclusion

Recurrences provide the technique we need to analyze recursive algorithms. Together with the 
summations technique we use with non-recursive algorithms, we are now in a position to analyze any 
algorithm we write. Often the analysis is mathematically difficult, so we may not always succeed in our 
analysis efforts. But at least we have techniques that we can use.

14.5	 Review Questions

1.	 Use different initial conditions to show how the recurrence equation F(n) = n ∙ F(n-1) has 
infinitely many solutions.

2.	 Consider the recurrence relation F(n) = F(n-1) + F(n-2) for n > 1 with initial conditions F(0) 
= F(1) = 1. What well-known sequence of values is generated by this recurrence?

3.	 What are the four steps of the method of backward substitution?
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14.6	 Exercises

1.	 Write the values of the following recurrences for n = 0 to 4.
a)	 C(n) = 2 ∙ C(n-1), C(0) = 1
b)	 C(n) = 1 + 2 ∙ C(n-1), C(0) = 0
c)	 C(n) = b ∙ C(n-1), C(0) = 1 (b is some constant)
d)	 C(n) = n + C(n-1), C(0) = 0

2.	 Write the values of the following recurrences for n = 1, 2, 4, and 8.
a)	 C(n) = 2 ∙ C(n/2), C(1) = 1
b)	 C(n) = 1 + C(n/2), C(1) = 0
c)	 C(n) = n + 2 ∙ C(n/2), C(1) = 0
d)	 C(n) = n + C(n/2), C(1) = 1

3.	 Use the method of backward substitution to solve the following recurrences.
a)	 C(n) = 2 ∙ C(n-1), C(0) = 1
b)	 C(n) = 1 + 2 ∙ C(n-1), C(0) = 0
c)	 C(n) = b ∙ C(n-1), C(0) = 1 (b is some constant)
d)	 C(n) = n + C(n-1), C(0) = 0

4.	 Use the method of backward substitution to solve the following recurrences. Assume that 
n = 2k to solve these equations.
a)	 C(n) = 2 ∙ C(n/2), C(1) = 1
b)	 C(n) = 1 + C(n/2), C(1) = 0
c)	 C(n) = n + 2 ∙ C(n/2), C(1) = 0
d)	 C(n) = n + C(n/2), C(1) = 1

14.7	 Review Question Answers

1.	 To see that F(n) = n ∙ F(n-1) has infinitely many solutions, consider the sequence of initial 
conditions F(0) = 0, F(0) = 1, F(0) = 2, and so on. For initial condition F(0) = 0, F(n) = 0 for all 
n. For F(0) = 1, F(n) is the factorial function. For F(0) = 2, F(n) is twice the factorial function, 
and in general for F(0) = k, F(n) = k ∙ n! Hence infinitely many functions are generated by 
choosing different initial conditions.

2.	 This recurrence defines the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, ….
3.	 The four steps of the method of backward substitution are (1) expand the recurrence relation 

several times until a pattern is detected, (2) express the pattern in terms of n and some index 
variable i, (3) Find a value for i that uses initial conditions to remove the recursion from the 
equation, (4) substitute the value for i and simplify to obtain a closed form for the recurrence.
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15	Merge sort and Quicksort
15.1	 Introduction

The sorting algorithms we have looked at so far are not very fast, except for Shell sort and insertion sort 
on nearly-sorted lists. In this chapter we consider two of the fastest sorting algorithms known: merge 
sort and quicksort.

15.2	 Merge Sort

Merge sort is a divide and conquer algorithm that solves a large problem by dividing it into parts, 
solving the resulting smaller problems, and then combining these solutions into a solution to the original 
problem. The strategy of merge sort is to sort halves of a list (recursively) then merge the results into the 
final sorted list. Merging is a pretty fast operation, and breaking a problem in half repeatedly quickly 
gets down to lists that are already sorted (lists of length one or zero), so this algorithm performs well. 
A Ruby implementation of merge sort appears in Figure 1 below.

STEP INTO A WORLD 
OF OPPORTUNITY
www.ecco.com/trainees
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def merge_sort(array)
  merge_into(array.dup, array, 0, array.size)
  return array
end

def merge_into(src, dst, lo, hi)
  return if hi-lo < 2
  m = (lo+hi)/2
  merge_into(dst, src, lo, m)
  merge_into(dst, src, m, hi)
  j, k = lo, m
  (lo̤hi-1).each do |i|
    if j < m and k < hi
      if src[j] < src[k]
        dst[i] = src[j]; j += 1
      else
        dst[i] = src[k]; k += 1
      end
    elsif j < m
      dst[i] = src[j]; j += 1
    else # k < hi
      dst[i] = src[k]; k += 1
    end
  end
end

Figure 1: Merge Sort

Merging requires a place to store the result of merging two lists: duplicating the original list provides 
space for merging. Hence this algorithm duplicates the original list and passes the duplicate to 
merge_into(). This operation recursively sorts the two halves of the auxiliary list and then merges 
them back into the original list. Although it is possible to sort and merge in place, or to merge using a 
list only half the size of the original, the algorithms to do merge sort this way are complicated and have 
a lot of overhead—it is simpler and faster to use an auxiliary list the size of the original, even though it 
requires a lot of extra space.

In analyzing this algorithm, the measure of the size of the input is, of course, the length of the list 
sorted, and the operations counted are key comparisons. Key comparison occurs in the merging step: 
the smallest items in the merged sub-lists are compared, and the smallest is moved into the target list. 
This step is repeated until one of the sub-lists is exhausted, in which case the remainder of the other 
sub-list is copied into the target list.
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Merging does not always take the same amount of effort: it depends on the contents of the sub-lists. In 
the best case, the largest element in one sub-list is always smaller than the smallest element in the other 
(which occurs, for example, when the input list is already sorted). If we make this assumption, along 
with the simplifying assumption that n = 2k, then the recurrence relation for the number of comparisons 
in the best case is

	 	  B(n) 	 = n/2 + 2 ∙ B(n/2)
			    = n/2 + 2 ∙ (n/4 + 2 ∙ B(n/4)) = 2 ∙ n/2 + 4 ∙ B(n/4)
			    = 2 ∙ n/2 + 4 ∙ (n/8 + 2 ∙ B(n/8) = 3 ∙ n/2 + 8 ∙ B(n/8)
			    = …
			    = i ∙ n/2 + 2i ∙ B(n/2i)

The initial condition for the best case occurs when n is one or zero, in which case no comparisons are 
made. If we let n/2i = 1, then i = k = lg n. Substituting this into the equation above, we have

B(n) = lg n ∙ n/2 + n ∙ B(1) = (n lg n)/2

Thus, in the best case, merge sort makes only about (n lg n)/2 key comparisons, which is quite fast. It 
is also obviously in O(n lg n).

In the worst case, making the most comparisons occurs when merging two sub-lists such that one is 
exhausted when there is only one element left in the other. In this case, every merge operation for a 
target list of size n requires n-1 comparisons. We thus have the following recurrence relation:

		  W(n) 	  = n-1 + 2 ∙ W(n/2)
			    = n-1 + 2 ∙ (n/2-1 + 2 ∙ W(n/4)) = n-1 + n-2 + 4 ∙ W(n/4)
			    = n-1 + n-2 + 4 ∙ (n/4-1 + 2 ∙ W(n/8) = n-1 + n-2 + n-4 + 8 ∙ W(n/8)
			    = …
			    = n-1 + n-2 + n-4 + … + n-2i-1 + 2i ∙ W(n/2i)

The initial conditions are the same as before, so we may again let i = lg n to solve this recurrence.

	 	 W(n) 	  = n-1 + n-2 + n-4 + … + n-2i-1 + 2i ∙ W(n/2i)
			    = n-1 + n-2 + n-4 + … + n-2lg n - 1

			    = ∑j = 0 to lg n - 1 n - 2j

			    = ∑j = 0 to lg n - 1 n - ∑j = 0 to lg n - 1 2
j

			    = n ∑j = 0 to lg n - 1 1 - (2lg n - 1 + 1 - 1)
			    = n lg n - n + 1

The worst case behavior of merge sort is thus also in O(n lg n).
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As an average case, lets suppose that each comparison of keys from the two sub-lists is equally likely 
to result in an element from one sub-list being moved into the target list as from the other. This is like 
flipping coins: it is as likely that the element moved from one sub-list will win the comparison as an 
element from the other. And like flipping coins, we expect that in the long run, the elements chosen 
from one list will be about the same as the elements chosen from the other, so that the sub-lists will run 
out at about the same time. This situation is about the same as the worst case behavior, so on average, 
merge sort will make about the same number of comparisons as in the worst case.

Thus, in all cases, merge sort runs in O(n lg n) time, which means that it is significantly faster than the other 
sorts we have seen so far. Its major drawback is that it uses O(n) extra memory locations to do its work.

15.3	 Quicksort

Quicksort was invented by C.A.R. Hoare in 1960, and it is still the fastest algorithm for sorting random 
data by comparison of keys. A Ruby implementation of quicksort appears in Figure 2 below.

Quicksort is a divide and conquer algorithm. It works by selecting a single element in the list, called the 
pivot element, and rearranging the list so that all elements less than or equal to the pivot are to its left, 
and all elements greater than or equal to it are to its right. This operation is called partitioning. Once 
a list is partitioned, the algorithm calls itself recursively to sort the sub-lists left and right of the pivot. 
Eventually, the sub-lists have length one or zero, at which point they are sorted, ending the recursion. 
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The heart of quicksort is the partitioning algorithm. This algorithm must choose a pivot element and 
then rearrange the list as quickly as possible so that the pivot element is in its final position, all values 
greater than the pivot are to its right, and all values less than it are to its left. Although there are many 
variations of this algorithm, the general approach is to choose an arbitrary element as the pivot, scan 
from the left until a value greater than the pivot is found, and from the right until a value less than the 
pivot is found. These values are then swapped, and the scans resume. The pivot element belongs in the 
position where the scans meet. Although it seems very simple, the quicksort partitioning algorithm is 
quite subtle and hard to get right. For this reason, it is generally a good idea to copy it from a source 
that has tested it extensively.

def quick(array, lb, ub)
  return if ub <= lb
  pivot = array[ub]
  i, j = lb-1, ub
  loop do
    loop do i += 1; break if pivot <= array[i]; end
    loop do j -= 1; break if j <= lb || array[j] <= pivot; end
    array[i], array[j] = array[j], array[i]
    break if j <= i
  end
  array[j], array[i], array[ub] = array[i], pivot, array[j]
  quick(array,lb,i-1)
  quick(array,i+1,ub)
end

def Quicksort(array)
  quick(array, 0, array.size-1)
  return array
end

Figure 2: Quicksort

We analyze this algorithm using the list size as the measure of the size of the input, and using comparisons 
as the basic operation. Quicksort behaves very differently depending on the contents of the list it sorts. 
In the best case, the pivot always ends up right in the middle of the partitioned sub-lists. We assume, for 
simplicity, that the original list has 2k-1 elements. The partitioning algorithm compares the pivot value 
to every other value, so it makes n-1 comparisons on a list of size n. This means that the recurrence 
relation for the number of comparison is

B(n) = n-1 + 2 ∙ B((n-1)/2)

The initial condition is B(n) = 0 for n = 0 or 1 because no comparisons are made on lists of size one or 
empty lists. We may solve this recurrence as follows:

http://bookboon.com/


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

121 

Merge sort and Quicksort

		  B(n) 	  = n-1 + 2 ∙B((n-1)/2)
			    = n-1 + 2 ∙ ((n-1)/2 - 1 + 2 ∙ B(((n-1)/2 - 1)/2))
			    = n-1 + n-3 + 4 ∙ B((n-3)/4)
			    = n-1 + n-3 + 4 ∙ ((n-3)/4 - 1 + 2 ∙ B(((n-3)/4 - 1)/2))
			    = n-1 + n-3 + n-7 + 8 ∙ B((n-7)/8)
			    = …
			    = n-1 + n-3 + n-7 + … + (n-(2i-1) + 2i ∙ B((n-(2i-1))/2i)

If we let (n-(2i-1))/2i = 1 and solve for i, we get i = k-1. Substituting, we have

			   B(n) 	  = n-1 + n-3 + n-7 + … + n-(2k-1-1)
				     = ∑ i = 0 to k-1 n - (2i - 1)
				     = ∑ i = 0 to k-1 n+1 - ∑ i = 0 to k-1 2

i

				     = k ∙ (n+1) - (2k - 1)
				     = (n+1) lg (n+1) - n

Thus the best case complexity of quicksort is in O(n lg n).

Quicksort’s worst case behavior occurs when the pivot element always ends up at one end of the sub-
list, meaning that sub-lists are not divided in half when they are partitioned, but instead one sub-list is 
empty and the other has one less element than the sub-list before partitioning. If the first or last value 
in the list is used as the pivot, this occurs when the original list is already in order or in reverse order. 
In this case the recurrence relation is

W(n) = n-1 + W(n-1)

This recurrence relation is easily solved and turns out to be W(n) = n(n-1)/2, which of course we know 
to be O(n2)!

The average case complexity of quicksort involves a recurrence that is somewhat hard to solve, so we 
simply present the solution: A(n) = 2(n+1) ∙ ln 2 ∙ lg n ≈ 1.39 (n+1) lg n. This is not far from quicksort’s 
best case complexity. So in the best and average cases, quicksort is very fast, performing O(n lg n) 
comparisons; but in the worst case, quicksort is very slow, performing O(n2) comparisons.
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15.4	 Improvements to Quicksort

Quicksort’s worst case behavior is abysmal, and because it occurs for sorted or nearly sorted lists, which 
are often encountered, this is a big problem. Many solutions to this problem have been proposed, but 
perhaps the best is called the median-of-three improvement, and it consists of using the median of the 
first, last, and middle values in each sub-list as the pivot element. 

Except in rare cases, this technique produces a pivot value that ends up near the middle of the sub-list 
when it is partitioned, especially if the sub-list is sorted or nearly sorted. A version of quicksort with 
the median-of-three improvement appears in Figure 3 below. The median finding process also allows 
sentinel values to be placed at the ends of the sub-list, which speeds up the partitioning algorithm a little 
bit as well because array indices need not be checked.

Sentinel value: a special value placed in a data structure to mark a boundary.

From now on, we will assume that quicksort includes the median-of-three improvement.
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work placement. This gives our graduates a competitive edge when entering the job market.

• An exciting student city in the middle of England. Ideally located for travel across the UK
and with direct flights to destinations across Europe from East Midlands Airport.

• Investing £130 million across our three campuses to create an inspiring learning
environment.

• In the most recent QAA institutional review, the University received the highest
commendation for its consistent commitment to supporting students and their learning.

If you would like any guidance on applying to Nottingham Trent University
please contact Laura Vella, our International Officer for Europe, on

Tel: +44 (0)115 848 8180
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def quick_m3(array, lb, ub)
  return if ub <= lb

  # find sentinels and the median for the pivot
  m = (lb+ub)/2
  array[lb],array[m]=array[m],array[lb] if array[m] < array[lb]
  array[m],array[ub]=array[ub],array[m] if array[ub] < array[m]
  array[lb],array[m]=array[m],array[lb] if array[m] < array[lb]

  # if the sub-array is size 3 or less, it is now sorted
  return if ub-lb < 3

  # put the median just shy of the end of the list
  array[ub-1], array[m] = array[m], array[ub-1]

  pivot = array[ub-1]
  i, j = lb, ub-1
  loop do
    loop do i += 1; break if pivot <= array[i]; end
    loop do j -= 1; break if j <= lb || array[j] <= pivot; end
    array[i], array[j] = array[j], array[i]
    break if j <= i
  end
  array[j], array[i], array[ub-1] = array[i], pivot, array[j]
  quick_m3(array,lb,i-1)
  quick_m3(array,i+1,ub)
end
private :quick_m3

def Quicksort_m3(array)
  quick_m3(array, 0, array.size-1)
  return array
end

Figure 3: Quicksort with the Median-of-Three Improvement

Other improvement to quicksort have been proposed, and each speeds it up slightly at the expense of 
making it a bit more complicated. Among the suggested improvement are the following:

•	 Use insertion sort for small sub-lists (ten to fifteen elements). This eliminates a lot of recursive 
calls on small sub-lists and takes advantage of insertion sort’s linear behavior on nearly sorted 
lists. Generally this is implemented by having quicksort stop when it gets down to lists of less 
than ten or fifteen elements, and then insertion sorting the whole list at the end.

•	 Remove recursion and use a stack to keep track of sub-lists yet to be sorted. This removes 
function calling overhead.

•	 Partition smaller sub-lists first, which keeps the stack a little smaller.
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Despite all these improvement, there are still many cases where quicksort does poorly on data that has 
some degree of order, which is characteristic of much real-world data. Recent efforts to find sorting 
algorithms that take advantage of order in the data have produced algorithms (usually based on merge 
sort) that use little extra space and are far faster than quicksort on data with some order. Such algorithms 
are considerably faster than quicksort in many real-world cases.

15.5	 Summary and Conclusion

Merge sort is a fast sorting algorithm whose best, worst, and average case complexity are all in O(n lg n), 
but unfortunately it uses O(n) extra space to do its work. Quicksort has best and average case complexity 
in O(n lg n), but unfortunately its worst case complexity is in O(n2). The median-of-three improvement 
makes quicksort’s worst case behavior less likely, but quicksort is still vulnerable to poor performance 
on data with some order. Nevertheless, quicksort is still the fastest algorithm known for sorting random 
data by comparison of keys.

15.6	 Review Questions

1.	 Why does merge sort need extra space?
2.	 What stops recursion in merge sort and quicksort?
3.	 What is a pivot value in quicksort?
4.	 What changes have been suggested to improve quicksort?
5.	 If quicksort has such bad worst case behavior, why is it still used?

15.7	 Exercises

1.	 Explain why the merge sort algorithm first copies the original list into the auxiliary array.
2.	 Write a non-recursive version of merge sort that uses a stack to keep track of sub-lists that 

have yet to be sorted. Time your implementation against the unmodified merge sort algorithm 
and summarize the results.

3.	 The merge sort algorithm presented above does not take advantage of all the features of Ruby. 
Write a version of merge sort that uses features of Ruby to make it simpler or faster than the 
version in the text. Time your algorithm against the one in the text to determine which is faster.

4.	 Modify the quicksort algorithm with the median-of-three improvement so that it does not sort 
lists smaller than a dozen elements and calls insertion sort to finish sorting at the end. Time 
your implementation against the unmodified quicksort with the median-of-three improvement 
and summarize the results.

5.	 Modify the quicksort algorithm with the median-of-three improvement so that it uses a stack 
rather than recursion and works on smaller sub-lists first. Time your implementation against 
the unmodified quicksort with the median-of-three improvement and summarize the results.
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6.	 The quicksort algorithm presented above does not take advantage of all the features of Ruby. 
Write a version of quicksort that takes advantage of Ruby’s features to make the algorithm 
shorter or faster. Time your version against the one in the text to determine which one is faster.

7.	 Write the fastest quicksort you can. Time your implementation against the unmodified 
quicksort and summarize the results.

8.	 The Ruby Array class has a sort() method that uses a version of the quicksort algorithm. If 
you time any of the quicksort algorithms we have presented, or one you write yourself, against 
the Array.sort() method, you will find that the latter is much faster. Why is this so?

15.8	 Review Question Answers

1.	 Merge sort uses extra space because it is awkward and slow to merge lists without using extra 
space.

2.	 Recursion in merge sort and quicksort stops when the sub-lists being sorted are either empty 
or of size one—such lists are already sorted, so no work needs to be done on them.

3.	 A pivot value in quicksort is an element of the list being sorted that is chosen as the basis for 
rearranging (partitioning) the list: all elements less than the pivot are placed to the left of it, 
and all elements greater than the pivot are placed to the right of it. (Equal values may be placed 
either left or right of the pivot, and different partitioning algorithms may make different choices).

4.	 Among the changes that have been suggested to improve quicksort are (a) using the median 
of the first, last, and middle elements in the list as the pivot value, (b) using insertion sort for 
small sub-lists, (c) removing recursion in favor of a stack, and (d) sorting small sub-lists first 
to reduce the depth of recursion (or the size of the stack).

5.	 Quicksort is still used because its performance is so good on average: quicksort usually runs 
in about half the time of other sorting algorithms, especially when it has been improved in 
the ways discussed in the chapter. Its worst case behavior is relatively rare if it incorporates 
the median-of-three improvement.
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16	Trees, Heaps, and Heapsort
16.1	 Introduction

Trees are the basis for several important data types and data structures. There are also several sorting 
algorithms based on trees. One of these algorithms is heapsort, which uses a complete binary tree 
represented in an array for fast in-place sorting.

16.2	 Basic Terminology

A trees is a special type of graph.

Graph: A collection of vertices, or nodes, and edges connecting the vertices. An edge may be 
thought of as a pair of vertices. Formally, a graph is an ordered pair <V,E> where V is a set of 
vertices, and E is a set of pairs of elements of V.

Simple path: A list of distinct vertices such that successive vertices are connected by edges.

Tree: A graph with a distinguished vertex r, called the root, such that there is exactly one simple 
path between each vertex in the tree and r.

We usually draw trees with the root at the top and the vertices and edges descending below. Figure 1 
illustrates a tree.

r

a b c

e fd

 Figure 1: A Tree

Vertex r is the root. The root has three children: a, b, and c. The root is the parent of these vertices. These 
vertices are also siblings of one another because they have the same parent Vertex a has child d and 
vertex c has children e and f . The ancestors of a vertex are the vertices on the path between it and the 
root; the descendents of a vertex are all the vertices of which it is an ancestor. Thus vertex f  has ancestors 
f, c, and r, and c has descendents c, e, and f . A vertex without children is a terminal vertex or a leaf; 
those with children are non-terminal vertices or internal vertices. The tree in Figure 1 has three internal 
vertices (r, a, and c) and four leaf vertices (b, d, e, and f ). The graph consisting of a vertex in a tree, all 
its descendents, and the edges connecting them, is a sub-tree of the tree.
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A graph consisting of several trees is a forest. The level of a vertex in a tree is the number of vertices in 
the path from the vertex to the root, not including itself. In Figure 1, vertex r is at level zero, vertices 
a, b, and c are at level one, and vertices d, e, and f  are at level two. The height of a tree is the maximum 
level in the tree. The height of the tree in Figure 1 is two.

An ordered tree is one in which the order of the children of each vertex is specified. Ordered trees 
are not drawn in any special way—some other mechanism must be used to specify whether a tree is 
ordered.

16.3	 Binary Trees

Binary trees are especially important for making data structures.

Binary tree: An ordered tree whose vertices have at most two children. The children are 
distinguished as the left child and right child. The sub-tree whose root is the left (right) child 
of a vertex is the left (right) sub-tree of that vertex.

A full binary tree is one in which every level is full except possibly the last. A complete binary tree is a 
full binary tree in which only the right-most vertices at the bottom level are missing. Figure 2 illustrates 
these notions.

a

b

d

e f

gc h

i

j k

m nl

 Figure 2: Binary Trees

The trees in Figure 2 are binary trees. In the tree on the left, vertex a has a left child, vertex b has a right 
child, and vertex c has no children. This tree is neither full nor complete. The middle tree is full but not 
complete, and the right tree is complete.

Trees have several interesting and important properties, the following among them.

•	 A tree with n vertices has n-1 edges.
•	 A complete binary tree with n internal vertices has either n or n+1 leaves.
•	 The height of a full binary tree with n vertices is floor(lg n).
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16.4	 Heaps

A vertex in a binary tree has the heap-order property if the value stored at the vertex is greater than or 
equal to the values stored at its descendents.

Heap: A complete binary tree whose every vertex has the heap-order property.

An arbitrary complete binary tree can be made into a heap as follows:

•	 Every leaf already has the heap-order property, so the sub-trees whose roots are leaves are heaps.
•	 Starting with the right-most internal vertex v at the next-to-last level, and working left across 

levels and upwards in the tree, do the following: if vertex v does not have the heap-order 
property, swap its value with the largest of its children, then do the same with the modified 
vertex, until the sub-tree rooted at v is a heap.

It is fairly efficient to make complete binary trees into heaps because each sub-tree is made into a heap 
by swapping its root downwards in the tree as far as necessary. The height of a complete binary tree is 
floor(lg n), so this operation cannot take very long.

Heaps can be implemented in a variety of ways, but the fact that they are complete binary trees makes it 
possible to store them very efficiently in contiguous memory locations. Consider the numbers assigned 
to the vertices of the complete binary tree in Figure 3. Note that numbers are assigned left to right across 
levels, and from top to bottom of the tree.\

0

87

3 4 6

21

5

9
 Figure 3: Numbering Vertices for Contiguous Storage

This numbering scheme can be used to identify each vertex in a complete binary tree: vertex zero is the 
root, vertex one is the left child of the root, vertex two is the right child of the root, and so forth. Note 
in particular that

•	 The left child of vertex k is vertex 2k+1.
•	 The right child of vertex k is vertex 2k+2.
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•	 The parent vertex k is vertex floor((k-1)/2).
•	 If there are n vertices in the tree, the last one with a child is vertex floor(n/2) - 1.

If we let these vertex numbers be array indices, then each array location is associated with a vertex in the 
tree, and we can store the values at the vertices of the tree in the array: the value of vertex k is stored in 
array location k. The correspondence between array indices and vertex locations thus makes it possible 
to represent complete binary trees in arrays. The fact that the binary tree is complete means that every 
array location stores the value at a vertex, so no space is unused in the array.

16.5	 Heapsort

We now have all the pieces we need to for an efficient and interesting sorting algorithm based on heaps. 
Suppose we have an array to be sorted. We can consider it to be a complete binary tree stored in an 
array as explained above. Then we can

•	 Make the tree into a heap as explained above.
•	 The largest value in a heap is at the root, which is always at array location zero. We can swap 

this value with the value at the end of the array and pretend the array is one element shorter. 
Then we have a complete binary tree that is almost a heap—we just need to sift the root value 
down the tree as far as necessary to make it one. Once we do, the tree will once again be a heap.

•	 We can then repeat this process again and again until the entire array is sorted.
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NORWAY. 
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This sorting algorithm, called heapsort, is shown in the Ruby code in Figure 4 below.

def heapify(array, i, max_index)
  tmp = array[i]
  j = 2*i + 1
  while j <= max_index
    j += 1 if j < max_index && array[j] < array[j+1]
    break if array[j] <= tmp
    array[i] = array[j]
    i, j = j, 2*i + 1
  end
  array[i] = tmp
end

def heap_sort(array)
  # make the entire array into a heap
  max_index = array.size-1
  ((max_index-1)/2).downto(0).each do | i | 
    heapify(array,i,max_index)
  end

  # repeatedly remove the root and remake the heap
  loop do
    array[0],array[max_index] = array[max_index],array[0]
    max_index -= 1
    break if max_index <= 0
    heapify(array, 0, max_index)
  end
  return array
end

Figure 4: Heapsort

A complex analysis that we will not reproduce here shows that the number of comparisons done by 
heapsort in both the best, worst, and average cases are all in O(n lg n). Thus heapsort joins Shell sort, 
merge sort, and quicksort in our repertoire of fast sorting algorithms. Empirical studies have shown that 
while heapsort is not as fast as quicksort, it is not much slower than Shell sort and merge sort, with the 
advantages that it does not use any extra space,and it does not have bad worst case complexity.

16.6	 Summary and Conclusion

A tree is a special sort of graph that is important in computing. One application of trees is for sorting: 
an array can be treated as a complete binary tree and then transformed into a heap. The heap can then 
be manipulated to sort the array in place in O(n lg n) time. This algorithm is called heapsort and it is a 
good algorithm to use when space is at a premium and respectable worst case complexity is required.
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16.7	 Review Questions

1.	 In Figure 1, what are the descendents of r? What are the ancestors of r?
2.	 How can you tell from a diagram whether a tree is ordered?
3.	 Is every full binary tree a complete binary tree? Is every complete binary tree a full binary tree?
4.	 Where is the largest value in a heap?
5.	 Using the heap data structure numbering scheme, which vertices are the left and right children 

of vertex 27? Which vertex is the parent of vertex 27?
6.	 What is the worst case behavior of heapsort?

16.8	 Exercises

1.	 Represent the three trees in Figure 2 as sets of ordered pairs according to the definition of a 
graph.

2.	 Could the graph in Figure 1 still be a tree if b was its root? If so, redraw the tree in the usual 
way (that is, with the root at the top) to make clear the relationships between the vertices.

3.	 Draw a complete binary tree with 12 vertices, placing arbitrary values at the vertices. Use the 
algorithm discussed in the chapter to transform the tree into a heap, redrawing the tree at 
each step.

4.	 Suppose that we change the definition of the heap-order property to say that the value 
stored at a vertex is less than or equal to the values stored at its descendents. If we use 
the heapsort algorithm on trees that are heaps according to this definition, what will be 
the result?

5.	 In the heapsort algorithm in Figure 4, the heapify() operation is applied to vertices starting 
at max_index-1. Why does the algorithm not start at max_index?

6.	 Draw a complete binary tree with 12 vertex, placing arbitrary values at the vertices. Use the 
heapsort algorithm to sort the tree, redrawing the tree at each step, and placing removed values 
into a list representing the sorted array as they are removed from the tree. 

7.	 Write a program to sort arrays of various sizes using heapsort, Shell sort, merge sort, and 
quicksort. Time your implementations and summarize the results.

8.	 Introspective sort is a quicksort-based algorithm recently devised by David Musser. 
introspective sort works like quicksort except that it keeps track of the depth of recursion 
(or of the stack), and when recursion gets too deep (about 2 ∙ lg n recursive calls or stack 
elements), it switches to heapsort to sort sub-lists. This algorithm does O(n lg n) comparisons 
even in the worst case, sorts in place, and usually runs almost as fast as quicksort on average. 
Write an introspective sort function, time your implementation against standard quicksort, 
and summarize the results.
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16.9	 Review Question Answers

1.	 In Figure 1 the descendents of r are all the vertices in the tree. Vertex r has no ancestor except 
itself.

2.	 You can’t tell from a diagram whether a tree is ordered; there must be some other notation to 
indicate that this is the case.

3.	 Not every full binary tree is complete because all the leaves of a tree might be on two levels, 
making it full, but some of the missing leaves at the bottom level might not be on the right, 
meaning that it is not complete. Every complete binary tree must be a full binary tree, however.

4.	 The largest value in a heap is always at the root.
5.	 Using the heap data structure numbering scheme, the left child of vertex 27 is vertex (2*27)+1= 

55, the right child of vertex 27 is vertex (2*27)+2 = 56, and the parent of vertex 27 is vertex 
floor((27-1)/2) = 13.

6.	 The worst, best, and average case behavior of heapsort is in O(n lg n).
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17	Binary Trees
17.1	 Introduction

As mentioned in the last chapter, binary trees are ordered trees whose vertices have at most two children, 
the left child and the right child. Although other kinds of ordered trees arise in computing, binary trees 
are especially common and have been especially well studied. In this chapter we discuss the binary tree 
abstract data type and binary trees as an implementation mechanism.

17.2	 The Binary Tree ADT

Binary trees hold values of some type, so the ADT is binary tree of T, where T is the type of the elements 
in the tree. The carrier set of this type is the set of all binary trees whose vertices hold a value of type 
T. The carrier set thus includes the empty tree, the trees with only a root holding a value of type T, the 
trees with a root and a left child, the trees with a root and a right child, and so forth. Operations in this 
ADT include the following.

size(t)—Return the number of vertices in the tree t.

height(t)—Return the height of tree t.

empty?(t)—Return true just in case t is the empty tree.

contains?(t,v)—Return true just in case the value v is present in tree t.

buildTree(v,tl,tr)—Create and return a new binary tree whose root holds the value v and whose 
left and right subtrees are tl and tr.

emptyTree()—Return the empty binary tree.

rootValue(t)—Return the value of type T stored at the root of the tree t. Its precondition is 
that t is not the empty tree.

leftSubtree(t)—Return the tree whose root is the left child of the root of t. Its precondition is 
that t is not the empty tree.

rightSubtree(t)—Return the tree whose root is the right child of the root of t. Its precondition 
is that t is not the empty tree.

This ADT allows us to create arbitrary binary trees and examine them. For example, consider the binary 
tree in Figure 1.
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a
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d

 Figure 1: A Binary Tree

This tree can be constructed using the expression below.

			   buildTree(a,
				    buildTree(b,
					     emptyTree(),
					     buildTree(d,
						      emptyTree(),
						      emptyTree())),
				    buildTree(c,
					     emptyTree(),
					     emptyTree()))

To extract a value from the tree, such as the bottom-most vertex d, we could use the folowing expression, 
where t is the tree in Figure 1.

rootValue(rightSubtree(leftSubtree(t)))

As with the ADTs we have studied before, an object-oriented implementation of these operations as 
instance methods will include the tree as an implicit parameter, so the signatures of these operations 
vary somewhat when they are implemented. Furthermore, there are several operations that are very 
useful for a binary tree implementation that are not present in the ADT and several operations in the 
ADT that are not needed (more about this below).

17.3	 The Binary Tree Class

We could treat binary trees as a kind of collection, adding it to our container hierarchy, but we won’t 
do this for two reasons:

•	 In practice, binary trees are used to implement other collections, not as collections in their own 
right. Usually clients are interested in using basic Collection operations, not in the intricacies of 
building and traversing trees. Adding binary trees to the container hierarchy would complicate 
the hierarchy with a container that not many clients would use.
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•	 Although binary trees have a contiguous implementation (discussed below), it is not useful 
except for heaps. Providing such an implementation in line with our practice in the container 
hierarchy to make both contiguous and linked implementations for all interfaces would create 
a class without much use.

We will make a BinaryTree class but its role will be to provide an implementation mechanism for other 
collections. Thus BinaryTree is not part of the container hierarchy though it includes several container 
operations. It also includes operations for creating and traversing trees in various ways, as well as several 
kinds of iterators. The Binary Tree class is pictured in Figure 2.

Note that there is no buildTree() operation and no emptyTree() operation in the BinaryTree class, though 
there is one in the ADT. The BinaryTree class constructor does the job of these two operations, so they 
are not needed as separate operations in the class.

 Figure 2: The BinaryTree Class

To visit or enumerate the vertices of a binary tree is to traverse or iterate over them one at a time, processing 
the values held in each vertex. This requires that the vertices be traversed in some order. There are three 
fundamental orders for traversing a binary tree. All are most naturally described in recursive terms.

Preorder: When the vertices of a binary tree are visited in preorder, the root vertex of the tree 
is visited first, then the left sub-tree (if any) is visited in preorder, then the right sub-tree (if 
any) is visited in preorder.

Inorder: When the vertices of a binary tree are visited inorder, the left sub-tree (if any) is visited 
inorder, then the root vertex is visited, then the right sub-tree is visited inorder.
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Postorder: When the vertices of a binary tree are visited in postorder, the left sub-tree is visited 
in postorder, then the right sub-tree is visited in postorder, and then the root vertex is visited.

To illustrate these traversals, consider the binary tree in Figure 3 below. An inorder traversal of the 
tree in Figure 3 visits the vertices in the order m, b, p, k, t, d, a, g, c, f, h. A preorder traversal visits the 
vertices in the order d, b, m, k, p, t, c, a, g, f, h. A postorder traversal visits the vertices in the order m, 
p, t, k, b, g, a, h, f, c, d.

The BinaryTree class has internal iterators for visiting the vertices of a tree in the three orders listed above 
and applying the function passed in as an argument to each vertex of the tree. For examples, suppose that 
a print(v : T) operation prints the value v. If t is a binary tree, then the call t.each_inorder(print) 
will cause the values in the tree t to be printed out inorder, the call t.each_preorder(print) will cause 
them to be printed in preorder, and the call t.each_postorder(print) will cause them to be printed 
in postorder.

In addition, the BinaryTree class has three operations that return external iterators that provide access 
to the values in the tree in each of the three orders above.
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 Figure 3: A Binary Tree

When implementing the BinaryTree class in Ruby, it will mix in Enumerator, and the 
Enumerator.each() operation will be an alias for the each_inorder(), which is the most common 
way to visit the vertices of a binary tree.

17.4	 Contiguous Implementation of Binary Trees

We have already considered how to implement binary trees using an array when we learned about heapsort. 
The contiguous implementation is excellent for complete or even full binary trees because it wastes no 
space on references and it provides a quick and easy way to navigate in the tree. Unfortunately, in most 
applications binary trees are far from complete, so many array locations are never used, which wastes a 
lot of space. Even if our binary trees were always full, there is still the problem of having to predict the 
size of the tree ahead of time so that an array could be allocated that is big enough to hold all the tree 
vertices. The array could be reallocated if the tree becomes too large, but this is an expensive operation.

This is why it is not particularly useful to have a contiguous implementation of binary trees. Instead 
we will implement our BinaryTree class as a linked data structure and use it as the linked structure 
implementation mechanism for several of the collections we will add to our container hierarchy later on.

17.5	 Linked Implementation of Binary Trees

A linked implementation of binary trees resembles implementations of other ADTs using linked 
structures. A BinaryTreeNode class require three attributes: one for the data held at the node and two 
for references to the nodes that re the roots of the left and right sub-trees. In addition, it is useful to have 
a BinaryTree class acting as the host for the graph formed by the linked nodes. This host structure has 
a reference to the tree’s root node and other attributes as needed. For example, a count attribute might 
be useful to keep track of how many nodes are in the tree. Figure 4 shows how this works for a small 
example. The BinaryTree class has root and count attributes and the BinaryTreeNode class has a 
value attribute to store the data at the node and two reference attributes for the left and right sub-trees. 
These reference attributes are nil when their respective sub-trees are empty.
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 Figure 4: A Linked Representation of a Binary Tree

Trees are inherently recursive structures so it is natural to write many BinaryTree class operations 
recursively. For example, to implement the size() operation the BinaryTree can call an internal 
size(r : BinaryTreeNode) operation on the root node. This operation returns zero if its parameter is 
nil, and one plus the sum of recursive calls on the left and right sub-trees of its parameter node. Many 
other operations, particularly the internal iterator operations that apply functions to the data held at 
each node, can be implemented just as easily.

Implementing external iterators is more challenging, however. The problem is that external iterators 
cannot be written recursively because they have to be able to stop every time a new node is visited to 
deliver the value at the node to the client. There are two ways to solve this problem:

•	 Write a recursive operation to copy node values into a queue in the correct order and then 
extract items from the data structure one at a time as the client requests them.

•	 Don’t user recursion to implement iterators: use a stack instead.

The second alternative, though harder to do, it clearly better because it uses much less space.

17.6	 Summary and Conclusion

The binary tree ADT describes basic operations for building and examining binary trees whose vertices 
hold values of type T. A BinaryTree class has several operations not in the ADT, in particular, visitor 
operations for traversing the vertices of the tree and applying a function to the data stored in each node. 
External iterators are also made available by this class.
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Contiguous implementations of the binary tree ADT are possible and useful in some special circumstances, 
such as in heapsort, but the main technique for implementing the binary tree ADT uses a linked 
representation. Recursion is a very useful tool for implementing most BinaryTree operations but it 
cannot be used as easily for implementing external iterators. The BinaryTree class implemented using 
a linked structure will be used as an implementation mechanism for container classes to come.

17.7	 Review Questions

1.	 Where does the BinaryTree class fit in the Container class hierarchy?
2.	 Why does the BinaryTree class not include a buildTree() operation?
3.	 Why is the contiguous implementation of binary trees not very useful?
4.	 What is the relationship between the BinaryTree and BinaryTreeNode classes?

17.8	 Exercises

1.	 Write the values of the vertices in the following tree in the order they are visited when the tree 
is traversed inorder, in preorder, and in postorder.

g

m c

a

t

e

f

w

q h

b

p

2.	 Write the size() operation for BinaryTree class in Ruby.
3.	 Write the height() operation for the BinaryTree class in Ruby.
4.	 Write the each_preorder(), each_inorder(), and each_postorder() operations for the 

BinaryTree class as internal iterator operations in Ruby.
5.	 Write a PreorderIterator class whose instances are iterators over for the BinaryTree class. 

The PreorderIterator class will need a stack attribute to hold the nodes that have not yet been 
visited, with the current node during iteration at the top of the stack.
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17.9	 Review Question Answers

1.	 We have decided not to include the BinaryTree class in the Container class hierarchy because 
it is usually not used as a container in its own right, but rather as an implementation mechanism 
for other containers.

2.	 The BinaryTree class does not include a buildTree() operation because it may have a 
constructor that does the very same job.

3.	 The contiguous implementation of binary trees is not very useful because it only uses space 
efficiently if the binary tree is at least full, and ideally complete. In practice, this is rarely the 
case, so the linked implementation uses space more efficiently.

4.	 The BinaryTree class has an attribute that stores a reference to the root of the tree, which is a 
BinaryTreeNode instance. The root node (if any) stores references to the left and right sub-trees 
of the root, which are also references to instances of the BinaryTreeNode class. Although the 
BinaryTree and BinaryTreeNode classes are not related by inheritance, they are intimately 
connected, just as the LinkedList class is closely connected to the LinkedListNode class.
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18	�Binary Search and Binary Search 
Trees

18.1	 Introduction

Binary search is a much faster alternative to sequential search for sorted lists. Binary search is closely 
related to binary search trees, which are a special kind of binary tree. We will look at these two topics 
in this chapter, studying the complexity of binary search, and eventually arriving at a specification for 
a BinarySearchTree class.

18.2	 Binary Search

When people search for something in an ordered list (like a dictionary or a phone book), they do not 
start at the first element and march through the list one element at a time. They jump into the middle 
of the list, see where they are relative to what they are looking for, and then jump either forward or 
backward and look again, continuing in this way until they find what they are looking for, or determine 
that it is not in the list.

Binary search takes the same tack in searching for a key in a sorted list: the key is compared with the 
middle element in the list. If it is the key, the search is done. If the key is less than the middle element, 
then the process is repeated for the first half of the list. If the key is greater than the middle element, then 
the process is repeated for the second half of the list. Eventually, either the key is found in the list, or the 
list is reduced to nothing (the empty list), at which point we know that the key is not present in the list.

This approach naturally lends itself to a recursive algorithm, which we show in Ruby below.

def rb_search(array, key)
  return nil if array.empty?
  m = array.size/2
  return m if key == array[m]
  return rb_search(array[0…m],key) if key < array[m]
  index = rb_search(array[m+1̤-1],key)
  index ? m+1+index : nil
end

Figure 1: Recursive Binary Search

Search algorithms traditionally return the index of the key in the list or -1 if the key is not found; in 
Ruby we have a special value for undefined results, so we return nil if the key is not in the array. Note 
that although the algorithm has the important precondition that the array is sorted, checking this would 
take far too much time, so it is not checked.
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The recursion stops when the array is empty and the key has not been found. Otherwise, the element at 
index m in the middle of the array is checked. If it is the key, the search is done and index m is returned; 
otherwise, a recursive call is made to search the portion of the list before or after m depending on whether 
the key is less than or greater than array[m].

Although binary search is naturally recursive, it is also tail recursive. Recall that a tail recursive algorithm 
is one in which at a recursive call is the last action in each activation of the algorithm, and that tail 
recursive algorithms can always be converted to non-recursive algorithms using only a loop and no stack. 
This is always more efficient and often simpler as well. In the case of binary search, the non-recursive 
algorithm is about equally complicated, as the Ruby code in Figure 2 below shows.

def binary_search(array, key)
  lb, ub = 0, array.size-1
  while (lb <= ub)
    m = (ub+lb)/2
    return m if key == array[m]
    if key < array[m]
      ub = m-1
    else
      lb = m+1
    end
  end
  return nil
end

Figure 2: Non-Recursive Binary Search

To analyze binary search, we will consider its behavior on lists of size n and count the number of 
comparisons between list elements and the search key. Traditionally, the determination of whether the 
key is equal to, less than, or greater than a list element is counted as a single comparison even though 
it may take two comparisons in most programming languages.

Binary search does not do the same thing on every input of size n. In the best case, it finds the key in 
the middle of the list, doing only a single comparison. In the worst case, the key is not in the list, or 
is found when the sub-list being searched has only one element. We can easily generate a recurrence 
relation and initial conditions to find the worst case complexity of binary search, but we will instead use 
a binary search tree to figure this out.

Suppose that we construct a binary tree from a sorted list as follows: the root of the tree is the element 
in the middle of the list; the left child of the root is the element in the middle of the first half of the 
list; the right child of the root is the element in the middle of the second half of the list, and so on. In 
other words, the vertices of the binary tree are filled according to the order in which the values would 
be encountered during a binary search of the list. To illustrate, consider the binary tree in Figure 3 made 
from <a, b, c, d, e, f, g, h, i, j, k, l, m> in the way just described.
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 Figure 3: A Binary Tree Made from a List

A tree built this way has the following interesting properties:

•	 It is a full binary tree so its height is always floor(lg n).
•	 For every vertex, every element in its left sub-tree (if any) is less than or equal to the element 

at the vertex, and every element in its right sub-tree (if any) is greater than or equal to the 
element at the vertex.

•	 If we traverse the tree inorder, we visit the vertices in the order of the original list, that is, in 
sorted order.
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The first property tells us the worst case performance of binary search because a binary search will visit 
each vertex from the root to a leaf in the worst case. The number of vertices on these paths is the height 
of the tree plus one, so W(n) = floor(lg n) + 1. We can also calculate the average case by considering each 
vertex equally likely to be the target of a binary search and figuring out the average length of the path 
to each vertex. This turns out to be approximately lg n for both successful and unsuccessful searches. 
Hence, on average and in the worst case, binary search makes O(lg n) comparisons, which is very good.

18.3	 Binary Search Trees

The essential characteristic of the binary tree we looked at above is the relationship between the value at a 
vertex and the values in its left and right sub-trees. This is the basis for the definition of binary search trees.

Binary search tree: A binary tree whose every vertex is such that the value at each vertex is 
greater than the values in its left sub-tree, and less than the values in its right sub-tree.

Binary search trees are an important data type that retains the property that traversing them in order 
visits the values in the vertices in sorted order. However, a binary search tree may not be full, so its 
height may be greater than floor(lg n). In fact, a binary search tree whose every vertex but one has only 
a single child will have height n-1.

Binary search trees are interesting because it is fast both to insert elements into them and fast to search 
them (provided they are not too long and skinny). This contrasts with most collections, which are usually 
fast for insertions but slow for searches, or vise versa. For example, elements can be inserted into an 
(unsorted) LinkedList quickly, but searching a LinkedList is slow, while a (sorted) ArrayList can be 
searched quickly with binary search, but inserting elements into it to keep it sorted is slow.

The binary search tree of T ADT has as its carrier set the set of all binary search trees whose vertices 
hold a value of type T. It is thus a subset of the carrier set of the binary tree of T ADT. The operations 
in this ADT includes all the operations of the binary tree ADT, with the addition of a precondition on 
buildTree(), shown below. The list below also includes two operations added to the binary search tree ADT.

buildTree(v,tl,tr)—Create and return a new binary tree whose root holds the value v and whose 
left and right subtrees are tl and tr. Its precondition is that v is greater than any value held in 
tl and less than any value held in tr.

add(t,v)—Put v into a new vertex added as a leaf to t, preserving the binary search tree property, 
and return the resulting binary search tree. If v is already in t, then t is unchanged.

remove(t,v)—Remove the vertex holding v from t, if any, while preserving the result as a binary 
search tree, and return the resulting binary search tree.

This ADT is the basis for a BinarySearchTree class.
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18.4	 The Binary Search Tree Class

A BinarySearchTree is a kind of BinaryTree, so the BinarySearchTree class is a sub-class of 
BinaryTree. Its constructor needs a precondition to make sure that trees are constructed properly. It 
can also override the contains() operation to be more efficient. Otherwise, it only needs to implement 
the three operations pictured in Figure 4 below. 

 Figure 4: The BinarySearchTree Class

The add() operation puts an element into the tree by making a new child node at a spot that preserves 
the binary search tree’s integrity. If the element is already in the tree, then the element passed in replaces 
the value currently stored in the tree. In this way, a new record can replace an old one with the same 
key (more about this in later chapters).

The get() operation returns the value stored in the tree that is “equal” to the element sent in. It is 
intended to fetch a record from the tree with the same key as a dummy record supplied as an argument, 
thus providing a retrieval mechanism (again, we will discuss this more later).

The contains?() and get() operations both search the tree by starting at its root and moving down 
the tree, mimicking a binary search. If the desired value is at the root (the best case), this requires only 
one comparison, so B(n) is in O(1). In the worst case, when the tree is effectively a list, this requires 
O(n) comparisons. Empirical studies have shown that when binary search trees are built by a series of 
insertions of random data, they are more or less bushy, and their height is not too much more than lg 
n, so the number of comparisons is in O(lg n) on average.

The add() operation takes a path down the tree to the spot where the new element would be found 
during a search and adds a new leaf node to hold it. This again requires O(1) comparisons in the best case, 
O(lg n) comparisons in the average case, and O(n) comparisons in the worst case. Finally, the remove() 
operation must first find the deleted element and then manipulate the tree to remove the node holding 
the element in such a way that it is preserved as a binary search tree. This operation also takes O(1) time 
in the best case, O(lg n) time in the average case, and O(n) time in the worst case.
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Binary search trees thus provide very efficient operations except in the worst case. There are several 
kinds of balanced binary search trees whose insertion and deletion operations keep the tree bushy rather 
than long and skinny, thus eliminating the poor worst case behavior. We will not study balanced binary 
search trees.

18.5	 Summary and Conclusion

Binary search is a very efficient algorithm for searching ordered lists, with average and worst case 
complexity in O(lg n). We can represent the workings of binary search in a binary tree to produce a full 
binary search tree. Binary search trees have several interesting properties and provide a kind of collection 
that features excellent performance for insertion, deletion, and search, except in the worst case. We can 
also traverse binary search trees inorder to access the elements of the collection in sorted order.

18.6	 Review Questions

1.	 Why can recursion be removed from the binary search algorithm without using a stack?
2.	 If a binary tree is made from an ordered list of 100 names by placing them into the tree to 

mimic a binary search as discussed in the text, what is the height of the resulting tree?
3.	 Approximately how many comparisons would be made by binary search when searching a list 

of one million elements in the best, worst, and average cases?
4.	 What advantage does a binary search tree have over collections like ArrayList and LinkedList?

Increase your impact with MSM Executive Education

For more information, visit www.msm.nl or contact us at +31 43 38 70 808 

or via admissions@msm.nl
 the globally networked management school

For more information, visit www.msm.nl or contact us at +31 43 38 70 808 or via admissions@msm.nl

For almost 60 years Maastricht School of Management has been enhancing the management capacity 

of professionals and organizations around the world through state-of-the-art management education.

Our broad range of Open  Enrollment Executive Programs offers you a unique interactive, stimulating and 

multicultural  learning experience.

Be prepared for tomorrow’s  management challenges and  apply today.  

Executive Education-170x115-B2.indd   1 18-08-11   15:13

http://bookboon.com/
http://bookboon.com/count/advert/74a3fd82-96d7-e011-adca-22a08ed629e5


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

147 

Binary Search and Binary Search Trees

18.7	 Exercises

1.	 A precondition of binary search is that the searched array is sorted. What is the complexity of 
an algorithm to check this precondition?

2.	 Write and solve a recurrence relation for the worst case complexity of the binary search 
algorithm.

3.	 Interpolation search is like binary search except that it uses information about the distribution 
of keys in the array to choose a spot to check for the key. For example, suppose that numeric 
keys are uniformly distributed in an array and interpolation search is looking for the value k. 
If the first element in the array is a and the last is z, then interpolation search would check for 
k at location (k-a)/(z-a) * (array.length-1). Write a non-recursive linear interpolation search 
using this strategy.

4.	 Construct a binary search tree based on the order in which elements of a list containing the 
numbers one to 15 would be examined during a binary search, as discussed in the text.

5.	 Draw all the binary search tree that can be formed using the values a, b, and c. How many are 
full binary trees?

6.	 The BinarySearchTree add() operation does not attempt to keep the tree balanced. It simply 
work its way down the tree until it either finds the node containing the added element or finds 
where such a node should be added at the bottom of the tree. Draw the binary search tree that 
results when values are added to the tree in this manner in the order m, w, a, c, b, z, g, f, r, p, v.

7.	 Write the add() operation for the BinarySearchTree class using the strategy explained in 
the last exercise.

8.	 Write the remove() operation for the BinarySearchTree class. This operation must preserve 
the essential property of a binary search tree, namely that the value at each node is greater 
than or equal to the values at the nodes in its left sub-tree, and less than or equal to the values 
at the nodes in its right sub-tree. In deleting a value, three cases can arise:
•	 The node holding the deleted value has no children; in this case, the node can simply be 

removed.
•	 The node holding the deleted value has one child; in this case, the node can be removed 

and the child of the removed node can be made the child of the removed node’s parent.
•	 The node holding the deleted value has two children; this case is more difficult. First, find 

the node holding the successor of the deleted value. This node will always be the left-most 
descendent of the right child of the node holding the deleted value. Note that this node has 
no left child, so it has at most one child. Copy the successor value over the deleted value 
in the node where it resides, and remove the redundant node holding the successor value 
using the rule for removing a node with no children or only one child above.

a)	 Use this algorithm to remove the values v, a, and c from the tree constructed in exercise 
6 above.

b)	 Write the remove() operation using the algorithm above.
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18.8	 Review Question Answers

1.	 Recursion can be removed from the binary search algorithm without using a stack because 
the binary search algorithm is tail recursive, that is, it only calls itself once as its last action 
on each activation.

2.	 If a binary tree is made from an ordered list of 100 names by placing them into the tree to 
mimic a binary search as discussed in the text, the height of the resulting tree is floor(lg 100) = 6.

3.	 When searching a list of one million elements in the best case, the very first element 
checked would be the key, so only one comparison would be made. In the worst case, 
floor(lg 1000000)+1 = 20 comparison would be made. In the average case, roughly 
floor(lg 1000000) = 19 comparison would be made.

4.	 An ArrayList and a LinkedList allow rapid insertion but slow deletion and search, or rapid 
search (in the case of an ordered ArrayList) but slow insertion and deletion. A binary search 
tree allows rapid insertion, deletion, and search.
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19	Sets
19.1	 Introduction

Lists have a linear structure and trees have a two-dimensional structure. We now turn to unstructured 
collections. The simplest unstructured collection is the set.

Set: An unordered collection in which an element may appear at most once.

We first review the set ADT and then discuss ADT implementation.

19.2	 The Set ADT

The set of T abstract data type is the ADT of sets of elements of type T. Its carrier set is the set of all 
sets of T. This ADT is the abstract data type of sets that we all learned about starting in grade school. 
Its operations are exactly those we would expect (and more could be included as well):

e ∈ s—Return true if e is a member of the set s.

s ⊆ t—Return true if every element of s is also an element of t.

s ∩ t—Return the set of elements that are in both s and t.

s ∪ t—Return the the set of elements that are in either s or t.

s – t—Return the set of elements of s that are not in t.

s == t—Return true if and only if s and t contain the same elements.

The set ADT is so familiar that we hardly need discuss it. Instead, we can turn immediately to the set 
interface that all implementation of the set ADT will use.

19.3	 The Set Interface

The Set interface appears in Figure 1. The Set interface is a sub-interface of the Collection interface, so 
it inherits all the operations of Collection and Container. Some of the set ADT operations are included 
in these super-interfaces (such as contains?() ), so they don’t appear explicitly in the Set interface.
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 Figure 1: The Set Interface

19.4	 Contiguous Implementation of Sets

The elements of a set can be stored in an array or an ArrayList but this approach is not very efficient. 
To see this, lets consider how the most important set operations—insertion, deletion, and membership 
check—would be implemented using an array. If the elements are not kept in order, then inserting them 
is very fast, but deleting them is slow (because a sequential search must be done to find the deleted 
element), and the membership check is slow (because it also requires a sequential search). If the elements 
are kept in order, then the membership check is fast (because binary search can be used), but insertion 
and deletion are very slow because on average half the elements must be moved to open or close a hole 
for the inserted or deleted element.

There is one way to implement sets using contiguous storage that is very time efficient, though it may 
not be space efficient. A boolean array, called a characteristic function, can be used to represents a set. 
The characteristic function is indexed by set elements so that the value of the characteristic function 
at index x is true if and only if x is in the set. Insertion, deletion, and the membership check can all 
be done in constant time. The problem, of course, is that each characteristic function array must have 
an element for every possible value that could be in the set, and these values must be able to index the 
array. If a set holds values from a small sub-range of an integral type, such as the ASCII characters, or 
integers from 0 to 50, then this technique is feasible (though it still may waste a lot of space). But for 
large sub-ranges or for non-integral set elements, this technique is no longer possible.

There is one more contiguous implementation technique that is very fast for sets: hashing. We will discuss 
using hashing to implement sets later on.

19.5	 Linked Implementation of Sets

The problem with the contiguous implementation of sets is that insertion, deletion, and membership 
checking cannot all be done efficiently. The same holds true of linked lists. We have, however, encountered 
a data structure that provides fast insertion, deletion, and membership checking (at least in the best 
and average cases): binary search trees. Recall that a binary search tree (if fairly well balanced) can be 
searched in O(lg n) time, and elements can be inserted and deleted in O(lg n) time. 
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An implementation of sets using binary search trees is called a TreeSet. TreeSets are very efficient 
implementations of sets provided some care is taken to keep them from becoming too unbalanced. 
TreeSets have the further advantage of allowing iteration over the elements in the set in sorted order, 
which can be very useful in some applications. As you will see when you do the exercises, all the hard 
work creating the BinarySearchTree class will now pay off by making it very easy to implement a 
TreeSet class.

19.6	 Summary and Conclusion

Sets are useful ADTs that can be implemented efficiently using binary search trees. Figure 2 below shows 
the portion of the container hierarchy culminating in the TreeSet class, including the Enumerable 
mixin and the BinarySearchTree class, to illustrate how all these interfaces and classes fit together.
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 Figure 2: Sets and TreeSets in the Container Hierarchy

19.7	 Review Questions

1.	 Which set operation appear sin the set ADT but does not appear explicitly in the Set interface? 
Why is it not present?

2.	 What is a characteristic function?
3.	 Why is an array or an ArrayList not a good data structure for implementing the set ADT?
4.	 Why is a LinkedList not a good data structure to implement the set ADT?
5.	 Why is a binary search tree a good data structure for implementing the set ADT?

19.8	 Exercises

1.	 What other operation do you think might be useful to add to the set of T ADT?
2.	 Is an iterator required for sets? How does this compare with the situation for lists?
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3.	 Write the beginnings of a TreeSet class in Ruby that includes its attributes, invariant, 
constructor, and the operations inherited from the Collection interface.

4.	 Continue the implementation begun in exercise 3 by writing the subset?() operation for 
TreeSet.

5.	 Continue the implementation begun in exercise 3 by writing the insert() and delete() 
operations for TreeSet.

6.	 Continue the implementation begun in exercise 3 by writing the +() (union) operation for 
TreeSet. Note that you need to create and return a brand new TreeSet.

7.	 Continue the implementation begun in exercise 3 by writing the &() (intersection) operation 
for TreeSet. Note that you need to create and return a brand new TreeSet.

8.	 Continue the implementation begun in exercise 3 by writing the -() (relative complement) 
operation for TreeSet. Note that you need to create and return a brand new TreeSet.

19.9	 Review Question Answers

1.	 The membership operation in the set ADT does not appear explicitly in the Set interface because 
the contains() operation from the Collection interface already provides this functionality.

2.	 A characteristic function is a function created for a particular set that takes a value as an 
argument and returns true just in case that value is a member of the set. For example, the 
characteristic function f (x) for the set {a, b, c} would have the value true for f (a), f (b), and 
f (c), but false for any other argument.

3.	 If an array or an ArrayList is used to implement the set ADT, then either the insertion, deletion, 
or set membership operations will be slow. If the array or ArrayList is kept in order, then the 
set membership operation will be fast (because binary search can be used), but insertion and 
deletion will be slow because elements will have to be moved to keep the array in order. If 
the array or ArrayList is not kept in order, then insertions will be fast, but deletions and set 
membership operations will require sequential searches, which are slow.

4.	 If a LinkedList is used to implement the set ADT, then deletion and membership testing will 
be slow because a sequential search will be required. If the elements of the list are kept in order 
to speed up searching (which only helps a little because a sequential search must still be used), 
then insertion is made slower.

5.	 A binary search tree is a good data structure for implementing the set ADT because a binary 
search tree allows insertion, deletion, and membership testing to all be done quickly, in O(lg n) 
time (provided the tree is kept fairly balanced).
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20	Maps
20.1	 Introduction

A very useful collection is one that is a hybrid of lists and sets, called a map, table, dictionary, or associative 
array. A map (as we will call it), is a collection whose elements (which we will refer to as values) are unordered, 
like a set, but whose values are accessible via a key, akin to the way that list elements are accessible by indices.

Map: An unordered collection whose values are accessible using a key.

Another way to think of a map is as a function that maps keys to values (hence the name), like a map 
or function in mathematics. As such, a map is a set of ordered pairs of keys and values such that each 
key is paired with a single value (though a value may be paired with several keys).

20.2	 The Map ADT

Maps store values of arbitrary type with keys of arbitrary type, so the ADT is map of (K,T), where K is 
the type of the keys and T is the type of the values in the map. The carrier set of this type is the set of 
all ordered pairs whose first element is of type K and whose second element is of type T. The carrier set 
thus includes the empty map, the maps with one ordered pair of values of types K and T, the maps with 
two ordered pairs of values of types K and T, and so forth.
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The essential operations of maps, in addition to those common to all collections, are those for inserting, 
deleting, searching and retrieving keys and values.

empty?(m)—Return true if and only if m is the empty map.

size(m)—Return the number of pairs in map m.

has_key?(m, k)—Return true if and only if map m contains an ordered pair whose first element 
is k.

has_value?(m, v)—Return true if and only if map m contains an ordered pair whose second 
element is v.

m[k]=v—Return a map just like m except that the ordered pair <k, v> has been added to m. If 
m already contains an ordered pair whose first element is k, then this ordered pair is replaced 
with the new one.

delete(m, k)—Return a map just like m except that an ordered pair whose first element is k has 
been removed from m. If no such ordered pair is in m, then the result is m (in other words, if 
there is no pair with key k in m, then this operation has no effect).

m[k]—Return the second element in the ordered pair whose first element is k. Its precondition 
is that m contains an ordered pair whose first value is k.

There is considerable similarity between these operations and the operations for lists and sets. For example, 
the delete_at() operation for lists takes a list and an index and removes the element at the designated 
index, while the map operation takes a map and a key and removes the key-value pair matching the key. 
On the other hand, when the list index is out of range, there is a precondition violation, while if the key 
is not present in the map, the map is unchanged. This latter behavior is the same as what happens with 
sets when the set delete() operation is called with an argument that is not in the set.

20.3	 The Map Interface

The diagram below in Figure 1 shows the Map interface, which is a sub-interface of Collection. It includes 
all the operations of the map of (K, T) ADT. As usual, the operation parameters are a bit different from 
those in the ADT because the map is an implicit parameter of all operations.
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 Figure 1: The Map Interface

The contains?() operation inherited from Collection is a synonym for has_value?(). As a Collection, 
a Map has an associated Iterator (returned by the Collection iterator() operation). In Ruby, it is 
convenient to have this Iterator traverse the Map and returns its key-value pairs as an array with two 
elements, the first being the key and the second being the value.

20.4	 Contiguous Implementation of the Map ADT

As with sets, using an array or ArrayList to store the ordered pairs of a map is not very efficient because 
only one of the three main operations of insertion, deletion, and search can be done quickly. Also as with 
sets, a characteristic function can be used if the key set is a small integral type (or a small sub-range of an 
integral type), but this situation is rare. Finally as with sets, hashing provides a very efficient contiguous 
implementation of maps and we will discuss how this works later on.

20.5	 Linked Implementation of the Map ADT

As with sets, using linked lists to store map elements is not much better than using an array. But again 
as with sets, binary search trees can store map elements and provide fast insertion, deletion, and search 
operations on keys. Furthermore, using binary search trees to store map elements allows the elements 
in the map to be traversed in sorted key order, which is sometimes very useful. A TreeMap is thus an 
excellent implementation of the Map interface.

The trick to using binary search tree to store map elements is to create a class to hold key-value pairs, 
redefining its relational operators to compare keys, and using this as the datum stored in nodes of the 
binary search tree. Dummy class instances with the correct key field can then be used to search the tree 
and retrieve key-value pairs.
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20.6	 Summary and Conclusion

Maps are extremely important collections because they allow values to be stored using keys, a very 
common need in programming. The map of (K, T) ADT specifies the essential features of the type, 
and the Map interface captures these features and places maps in the Container hierarchy. Contiguous 
implementations are not well suited for maps (except hash tables, which we discuss in the next chapter). 
Binary search trees, however, provide very efficient implementations, so a TreeMap class is a good 
realization of the Map interface. Figure 2 shows how Maps and TreeMaps fit into the container hierarchy.

 Figure 2: Maps and TreeMaps in the Container Hierarchy

20.7	 Review Questions

1.	 Why is a map called a map?
2.	 The Collection interface has a generic parameter T, and the Map interface has generic 

parameters K and T. What is the relationship between them?
3.	 Why is an array or an ArrayList not a good data structure for implementing the map ADT?
4.	 Why is a LinkedList not a good data structure to implement the map ADT?
5.	 Why is a binary search tree a good data structure for implementing the map ADT?
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20.8	 Exercises

1.	 Make a function mapping the states California, Virginia, Michigan, Florida, and Oregon to 
their capitals. If you wanted to store this function in a map ADT, which values would be the 
keys and which the elements?

2.	 Represent the map described in the previous exercise as a set of ordered pairs. If this map is m, 
then also represent as a set of ordered pairs the map that results when the operation remove(m, 
Michigan) is applied.

3.	 Is an iterator required for maps? How does this compare with the situation for lists?
4.	 To make a TreeMap class that uses the BinarySearchTree class discussed in Chapter 18, you 

will need to make a class to hold key-value pairs with comparison operations that work on the 
keys. Write such a Pair class in Ruby.

5.	 Write the beginnings of a TreeMap class in Ruby that includes its attributes, invariant, 
constructor, and the operations inherited from the Collection interface. You will need to make 
use of the Pair class from the previous exercise.

6.	 Continue the implementation begun in exercise 5 by writing the []=, [], and delete() 
operations for TreeMap.
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7.	 Continue the implementation begun in exercise 5 by writing the Enumerable.each() 
operation for TreeMap. This operation should produce each key-value pair, yielding the key 
and value as two elements, just as this operation does for the Ruby Hash class. Also write 
each_key() and each_value() operations, again modeled on the Ruby Hash class.

8.	 Continue the implementation begun in exercise 5 by writing the iterator() operation (you 
will need a TreeMapIterator class for TreeMap). The Iterator.current() operation should 
return a key-value pair as an array with two elements: the key and the value.

20.9	 Review Question Answers

1.	 A map associates keys and values such that each key is associated with at most one values. This 
is the definition of a function from keys to values. Functions are also called maps, and we take 
the name of the collection from this meaning of the word.

2.	 The Collection interface generic parameter T is the same as the Map interface generic 
parameters T: the elements of a Collection are also the values of a Map. But Maps have an 
additional data item—the key—whose type is K.

3.	 An array or an ArrayList is not a good data structure for implementing the map ADT because 
the key-value pairs would have to be stored in the array or ArrayList in order or not in order. 
If they are stored in order, then finding a key-value pair by its key is fast (because we can use 
binary search), but adding and removing pairs is slow. If pairs are not stored in order, then 
they can be inserted quickly by appending them at the end of the collection, but searching for 
them or finding them when they need to be removed are slow operations because they must 
use sequential search.

4.	 A LinkedList is not a good data structure to implement the map ADT because although 
key-value pairs can be inserted quickly into a LinkedList, searching for pairs or finding them 
when they need to be removed are slow operations because the LinkedList must be traversed 
node by node.

5.	 A binary search tree is a good data structure for implementing the map ADT because (assuming 
that the tree remains fairly balanced), adding key-value pairs, searching for them by key, and 
removing them by key, are all done very quickly. Furthermore, if the nodes in the tree are 
traversed in order, then the key-value pairs are accessed in key-order.
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21	Hashing
21.1	 Introduction

In an ideal world, retrieving a value from a map would be done instantly by just examining the value’s 
key. That is the goal of hashing, which uses a hash function to transform a key into an array index, 
thereby providing instantaneous access to the value stored in an array holding the key-value pairs in 
the map. This array is called a hash table.

Hash function: A function that transforms a key into a value in the range of indices of a hash 
table.

Hash table: An array holding key-value pairs whose locations are determined by a hash 
function.

Of course, there are a few details to work out.

21.2	 The Hashing Problem

If a set of key-value pairs is small and we can allocate an array big enough to hold them all, we can always 
find a hash function that transforms keys to unique locations in a hash table. For example, in some old 
programming languages, identifiers consisted of an upper-case letter possibly followed by a digit. Suppose 
these are our keys. There are 286 of them, and it is not too hard to come up with a function that maps 
each key of this form to a unique value in the range 0‥285. But usually the set of keys is too big to make 
a table to hold all the possibilities. For example, older versions of FORTRAN had identifiers that started 
with an upper-case letter, followed by up to five additional upper-case letters or digits. The number of 
such identifiers is 1,617,038,306, which is clearly too big for a hash table if we were to use these as keys.

A smaller table holding keys with a large range of values will inevitably require that the function transform 
several keys to the same table location. When two or more keys are mapped to the same table location 
by a hash function we have a collision. Mechanisms for dealing with them are called collision resolution 
schemes.

Collision: The event that occurs when two or more keys are transformed to the same hash 
table location.

How serious is the collision problem? After all, if we have a fairly large table and a hash function 
that spreads keys out evenly across the table, collisions may be rare. In fact, however, collisions occur 
surprisingly often. To see why, lets consider the birthday problem, a famous problem from probability 
theory: what is the chance that a least two people in a group of k people have the same birthday? This 
turns out to be p =1-(365!/k!/365k). Table 1 below lists some values for this expression. Surprisingly, in 
a group of only 23 people there is better than an even chance that two of them have the same birthday!
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If we imagine that a hash table has 365 locations, and that these probabilities are the likelihoods that 
a hash function transforms two values to the same location (a collision), then we can see that we are 
almost certain to have a collision when the table holds 100 values, and very likely to have a collision 
with only about 40 values in the table. Forty is only about 11% of 365, so we see that collisions are very 
likely indeed. Collision resolution schemes are thus an essential part of making hashing work in practice.

k p

5 0.027

10 0.117

15 0.253

20 0.411

22 0.476

23 0.507

25 0.569

30 0.706

40 0.891

50 0.970

60 0.994

100 0.9999997

Table 1: Probabilities in the Birthday Problem
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An implementation of hashing thus requires two things:

•	 A hash function for transforming keys to hash table locations, ideally one that makes collisions 
less likely.

•	 A collision resolution scheme to deal with the collisions that are bound to occur.

We discuss each of these in turn.

21.3	 Hash Functions

A hash function must transform a key into an integer in the range 0…t, where t is the size of the hash 
table. A hash function should distribute the keys in the table as uniformly as possible to minimize 
collisions. Although many hash functions have been proposed and investigated, the best hash functions 
use the division method, which for numeric keys is the following.

hash(k) = k % t

This function is simple, fast, and spreads out keys uniformly in the table. It works best when t is a prime 
number not close to a power of two. For this reason, hash table sizes should always be chosen to be a 
prime number not close to a power of two.

For non-numeric keys, there is usually a fairly simple way to convert the value to a number and then 
use the division method on it. For example, the following pseudocode illustrates a way to hash a string.

def hash_function(string, table_size)
  result = 0
  string.each_byte do |byte| 
    result = (result * 151 + byte) % table_size
  end
  return result
end

Figure 1: A Ruby Hash Function for Strings

Making hash functions is not too onerous. Good rules of thumb are to use prime numbers whenever a 
constant is needed, and to test the function on a representative set of keys to ensure that it spreads them 
out evenly across the hash table.

21.4	 Collision Resolution Schemes

There are two main kinds of collision resolution schemes, with many variations: chaining and open 
addressing. In each scheme, an important value to consider is the load factor, λ = n/t, where n is the 
number of elements in the hash table and t is the table size.
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Chaining

In chaining (or separate chaining) records whose keys collide are formed into a linked list or chain 
whose head is in the hash table array. Figure 2 below shows a hash table with collisions resolved using 
chaining. For simplicity, only the keys are listed and not the values that go along with them (or, if you 
like, the key and the value are the same).

Figure 2: Hash Table with Chaining to Resolve Collisions 

In this example, the table has seven locations. Two keys, q and w, collide at location two and they are 
placed in a linked list whose head is at location two. The keys x, b, and k are hashed to locations three, 
four, and six, respectively. This example uses an array of list heads, but an array of list nodes could have 
been used as well, with some special value in the data field to indicate when a node is unused.

The average chain length is λ. If the chain is unordered, on average successful searches require about 
1+ λ/2 comparisons and unsuccessful searches about λ comparisons. If the chain is ordered, both 
successful and unsuccessful searches take about 1+ λ/2 comparisons, but insertions take longer. In the 
worse case, which occurs when all keys map to a single table location and the search key is at the end 
of the linked list or not in the list, searches require n comparisons. But this case is extremely unlikely.

More complex linked structures (like binary search trees), don’t generally improve performance much, 
particularly if λ is kept fairly small. As a rule of thumb, λ should be kept less than about 10. But 
performance only degrades gradually as the number of items in the table grows, so hash tables that use 
chaining to resolve collisions can perform well on wide ranges of values of n.

Open Addressing

In the open addressing collision resolution scheme, records with colliding keys are stored at other 
free locations in the hash table found by probing the table for open locations. Different kinds of open 
addressing schemes use different probe sequences. In all cases, however, the table can only hold as many 
items as it has locations, so n ≤ t and λ cannot exceed one; this constraint is not present for chaining.

http://bookboon.com/


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

164 

Hashing

Theoretical studies of random probe sequences have determined ideal levels of performance for open 
addressing. Performance declines sharply as the load factor approaches one. For example, with a load 
factor of 0.9, the number of comparisons for a successful search is about 2.6, and for an unsuccessful 
search is 20. Real open addressing schemes do not do even as well as this, so load factors must generally 
be kept below about 0.75.

Another point to understand about open addressing is that when a collision occurs, the algorithm 
proceeds through the probe sequence until either (a) the desired key is found, (b) an open location is 
found, or (c) the entire table is traversed. But this only works when a marker is left in slots where an 
element was deleted to indicate that the location may not have been empty before, and so the algorithm 
should proceed with the probe sequence. In a highly dynamic table there will be many markers and 
few empty slots, so the algorithm will need to follow long probe sequences, especially for unsuccessful 
searches, even when the load factor is low.

Linear probing is using a probe sequence that begins with the hash table index and increments 
it by a constant value modulo the table size. If the table size and increment are relatively prime, 
every slot in the table will appear in the probe sequence. Linear probing performance degrades 
sharply when load factors exceed 0.8. Linear probing is also subject to primary clustering, which 
occurs when clumps of filled locations accumulate around a location where a collision first 
occurs. Primary clustering increases the chances of collisions and greatly degrades performance.

Double hashing works by generating an increment for the probe sequence by applying a second 
hash function to the key. The second hash function should generate values quite different from 
the first so that two keys that collide will be mapped to different values by the second hash 
function, making the probe sequences for the two keys different. Double hashing eliminates 
primary clustering. The second hash function must always generate a number that is relatively 
prime to the table size. This is easy if the table size is a prime number. Double hashing works 
so well that its performances approximates that of a truly random probe sequence. It is thus 
the method of choice for generating probe sequences.

Figure 3 below shows an example of open addressing with double hashing. As before, the example 
only uses keys for simplicity, not key-value pairs. The main hash function is f (x) = x % 7, and the hash 
function used to generate a constant for the probe sequence is g(x) = (x % 5)+1. The values 8, 12, 9, 6, 
25, and 22 are hashed into the table.
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 Figure 3: Hash Table with Open Addressing and Double Hashing to Resolve Collisions

The first five keys do not collide. But 22 % 7 is 1, so 22 collides with 8. The probe constant for double 
hashing is (22 % 5)+1 = 3. We add 3 to location 1, where the collision occurs, to obtain location 4. But 
25 is already at this location, so we add 3 again to obtain location 0 (we wrap around to the start of 
the array using the table size: (4+3) % 7 = 0). Location 0 is not occupied, so that is where 22 is placed.

Note that some sort of special value must be placed in the unoccupied locations—in this example we 
used a double dash. A different value must be used when a value is removed from the table to indicate 
that the location is free, but that it was not before, so that searches must continue past this value when 
it is encountered during a probe sequence.
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We have noted that when using open addressing to resolve collisions, performance degrades considerably 
as the load factor approaches one. In effect this means that hashing mechanisms that use open addressing 
must have a way to expand the table so they can lower the load factor and improve performance. A new, 
larger table can be created and filled by traversing the old table and inserting all records into the new 
table. Note that this involves hashing every key again because the hash function will generally use the 
table size, which has now changed. Consequently, this is a very expensive operation.

Some table expansion schemes work incrementally by keeping the old table around and making all 
insertions in the new table, all deletions from the old table, and perhaps moving records gradually from 
the old table to the new in the course of doing other operations. Eventually the old table becomes empty 
and can be discarded.

21.5	 Summary and Conclusion

Hashing uses a hash function to transform a key into a hash table location, thus providing almost 
instantaneous access to values though their keys. Unfortunately, it is inevitable that more than one key 
will be hashed to each table location, causing a collision and requiring some way to store more than one 
value associated with a single table location.

The two main approaches to collision resolution are chaining and open addressing. Chaining uses linked 
lists of key-value pairs that start in hash table locations. Open addressing uses probe sequences to look 
through the table for an open spot to store a key-value pair and then later to find it again. Chaining is 
very robust and has good performance for a wide range of load factors, but it requires extra space for 
the links in the list nodes. Open addressing uses space efficiently, but its performance degrades quickly 
as the load factor approaches one; expanding the table is very expensive.

No matter how hashing is implemented, however, average performance for insertions, deletions, and 
searches is O(1). Worst case performance is O(n) for chaining collision resolution, but this only occurs 
in the very unlikely event that the keys are hashed to a single table location. Worst case performance for 
open addressing is a function of the load factor that gets very large when λ is near one, but if λ is kept 
below about 0.8, W(n) is less than 10.

21.6	 Review Questions

1.	 What happens when two or more keys are mapped to the same location in a hash table?
2.	 If a hash table has 365 locations and 50 records are placed in the table at random, what is the 

probability that there will be at least one collision?
3.	 What is a good size for hash tables when a hash function using the division method is used?
4.	 What is a load factor? Under what conditions can a load actor exceed one?
5.	 What is a probe sequence? Which is better: linear probing or double hashing?
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21.7	 Exercises

1.	 Why does the example of open addressing and double hashing in the text use the hash function 
g(x) = (x % 5)+1 rather than g(x) = x % 5 to generate probe sequences?

2.	 Suppose a hash table has 11 locations and the simple division method hash function f (x) = 
x % 11 is used to map keys into the table. Compute the locations where the following keys 
would be stored: 0, 12, 42, 18, 6, 22, 8, 105, 97. Do any of these keys collide? What is the load 
factor of this table if all the keys are placed into it?

3.	 Suppose a hash table has 11 locations, keys are placed in the table using the hash function f (x) = 
x % 11, and linear chaining is used to resolve collisions. Draw a picture similar to Figure 2 of 
the result of storing the following keys in the table: 0, 12, 42, 18, 6, 22, 8, 105, 97.

4.	 Modify with the diagram you made for Exercise 3 to show what happens when 18 and 42 are 
removed from the hash table.

5.	 Suppose a hash table has 11 locations, keys are mapped into the table using the hash function 
f (x) = x % 11, and collisions are resolved using open addressing and linear probing with a 
constant of three to generate the probe sequence. Draw a picture of the result of storing the 
following keys in the table: 0, 12, 42, 18, 6, 22, 8, 105, 97.

6.	 List the probe sequence (the table indices) used to search for 97 in the diagram you drew for 
problem 5. List the probe sequence used when searching for 75.

7.	 Starting with the diagram you made for Exercise 5, show the result of removing 18 from the 
table. List the probe sequence used to search for 97. How do you guarantee that 97 is found 
even though 18 is no longer encountered in the probe sequence?

8.	 Suppose a hash table has 11 locations, keys are mapped into the table using the hash function 
f (x) = x % 11, and collisions are resolved using double hashing with the hash function g(x) = 
(x % 3)+1 to generate the probe sequence. Draw a picture of the result of storing the following 
keys in the table: 0, 12, 42, 18, 6, 22, 8, 105, 97.

9.	 List the probe sequences used to search for 97 and 75 using the diagram you drew for Exercise 
8. In what way are these sequences different from the probe sequences generated in Exercise 6?

21.8	 Review Question Answers

1.	 When two or more keys are mapped to the same location in a hash table, they are said to 
collide, and some action must be taken, called collision resolution, so that records containing 
colliding keys can be stored in the table.

2.	 If 50 values are added at random to a hash table with 365 locations, the probability that there 
will be at least one collision is 0.97, according to the Table 1.

3.	 A good size for hash tables when a division method hash function is used is a prime number 
not close to a power of two.
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4.	 The load factor of a hash table is the ratio of the number of key-value pairs in the table to the 
table size. In open addressing, the load factor cannot exceed one, but with chaining, because in 
effect more than one key-value pair can be stored in each location, the load factor can exceed one.

5.	 A probe sequence is a list of table locations checked when elements are stored or retrieved 
from a hash table that resolves collisions with open addressing. Linear probing is subject to 
primary clustering, which decreases performance, but double hashing as been shown to be as 
good as choosing increments for probe sequences at random.
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22	Hashed Collections
22.1	 Introduction

As we have seen, hashing provides very fast (effectively O(1)) algorithms for inserting, deleting, and 
searching collections of key-value pairs. It is therefore an excellent way to implement maps. But it also 
provides a very efficient way to implement sets.

22.2	 Hash Tablets

A hash table is designed to store key-value pairs by the hash value of the key. But suppose we wanted to 
store keys alone, with no accompanying value. We can then simply store keys in the hash table by the 
hash value of the key. We call such a “degenerate” form of hash table a hash tablet. Note that several of 
the hash table examples in the previous chapter about hashing are really hash tablets. Figure 1 shows 
the features of a HashTablet class.

 Figure 1: A HashTablet Class

The HashTablet holds a table array into which it hashes values of type T (this table can actually have 
some other type—for example, if chaining is used, it might be a reference to a node or a node type). The 
HashTablet allows values to be added, removed, and searched for. The insert() operation replaces the 
value if it is already in the table, and returns the new element. The delete() operation does nothing 
if the value is not present in the HashTablet. The get() operation returns the value in the table that 
matches the value argument. This operation seems pointless, but if T is a key-value pair and values are 
found by comparing keys, the argument to get() may have a dummy value, while the pair returned from 
the table may contain a legitimate value. This is how values can be retrieved by their keys.
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A HashTablet also provides an operation to make a shallow copy of the entire instance (useful for 
implementing sets), and it provides an iterator. The HashTablet class provides an implementation data 
structure, like the BinarySearchTree class, so it is not part of the Container hierarchy.

22.3	 HashSets

Hash tablets are a convenient implementation data structure because they can be used to implement 
hashed collections of various kinds, not just maps. For example, suppose we wish to use hashing to 
implement sets. If we use a hash table to do this, then the key is the set element we wish to store, but 
what is the value in the key-value pair? There is none—we must simply ignore this field in the key-value 
pairs stored in the hash table, wasting the space. On the other hand, if we use a hash tablet then there is 
no value field, so no space is wasted. Hash tablets are thus a good way to implement hash sets.

A HashSet implements the Set interface and holds a HashTablet as a private attribute. The basic 
Collection operations are easily realized using HashTablet operations; for example, a HashSet is empty 
if its HashTablet’s size is 0; clearing a HashSet is done by clearing its HashTablet; iterating over the 
HashSet is done by iterating over the HashTablet, and so forth.

HashSet union and complement operations may be implemented by copying the host HashSet (and 
its HashTablet) and iterating over the argument Set, adding (for union) or removing (for complement) 
all its values; intersection is done by iterating over one Set and adding to the result HashSet only those 
values that the other contains.

22.4	 HashMaps

Hash tablets can be used to implement other collections as well. Consider maps. We can define a Pair 
class with key and value attributes, and comparison and hash operations that use only the key attribute. 
We can then implement a map using a hash tablet that stores instances of this Pair class. The hash tablet 
operations will store, delete, and retrieve instances via the key because the Pair class’s operations have 
been defined to work this way, and the retrieved instances can be queried to obtain the value paired 
with a key, so all map operations can be implemented. Most of the work will be done by the hash tablet, 
so it is easy to code the hash map.

A HashMap implements the Map interface and holds a HashTablet as a private attribute. The 
HashTablet stores instances of a Pair class with a key attribute of type K and a value attribute of type 
T, and it has hash and comparison operations that work on the key attribute.

22.5	 Implementing Hashed Collections in Ruby

The Ruby Object class includes a hash() operation that produces a Fixnum value for every object. 
This value can be modified using the modulo function for any hash table. Also, the hash() function 
can be overridden to provide appropriate hash values for a Pair class, for example.
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Ruby has a built-in HashMap class called Hash. This class already implements the entire Map interface 
except the contains?() and iterator() operations. The former is a synonym for has_value(), which 
is in Hash, and the latter is easily written. Thus the easiest way to implement a HashMap class in Ruby 
is to sub-class Hash. A HashSet could be implemented in Ruby using a HashTablet as discussed above, 
or using the built-in Hash class. The former approach will use less space, but the latter will probably be 
faster because the built-in type is implemented very efficiently in the Ruby interpreter.

22.6	 Summary and Conclusion

Hashing is an efficient way to implement sets as well as maps. A degenerate form of hash table that we 
call a hash tablet is a useful implementation data structure that makes implementing hashed collections 
quite easy. Ruby provides a fast built-in Hash type that already implements hash maps and can easily 
be used to implement hash sets.

22.7	 Review Questions

1.	 What is the difference between a hash table and a hash tablet?
2.	 What sorts of collision resolution techniques can be used in a hash tablet?
3.	 Does a HashSet inherit from HashTablet?
4.	 Why is a Pair class needed when a HashTablet is used to implement a HashMap?
5.	 What does the hash_function() of a Pair class do?
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22.8	 Exercises

1.	 Begin writing a HashTablet class in Ruby by writing the attributes, invariant, and 
initialize() operation for the class. This will require that you decide on a collision 
resolution strategy.

2.	 Continue writing a HashTablet class in Ruby by implementing the size(), tableSize(), 
clear(), copy(), and iterator() operations.

3.	 Finish implementing the HashTablet class in Ruby by implementing the remaining 
operations. Note that values stored in the table must have a hash function that HashTablet 
can use.

4.	 Assume that a HashTablet class is available and begin implementing a HashSet class in 
Ruby by writing the attributes, invariant, and initialize() operation for this class.

5.	 Continue implementing a HashSet class in Ruby by writing the contains?(), []=, and 
delete() operations of this class.

6.	 Using a HashTablet to implement a HashMap requires that a Pair class storing a key 
and a value be created. Write such a Pair class in Ruby and include a hashing function and 
comparison operators for the class.

7.	 Assume that a HashTablet class is available and begin implementing a HashMap class in 
Ruby by writing the attributes, invariant, and initialize() operation for this class. You 
will need to use the Pair class from the last exercise.

8.	 Continue implementing a HashMap class by writing the contains?(), []=, and [] 
operations of this class.

9.	 When discussing ArrayList in Chapter 10 we suggested that implementing an ArrayList in 
Ruby could be done quite simply by sub-classing the built-in Ruby Array class. Implement 
the HashMap class by sub-classing the built-in Hash class.

22.9	 Review Question Answers

1.	 A hash table stores key-value pairs by hashing the key. A hash tablet stores keys only using 
hashing. A hash tablet is thus a degenerate or simplified version of a hash table.

2.	 Any sort of collision resolution techniques can be used in a hash tablet.
3.	 A HashSet does not inherit from HashTablet, but it contains a HashTablet attribute and 

the HashTablet ends up doing most of the work when the HashSet is implemented. The 
HashSet thus delegates work to the HashTablet.
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4.	 A Pair class is needed when a HashTablet is used to implement a HashMap because a 
HashTablet only stores one value, not a key-value pair. The HashTablet can be made to 
work as if it stored pairs by defining a Pair class and storing instances of the Pair class in the 
HashTablet. Thus a degenerate hash table can be made to work like a full-fledged hash table 
quite simply.

5.	 The hash_function() of a Pair class computes a hash value from the key attribute of the Pair 
class. This allows the HashTablet to store and retrieve the Pair based on the key.
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23	Graphs
23.1	 Introduction

One of the most important modeling tools in computing is the graph, which is informally understood 
as a collection of points connected by lines. Graphs are used to model networks, processes, relationships 
between entities, and so on—almost every picture we draw in computer science is a graph of one sort 
or another. In this chapter we present the graph abstract data type and consider two data structures for 
representing graphs. In the next chapter we study a few graph algorithms.

23.2	 Directed and Undirected Graphs

We defined a graph in the course of discussing trees in Chapter 16.

Graph: A collection of vertices (or nodes) and edges connecting the nodes. An edge may be 
thought of as a pair of vertices. Formally, a graph is an ordered pair <V,E> where V is a set of 
vertices and E is a set of pairs of elements of V.

Undirected graph: A graph in which the edges are sets of two vertices. In this case the edges 
have no direction and are represented by line segments in pictures.

Directed graph or digraph: A graph in which the edges are ordered pairs of vertices. In this 
case the edges have direction and are represented by arrows.

To illustrate these definitions, consider the images of graphs in Figure 1.

 Figure 1: Two Graphs

In these images the vertices are identified by circled numbers. In general we may use any symbol 
to identify vertices, but as a rule we will use an initial set of natural numbers (that is, any set {0, 1, 
2, … n}, where n ≥ 0). The graph on the left is an undirected graph so its edges have no arrows. In its 
set representation, this graph is

<{0, 1, 2, 3, 4}, {{0,1}, {0,2}, {1,2}, {1,4}, {2,4}, {2,3}}>.
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The graph on the right is a directed graph, so it has arrows on its edges. Note that this allows edges from 
a node to itself (such as the edge from 4 to itself), and two distinct edges between a pair of vertices (such 
as the two edges connecting vertices 1 and 2); neither of these can occur in an undirected graph. The 
set representation of the right-hand graph is

<{0, 1, 2, 3, 4}, {<1,0>, <1,2>, <2,0>, <2,1>, <2,3>, <3,4>, <4,4>, <5,1>}>.

Note that the edge set in the left-hand graph is a set of sets while the edge set in the right-hand graph 
is a set of ordered pairs.

Although a graph is really an ordered pair of sets, representing graphs this way is awkward and hard to 
read, as the examples above illustrate. Consequently we will almost always represent graphs as pictures.

Both undirected and directed graphs are very important and widely applicable in computer science, but 
we will focus for the remainder of our discussion on undirected graphs. From now on we will refer to 
undirected graphs as simply graphs.

23.3	 Basic Terminology

There are several additional terms that must be learned to talk about graphs.

Adjacency: Vertices v1 and v2 in a graph G=<V, E> such that {v1, v2} ∈ E.

In Figure 2 below, vertices 0 and 1 and vertices 7 and 4 are adjacent, but vertices 0 and 4 and vertices 
1 and 3 are not adjacent.

 Figure 2: A Graph

Path: A sequence of vertices p = <v1, v2, …, vn> in a graph where n ≥ 2 and every pair of 
vertices vi and vi+1 in p are adjacent.

Path length: The number of edges in a path.
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In Figure 2, the paths <0, 2, 3> and <4, 7, 8> both have length two.

Cycle: A path <v1, v2, …, vn> in which v1 = vn.

Simple cycle: A cycle with no repeated edges or vertices (except the first and the last).

In Figure 2, the path <4, 7, 8, 4> is a simple cycle, while the path <4, 7, 8, 7, 4> is a cycle, but not a 
simple cycle.

Sub-graph: A graph H=<W, F> is a sub-graph of graph G=<V, E> if W ⊆ V and F ⊆ E.

Connected vertices: Two vertices with a path between them.

Connected graph: A graph with a path between every pair of vertices. A graph that is not 
connected consists of a set of connected components that are sub-graphs of the graph.

Figure 2 shows a single graph with three connected components. Each of these components is a sub-
graph of the whole graph.

Acyclic graph: A graph with no cycles.

CAREERKICKSTART
An app to keep you in the know

Whether you’re a graduate, school leaver or student, it’s a difficult time to start your career.  
So here at RBS, we’re providing a helping hand with our new Facebook app. Bringing together  
the most relevant and useful careers information, we’ve created a one-stop shop designed  
to help you get on the career ladder – whatever your level of  education, degree subject or  
work experience.

And it’s not just finance-focused either. That’s because it’s not about us. It’s about you.  
So download the app and you’ll get everything you need to know to kickstart your career.
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The graph in Figure 2 is not acyclic, but the sub-graph consisting of the vertices 0, 1, 2, and 3 and the 
edges that connect them, and the sub-graph consisting of vertices 5 and 6 and the edge that connects 
them, are acyclic graphs.

Tree: An acyclic connected graph.

Forest: A set of trees with no vertices in common.

Spanning tree: Any sub-graph of a connected graph G that is a tree and contains every vertex 
of G.

Figure 3 shows a graph with a spanning tree outlined in grey.

 Figure 3: A Graph and A Spanning Tree

23.4	 The Graph ADT

A graph is a mathematical entity consisting of an ordered pair of sets. Vertices can be anything; for 
example, they could be numbers. Hence we can specify the carrier set of the graph ADT as the set 
of all sets that meet the definition of a graph stated above, with initial sets of natural numbers acting 
as vertices. The method set of the graph ADT consists of a few basic operations for constructing and 
querying graphs. We could include operations for adding and deleting vertices and deleting edges, as 
well as several other query operations, but they are not necessary for the applications we will consider.

newGraph(n)—Return a graph with n vertices and no edges. The precondition of this operation 
is that n ≥ 0.

edges(g)—Return the number of edges in graph g.

vertices(g)—Return the number of vertices in graph g.

addEdge(g,v,w)—Return a graph just like g except it has an edge connecting v and w. The 
precondition is that v and w are distinct vertices in g.

edge?(g,v,w)—Return true if and only if there is an edge between vertices v and w in g.
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23.5	 The Graph Class

The Graph class is an interface for the graph ADT. It also implements counters for the number of vertices 
and edges and query functions on these attributes because these are common to all implementations 
of graphs. A graph is not a collection so the Graph class is not a sub-class of any other. For the same 
reason, it does include the Enumerable interface. However, it is very convenient to be able to iterate 
over the vertices adjacent to a given vertex so the Graph class does include a special edge iterator. This 
class appears in Figure 4.

 Figure 4: The Graph Interface

The operation each_edge() is an internal iterator that yields each of the edges connected to v as 
the pair of vertices v, w, where w is an adjacent vertex. There is no need for an iterator over the 
vertices in the graph because we know that they are (represented by) the integers between 0 and 
vertices()-1.

23.6	 Contiguous Implementation of the Graph ADT

A contiguous implementation of the graph ADT represents a graph using an array. An initial set of 
natural numbers already represents vertices, so the only thing left to represent is the set of edges. An 
adjacency matrix m is an n × n Boolean matrix that represents a graph with n vertices by storing true at 
location m[v,w] if and only if there is an edge between v and w. Notice that this means that every edge 
is represented twice in the matrix. This approach is realized in an ArrayGraph class.

This scheme is very simple and very fast: adding an edge to a graph or detecting whether an edge exists 
between two vertices are both O(1) operations, and iterating over the vertices adjacent to a vertex v takes 
time proportional to the number of vertices adjacent to v. Unfortunately, this speed comes at great cost 
because the matrix requires n2 storage locations. Most graphs are sparse, meaning they have far fewer 
than n2 edges, so often most of this storage space is wasted. Even if a list is dense (the opposite of sparse), 
then space can be saved by storing the edges that are not in the graph, so in either case, the adjacency 
matrix representation does make efficient use of space.
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23.7	 Linked Implementation of the Graph ADT

A linked implementation of the graph ADT represents graphs by using space only for the edges in the 
graph. An adjacency list is a linked list of vertices adjacent to a given vertex. An array of adjacency 
lists holds all the edges in a graph. The diagram in Figure 5 shows the adjacency lists representation of 
the graph in Figure 2. Note that the array holds list headers and the adjacency lists are singly-linked.

 Figure 5: An Adjacency Lists Representation of a Graph
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Notice that the adjacency lists representation, like the adjacency matrix representation, records every 
edge {v, w} twice: once on the list for the edges of v and once on the list for the edges of w. This approach 
is implemented in a LinkedGraph class.

The adjacency lists data structure uses space proportional to the sum of the number of vertices and 
edges (the array has space for every vertex, and there are twice as many nodes in the linked lists as 
there are edges in the graph). This is typically much less than the space required for the adjacency 
matrix representation. Also, adding an edge takes O(1) time and determining whether there is an 
edge between two vertices takes time proportional to the number of edges emanating from (one 
of) the vertices; this is O(e) (where e is the number of edges in the graph) in the worst case, but 
typically it is much less. Thus the adjacency lists representation uses relatively little space but is still 
quite efficient.

It is convenient to use a the linked list from our Container hierarchy to realize each adjacency list. 
The adjacent array then holds linked lists implementing the List interface rather than pointers to 
nodes.

23.8	 Summary and Conclusion

Graphs are an important modeling tool in computing. The graph ADT provides a few operations for 
building and querying a graph and this is carried over into the Graph class. The adjacency matrix 
technique is a contiguous implementation of the graph ADT. This representation makes graph operations 
efficient but uses a great deal of space. The adjacency lists approach is a linked implementation of the 
graph ADT. It makes graph operations nearly as fast as the adjacency list approach but uses much less 
space. As a rule, unless a graph is dense or it has a small number of nodes (say, less than a few hundred), 
the adjacency lists representation is preferable.

23.9	 Review Questions

1.	 List several elements of the graph ADT carrier set.
2.	 What is the result of applying the graph ADT operation addEdge() twice with the same 

vertices? In other words, if g is a graph and v and w are vertices, what is the result of 
addEdge(addEdge(g,v,w),v,w)?

3.	 How could you iterate over every vertex in a graph?
4.	 Why is every edge in a graph represented twice in both the adjacency matrix and adjacency 

lists representations?
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23.10	 Exercises

1.	 Can a vertex be adjacent to itself?
2.	 If a graph has no edges, can it have any paths? If a graph has edges, does it have a longest path?
3.	 How many vertices must there be in the smallest cycle in an undirected graph? How many in 

the smallest cycle in a directed graph?
4.	 In Chapter 16 a tree was defined as a graph with a distinguished vertex r, called the root, such 

that there is exactly one simple path between each vertex in the tree and r. Show that this 
definition is equivalent to the definition stated in this chapter.

5.	 Can a graph have more than one spanning tree? Explain.
6.	 Use the operations of the graph ADT to construct the graph in Figure 2.
7.	 Represent the graph in Figure 2 using an adjacency matrix.
8.	 Represent the graph in Figure 2 using adjacency lists. Draw a picture like the one in Figure 5.
9.	 In Ruby a sparse graph with n vertices represented using an adjacency matrix frequently uses 

less than n2 array locations because a matrix in Ruby is an array of arrays. Explain why this 
may cause a sparse graph to be represented using less space.

10.	 Write the Graph class in Ruby.
11.	 Write an ArrayGraph class in Ruby that represents graphs using an adjacency matrix. Its 

initialize() method should accept an argument specifying the number of vertices in 
the graph.

12.	 Write a LinkedGraph class in Ruby that represents graphs using adjacency lists. Its 
initialize() method should accept an argument specifying the number of vertices in 
the graph. Use the containers/LinkedList class for lists of vertices.

23.11	 Review Question Answers

1.	 The graph ADT carrier set includes the empty graph, which as no vertices and no edges: 
<∅, ∅>. The next largest graph has a single vertex and no edges: <{0}, ∅>. The next largest 
graphs have two vertices and either no edges or one edge: <{0,1}, ∅>, and <{0,1}, {{0,1}}>. 
There are several graphs with three vertices: <{0, 1, 2}, ∅>, <{0, 1, 2}, {{0, 1}}>, <{0, 1, 2}, 
{{0, 2}}>, <{0, 1, 2}, {{1, 2}}>, <{0, 1, 2}, {{0, 1}, {0, 2}}>, <{0, 1, 2}, {{0, 1}, {1, 2}}>, <{0, 1, 2}, 
{{0, 2}, {1, 2}}>, <{0, 1, 2}, {{0, 1}, {0, 2}, {1, 2}}>.

2.	 If g is a graph and v and w are vertices, the result of addEdge(g,v,w) is a graph just like g except 
that the edge {v, w} is added to its edge set—call this result h. The result of addEdge(h,v,w) will 
be a graph just like h except that the edge {v, w} is added to the edge set of h. But this edge was 
already in the edge set of h, so the result is just h. Hence applying addEdge() to a graph with 
the same vertices more than once simply returns the same graph again every time after the first.

3.	 Iterating over every vertex in a graph g simply requires looping over every integer from 0 to 
vertices(g)−1.
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4.	 Every edge in a graph is represented twice in both the adjacency matrix and adjacency lists 
representations because in each case the representation “indexes” edges by their vertices. 
Because each edge has two vertices, each appears twice. Note that we could easily come up 
with representations in which an edge appears only once. For example, we could only put the 
smaller of the two vertices of an edge into the adjacency array in both the adjacency matrix 
and adjacency lists representations. This would save about half the space, but it would make 
iterating over the vertices adjacent to a given vertex (which turns out to be a very important 
operation) very slow: we would have to search the entire representation to find all the vertices 
adjacent to a given vertex. So in this case space is traded for time, and we use more space to 
get much faster performance in an essential operation.
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24	Graph Algorithms
24.1	 Introduction

There are many important algorithms on graphs. In this chapter we examine a few of the most fundamental 
and widely used. In particular, we consider graph search algorithms and several algorithms based on them.

24.2	 Graph Algorithms in Ruby

The graph algorithms we study use only the operations in the Graph class, so we can implement them in 
the Graph class to be inherited by the ArrayGraph and LinkedGraph classes. Several methods are abstract 
in the Graph class but implemented in its sub-classes. Thanks to dynamic binding in Ruby, the correct 
operations are called when a graph algorithm invokes a particular method that is abstract in the Graph class. 
Placing graph algorithms in the Graph class keeps them in a good place and saves work by allowing us to 
write them only once while still having them available in the ArrayGraph and LinkedGraph sub-classes.

24.3	 Searching Graphs

Many problems involving graphs require a systematic traversal of the graph along its edges—this is 
termed a graph search. We have already seen graph search algorithms in the form of tree traversals, but 
these only apply to trees, not graphs in general.

As an example of a problem illustrating the need to search a general graph, suppose that we wish to find 
a path through a maze. A maze can be represented by a graph as follows: map the intersections in the 
maze to graph vertices and map the paths in the maze to graph edges. Moving through a maze from its 
entry to its exit corresponds to the problem of searching a graph representing the maze to find a path 
from the entry vertex to the exit vertex.

There are two main approaches to graph searching.

Depth-first search: A search that begins by visiting vertex v, and then recursively searches the 
unvisited vertices adjacent to v.

Breadth-first search: A search that begins by visiting vertex v, then visits the vertices adjacent 
to v, then visits the vertices adjacent to each of v’s adjacent vertices, and so on.

Vertices in a depth-first search are visited in an order that follows paths leading away from the starting 
vertex until the paths can be followed no further; the algorithm then backs up and follows other paths. 
Vertices deep in the graph (relative to the starting vertex) are visited sooner than shallow vertices. In 
contrast, during a breadth-first search the vertices closest to the starting vertex are visited first, then 
those a bit further away, and so on. Some problems are solved with one kind of search, some with the 
other, and in some cases it does not matter which kind of search is used.
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24.4	 Depth-First Search

Given its recursive characterization, it is not surprising that depth-first search is easily implemented 
using recursion. Consider the Ruby code in Figure 1. 

def dfs(v)
  raise ArgumentError, "No such vertex" if v < 0 or vertices <= v
  is_visited = []
  visit = lambda do |v|
    each_edge(v) do |v,w|
      next if is_visited[w]
      yield v,w
      is_visited[w] = true
      visit.call(w)
    end
  end
  yield -1,v
  is_visited[v] = true
  visit.call(v)
end

Figure 1: Recursive Depth-First Search

The dfs() method is an iterator that yields every vertex in a graph in depth-first order as the second 
of the vertices in the edge used to visit the vertex. The dfs() function has an array of Boolean values 
that keeps track of whether a vertex has been visited. The real work is done by the inner visit() 
function. This recursive function takes a visited vertex v as its argument. It yields all the edges from v 
to each unvisited adjacent vertex w, marks w as visited, and calls itself on w.

Notice how similar this processing is to a preorder tree traversal. In the tree traversal, the root is visited 
and then its children are visited recursively. In the depth-first search, a vertex is visited and then its 
adjacent vertices are visited recursively. The depth-first search is more complex only because it must be 
able to handle cycles—this is what the is_visited array is for.

Just as with a binary tree traversal, we can also write a depth-first search using a stack rather than 
recursion. Figure 2 shows this algorithm. The stack-based algorithm uses the same strategy as the 
recursive algorithm: it keeps track of unvisited vertices and only processes those that have not yet been 
visited. Where the recursive algorithm makes recursive calls on unvisited adjacent vertices after a vertex 
has been visited, this algorithm places the unvisited adjacent vertices in a stack. (Actually, the edges to 
the adjacent vertices are placed in the stack so that they can be yielded at the right time.) Vertices are 
popped from the stack and processed until the stack is empty.
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Edge = Struct.new(:v, :w) # for storing edges on the stack

def stack_dfs(v)
  raise ArgumentError, "No such vertex" if v < 0 or vertices <= v
  stack = LinkedStack.new
  is_visited = []
  stack.push(Edge.new(-1,v))
  while !stack.empty? do
    edge = stack.pop
    next if is_visited[edge.w]
    yield edge.v,edge.w
    is_visited[edge.w] = true
    each_edge(edge.w) do |w,x|
      stack.push(Edge.new(w,x)) if !is_visited[x]
    end
  end
end

Figure 2: Stack-Based Depth-First Search

Both versions of the depth-first search algorithm visit each vertex at most once and process each edge 
leaving every visited vertex exactly once. Each edge has two vertices so each edge is processed at most 
twice. Hence depth-first search runs in O(v+e) time in the worst case, where v is the number of vertices 
and e is the number of edges in the graph.
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24.5	 Breadth-First Search

The stack-based version of depth-first search places vertices adjacent to the current vertex in a stack, 
then goes on to process the vertex on the top of the stack, placing its adjacent vertices on the stack, and 
so forth. The effect of this strategy is that vertices adjacent to the initial vertex are at the bottom of the 
stack and therefore get processed after vertices further away. If we use a queue instead of a stack, then 
adjacent vertices are processed first, then those adjacent to those next, and so on. In short, we can make 
a breadth-first search algorithm from the stack-based depth-first search algorithm by simply replacing 
the stack with a queue. Such an algorithm is shown in Figure 3.

This algorithm visits each vertex exactly once and follows each edge at most twice, so its performance 
is in O(e+v), just like its stack-based peer. The only difference is that is visits vertices in a different 
order.

def bfs(v)
  raise ArgumentError, "No such vertex" if v < 0 or vertices <= v
  queue = LinkedQueue.new
  is_visited = []
  queue.enter(Edge.new(-1,v))
  while !queue.empty? do
    edge = queue.leave
    next if is_visited[edge.w]
    yield edge.v,edge.w
    is_visited[edge.w] = true
    each_edge(edge.w) do |w,x|
      queue.enter(Edge.new(w,x)) if !is_visited[x]
    end
  end
end

Figure 3: Queue-Based Breadth-First Search

24.6	 Paths in a Graph

We can use graph searching algorithms to determine properties of graphs. Recall that two vertices are 
connected if and only if there is a path between them. We can check whether vertices are connected using 
either depth-first or breadth-first search by starting a search at one vertex and determining whether the 
search ever reaches the other vertex. Ruby code for such a method appears in Figure 4.
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def path?(v1,v2)
 return false if v1 < 0 or vertices <= v1
 return false if v2 < 0 or vertices <= v2
 dfs(v1) do |v,w|
 return true if w == v2
 end
 false
end

Figure 4: Determining Whether Two Vertices are Connected

This method first checks whether the argument vertices are even in the graph—if one is not, then there is 
no path between them. It then uses depth-first search from the first vertex to check whether the second 
is ever reached and returns the result.

If two vertices are connected, there may be more than one path between them, and often it is useful to 
know the shortest path (the one with the fewest edges). The method in Figure 5 finds the shortest path 
between two vertices.

def shortest_path(v,w)
  raise ArgumentError unless path?(v,w)
  to_edge = []
  bfs(w) { |v1,v2| to_edge[v2] = v1 }
  result = []
  x = v
  while x != w
    result << x
    x = to_edge[x]
  end
  result << x
end

Figure 5: Finding the Shortest Path Between Connected Vertices

This method first makes sure that there is a path between the argument vertices and raises an exception 
if there is not. The core of the algorithm is a search that takes a source vertex v and constructs an array 
that contains, for each vertex except v, the vertex next on the shortest path back to v. This array, called 
to_edge in Figure 5, must be constructed using a breadth-first search. A vertex x adjacent to v has 
its to_edge entry set to v because the shortest path from x back to v is obviously the edge to v. The 
vertices adjacent to x have their to_edge entries set to x because the shortest path back to v goes first 
to x and then to v (a shorter path could only exist if these vertices were adjacent to v). The to_edge 
entries are constructed in like fashion for vertices further from v. Clearly, a breadth-first search is needed 
to visit vertices in the order necessary to make this work. Once the to_edge array is constructed, it 
is an easy task to traverse it from the target vertex back to the source vertex to generate a shortest path 
between the two. In Figure 5, argument w is treated as the source vertex and v as the target so that the 
array returned lists the path from v to w.
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24.7	 Connected Graphs and Spanning Trees

Besides determining whether two vertices are connected, we can also determine whether an entire graph 
is connected, and in much the same way. In this case, we can do a depth-first or breadth-first search 
from any vertex in the graph and check whether every other vertex is visited. The graph is connected if 
and only if every other vertex is visited by either a breadth-first or depth-first search starting at a source 
vertex. We leave the code for this algorithm as an exercise.

Recall that a spanning tree is a sub-graph of a graph g that is a tree and contains every vertex of g. If we 
visit every vertex in a connected graph g from a source vertex and add the edge along which each vertex 
is visited to a new graph h, then h will be a spanning tree for g when we are done. This is the strategy 
used to construct a spanning tree in the Ruby code in Figure 6.

def spanning_tree
  raise ArgumentError unless connected?
  result = (self.class.to_s == "ArrayGraph") ?
           ArrayGraph.new(vertices) :
           LinkedGraph.new(vertices)
  dfs(0) { |v,w| result.add_edge(v,w) if 0 <= v }
  result
end

Figure 6: Making a Spanning Tree for a Connected Graph
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This method returns creates a new graph for the spanning tree that has the same class as the host class.

24.8	 Summary and Conclusion

Depth-first and breadth-first search are two ways to visit the vertices of a graph by following its edges 
in an organized way. Both algorithms work in time proportional to the number of edges and vertices 
in the graph. Depth-first and breadth-first search are the basis for many algorithms that process graphs 
in various ways, including determining whether two vertices are connected, determining whether a 
graph is connected, finding the shortest path between two vertices, and finding a spanning tree for a 
connected graph.

24.9	 Review Questions

1.	 What is the relationship between graph search and graph traversal?
2.	 How are graph searching algorithms related to stacks and queues?
3.	 Under what circumstances is one graph searching algorithm preferable to the other?
4.	 Does it matter whether we use depth-first or breadth-first search to find the shortest path 

between two vertices?
5.	 Does it matter whether we use depth-first or breadth-first search to generate a spanning tree 

for a connected graph?

24.10	 Exercises

Use the graph below to do the exercises.

1.	 List the order in which the vertices are visited in a depth-first search from vertex 0 in the graph 
above. Assume that adjacent vertices are visited in order from smallest to largest.

2.	 List the order in which the vertices are visited in a breadth-first search from vertex 0 in the 
graph above. Assume that adjacent vertices are visited in order from smallest to largest.

3.	 Trace the execution of the shortest-path function in generating a shortest path between vertices 
0 and 8 in the graph above. What is the path?

4.	 Trace the execution of the spanning tree function in generating a spanning tree for the graph 
above. What is the spanning tree?
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5.	 Write a Ruby method connected?() in the Graph class to determine whether the graph 
is connected.

6.	 Write a Ruby method component_count() in the Graph class to count the number of 
connected components in the graph.

7.	 The degree of a vertex is the number of edges connected to it. Write a Ruby method max_
degree() in the Graph class to find the maximum degree of the vertices in the graph.

8.	 The following problems can be solved by modeling the problem with a graph and then applying 
graph functions to the model. Explain how to solve these problems using graphs and graph 
algorithms.
a)	 A path through a maze.
b)	 The smallest set of phone calls that must be made to transmit a message amongst a  group 

of friends.
c)	 Determining whether it is possible to get from point A to point B using only main highways.
d)	 Finding the degree of separation between two people in a community (the degree  of sepa-

ration between two people who know each other is one; the degree of  separation between 
two people who do not know each other but have a mutual  friend is two, and so on).

24.11	 Review Question Answers

1.	 Graph search is another name for graph traversal.
2.	 The depth-first search algorithm uses a stack (or recursion), while the breadth-first search 

algorithm uses a queue. Otherwise, they are virtually identical.
3.	 The depth-first and breadth-first search algorithms run in the same amount of time and use 

the same amount of space, so there is no basis for preferring one over the other in general. 
However, some algorithms require one or the other to work properly.

4.	 The shortest path algorithm is an example of an algorithm that requires one of the search 
algorithms to work properly; in particular, the shortest path algorithm requires a breadth-first 
search to work properly.

5.	 The spanning tree algorithm is an example of an algorithm where is does not matter which 
search algorithm is used: either depth-first or breadth-first search can be used to generate a 
spanning tree.
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abstract data type (ADT)—a set of values (the carrier set), and operations on those values.

abstract function—a function with a signature but no body.

adjacency—vertices v1 and v2 are adjacent in an undirected graph G=<V, E> if {v1, v2} is a member of E.

adjacency list—a linked list of vertices adjacent to a given vertex.

adjacency matrix—an n × n Boolean matrix m that represents a graph with n vertices by storing true 
at location m[v,w] if and only if there is an edge between v and w.

ADT assertion—a statement that must be true of the carrier set values or method set operations of the 
type.

acyclic graph—a graph with no cycles.

algorithm—a finite sequence of steps for accomplishing some computational task. An algorithm must 
have steps that are simple and definite enough to be done by a computer and terminate after finitely 
many steps.
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algorithm analysis—the process of determining as precisely as possible how much of various resources 
(such as time and memory) an algorithm consumes when it executes.

array—a fixed length, ordered collection of values of the same type stored in contiguous memory 
locations; the collection may be ordered in several dimensions.

assertion—a statement that must be true at a designated point in a program.

average case complexity A(n)—the average number of basic operations performed by an algorithm for 
all inputs of size n given assumptions about the characteristics of inputs of size n.

best case complexity B(n)—the minimum number of basic operations performed by an algorithm for 
any input of size n.

binary search tree—a binary tree whose every vertex is such that the value at the vertex is greater than 
the values in its left sub-tree and less than the values in its right sub-tree.

binary tree—an ordered tree whose vertices have at most two children. The children are distinguished 
as the left child and the right child. The sub-tree whose root is the left (right) child of a vertex is the left 
(right) sub-tree of that vertex.

breadth-first search—a search that begins by visiting vertex v, then visits the vertices adjacent to v, then 
visits the vertices adjacent to each of v’s adjacent vertices, and so on.

carrier set—in an abstract data type, the set of values of the type; in a data type, the set of representations 
of values in the carrier set of the corresponding ADT.

chaining—a hashing collision resolution scheme in which key-value pairs whose keys collide are formed 
into a linked list or chain whose head is in the hash table.

class invariant—an assertion that must be true of any class instance before and after calls of its exported 
operation.

collection—a traversable container.

collision—the event that occurs when two or more keys are transformed to the same hash table location.

complete binary tree—a full binary tree whose missing vertices are all at the right of its bottom level.

complexity C(n)—the number of basic operations performed by an algorithm as a function of the size 
of its input n when this value is the same for any input of size n.

computational complexity—the time (and perhaps the space) requirements of an algorithm.
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connected components—in a graph that is not connected, the sub-graphs that are connected.

connected graph—a graph in which every pair of vertices is connected.

connected vertices—two vertices in a graph with a path between them.

container—an entity that holds finitely many other entities.

contents-of—the operation of following the address held by a pointer to obtain a value of its base type; 
also called the dereferencing operation.

cursor—a value marking a location in a data structure.

cycle—a path <v1, v2, …, vn> in a graph in which v1 = vn.

data structure—an arrangement of data in memory locations to represent values of the carrier set of 
an abstract data type.

data type—an implementation of an abstract data type on a computer.

depth-first search—a search that begins by visiting vertex v, and then recursively searches the unvisited 
vertices adjacent to v.

dequeue—a dispenser whose elements can be accessed, inserted, or removed only at its ends.

dereferencing—the operation of following the address held by a pointer to obtain a value of its base 
type; also called the contents-of operation.

digraph—a directed graph.

directed graph—a graph in which the edges are ordered pairs of vertices; the edges have direction and 
are represented by arrows.

dispenser—a non-traversable container.

divide and conquer algorithm—an algorithm that solves a large problem by dividing it into parts, solving 
the resulting smaller problems, and then combining these solutions into a solution to the original problem.

double hashing—in open addressing collision resolution, a probe sequence using an increment generated 
by applying a second hash function to the key.

doubly linked list—a linked structure whose nodes each have two reference or pointer fields used to 
form the nodes into a sequence. Each node but the first has a predecessor link field containing a reference 
or pointer to the previous node in the list, and each node but the last has a successor link containing a 
reference or pointer to the next node in the list.
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dynamic array—an array whose size is established at run-time and can change during execution.

element—a value stored in an array or a traversable container (a collection).

factory method—an operation of a class that returns a new instance of some class.

fixed array—an array whose size is established when space for the array is allocated and cannot change 
thereafter.

forest—a set of trees with no vertices in common.

full binary tree—a binary tree whose every level is full except possibly the last.

graph—a collection of vertices (or nodes) and edges connecting the vertices. An edge may be thought 
of as a pair of vertices. Formally, a graph is an ordered pair <V,E> where V is a set of vertices and E is 
a set of pairs of elements of V.

graph search—a systematic traversal of a graph along its edges.

hash function—a function that transforms a key into a value in the range of indices of a hash table.

hash table—an array holding key-value pairs mapped to array locations by a hash function applied to keys.
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heap—a complete binary tree whose every vertex has the heap-order property.

heap-order property—a vertex has the heap order property when the value stored at the vertex is at 
least as large as the values stored at its descendents.

infix expression—an expression in which the operators appear between their operands.

iteration—the process of accessing each element of a collection in turn; the process of traversing a 
collection.

iterator—an entity that provides serial access to each member of an associated collection.

linear probing—in open addressing collision resolution, a probe sequence that begins with the hash 
table index and increments it by a constant value modulo the table size.

linked data structure—a collection of nodes formed into a whole through its constituent node link fields.

linked tree—a linked structure whose nodes form a tree.

list—an ordered collection.

load factor—in hashing, the value λ = n/t, where n is the number of elements in the hash table and t 
is the table size.

map—an unordered collection of elements, which are values of an element type, accessible using a key, 
which is a value of a key type; also called a table, dictionary, or associative array.

open addressing—a hashing collision resolution scheme in which records with colliding keys are stored 
at other free locations in the hash table found by probing the table for open locations.

node—an aggregate variable with data and link (reference or pointer) fields; in a graph, a vertex.

open addressing—a hashing collision resolution scheme in which key-value pairs with colliding keys 
are stored at other free locations in the hash table found by probing the table for open locations.

path—in a graph, a sequence p = <v1, v2, …, vn>, where n ≥ 2, such that every pair of vertices vi and vi+1 
in p are adjacent.

path length—the number of edges in a path.

pointer—a type whose carrier set contains addresses of values of an associated base type.

post condition—an assertion that must be true at the completion of an operation.

postfix expression—an expression in which the operators appear after their operands.
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precondition—an assertion that must be true at the initiation of an operation.

prefix expression—an expression in which the operators appear before their operands.

priority queue—a queue whose elements each have a non-negative integer priority used to order the 
elements of the priority queue such that the highest priority elements are at the front and the lowest 
priority elements are at the back.

queue—a dispenser holding a sequence of elements that allows insertions only at one end, called the 
back or rear, and deletions and access to elements at the other end, called the front.

record—a finite collection of named values of arbitrary type called fields or members; a record is also 
called a struct.

recurrence—a recurrence relation plus one or more initial conditions that together recursively define 
a function.

recurrence relation—an equation that expresses the value of a function in terms of its value at another 
point.

recursive operation—an operation that either calls itself directly, or calls other operations that call it.

reference type—a type whose variables hold references to locations where data structures representing 
the values of the carrier set of the type are stored; compare to value type.

sentinel value—a special value placed in a data structure to mark a boundary.

sequential search—an algorithm that looks through a list from beginning to end for a key, stopping 
when it finds the key.

set—an unordered collection in which an element may appear at most once.

simple cycle—a cycle in a graph with no repeated edges or vertices (except the first and the last vertices).

simple path—a list of distinct vertices such that successive vertices are connected by edges.

simple type—a type in which the values of the carrier set are atomic, that is, they cannot be divided 
into parts.

singly linked list—a linked data structure whose nodes each have a single link field used to form the 
nodes into a sequence. Each link but the last contains a reference or pointer to the next node in the list; 
the link field of the last node contains nil.

slice—a reference to a contiguous segment of an associated array.
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software design pattern—a model proposed for imitation in solving a software design problem.

sorting algorithm—an algorithm that rearranges records in lists so that they follow some well-defined 
ordering relation on values of key fields in each record.

spanning tree—any sub-graph of a connected graph G that is a tree and contains every vertex of G.

stack—a dispenser holding a sequence of elements that can be accessed, inserted, or removed at only 
one end, called the top.

static array—see fixed array.

string—a finite sequence of characters drawn from some alphabet.

struct—a record consisting of named fields of various types.

structured type—a type whose carrier set values are composed of some arrangement of atomic values.

sub-graph—a graph H=<W, F> is a sub-graph of graph G=<V, E> if W ⊆ V and F ⊆ E.

tail recursive algorithm—an algorithm in which at most one recursive call is made as the last step of 
each execution of the algorithm’s body.

traversable—a container is traversable iff all the elements it holds are accessible to clients.

tree—a graph with a distinguished vertex r, called the root, such that there is exactly one simple path 
between each vertex in the tree and r; alternatively, an acyclic connected graph.

undirected graph—a graph in which the edges are sets of two vertices; the edges have no direction and 
are represented by line segments in pictures.

unreachable code assertion—an assertion that is placed at a point in a program where execution should 
not occur under any circumstances.

value type—a type whose variables hold data structures representing the values of the carrier set of the 
type; compare to references type.

variable-length encoding—a representation of a set of values that uses bit strings of different lengths to 
save space: more frequently occurring values are represented by shorter bit strings and less frequently 
occurring values by longer bit strings.

worst case complexity W(n)—the maximum number of basic operations performed by an algorithm 
for any input of size n.


	Preface
	1	Introduction
	1.1	What Are Data Structures and Algorithms?
	1.2	Structure of the Book
	1.3	The Ruby Programming Language
	1.4	Review Questions
	1.5	Exercises
	1.6	Review Question Answers

	2	Built-In Types
	2.1	Simple and Structured Types
	2.2	Types in Ruby
	2.3	Symbol: A Simple Type in Ruby
	2.4	Range: A Structured Type in Ruby
	2.5	Review Questions
	2.6	Exercises
	2.7	Review Question Answers

	3	Arrays
	3.1	Introduction
	3.2	Varieties of Arrays
	3.3	Arrays in Ruby
	3.4	Review Questions
	3.5	Exercises
	3.6	Review Question Answers

	4	Assertions
	4.1	Introduction
	4.2	Types of Assertions
	4.3	Assertions and Abstract Data Types
	4.4	Using Assertions
	4.5	Assertions in Ruby
	4.6	Review Questions
	4.7	Exercises
	4.8	Review Question Answers

	5	Containers
	5.1	Introduction
	5.2	Varieties of Containers
	5.3	A Container Taxonomy
	5.4	Interfaces in Ruby
	5.5	Review Questions
	5.6	Exercises
	5.7	Review Question Answers

	6	Stacks
	6.1	Introduction
	6.2	The Stack ADT
	6.3	The Stack Interface
	6.4	Using Stacks—An Example
	6.5	Contiguous Implementation of the Stack ADT
	6.6	Linked Implementation of the Stack ADT
	6.7	Summary and Conclusion
	6.8	Review Questions
	6.9	Exercises
	6.10	Review Question Answers

	7	Queues
	7.1	Introduction
	7.2	The Queue ADT
	7.3	The Queue Interface
	7.4	Using Queues—An Example
	7.5	Contiguous Implementation of the Queue ADT
	7.6	Linked Implementation of the Queue ADT
	7.7	Summary and Conclusion
	7.8	Review Questions
	7.9	Exercises
	7.10	Review Question Answers

	8	Stacks and Recursion
	8.1	Introduction
	8.2	Balanced Brackets
	8.3	Infix, Prefix, and Postfix Expressions
	8.4	Tail Recursive Algorithms
	8.5	Summary and Conclusion
	8.6	Review Questions
	8.7	Exercises
	8.8	Review Question Answers

	9	Collections
	9.1	Introduction
	9.2	Iteration Design Alternatives
	9.3	The Iterator Design Pattern
	9.4	Iteration in Ruby
	9.5	Collections, Iterators, and Containers
	9.6	Summary and Conclusion
	9.7	Review Questions
	9.8	Exercises
	9.9	Review Question Answers

	10	Lists
	10.1	Introduction
	10.2	The List ADT
	10.3	The List Interface
	10.4	An Example of Using Lists
	10.5	Contiguous Implementation of the List ADT
	10.6	Linked Implementation of the List ADT
	10.7	Implementing Lists in Ruby
	10.8	Summary and Conclusion
	10.9	Review Questions
	10.10	Exercises
	10.11	Review Question Answers

	11	Analyzing Algorithms
	11.1	Introduction
	11.2	Measuring the Amount of Work Done
	11.3	The Size of the Input
	11.4	Which Operations to Count
	11.5	Best, Worst, and Average Case Complexity
	11.6	Summary and Conclusion
	11.7	Review Questions
	11.8	Exercises
	11.9	Review Question Answers

	12	Function Growth Rates
	12.1	Introduction
	12.2	Definitions and Notation
	12.3	Establishing the Order of Growth of a Function
	12.4	Applying Orders of Growth
	12.5	Summary and Conclusion
	12.6	Review Questions
	12.7	Exercises
	12.8	Review Question Answers

	13	Basic Sorting Algorithms
	13.1	Introduction
	13.2	Bubble Sort
	13.3	Selection Sort
	13.4	Insertion Sort
	13.5	Shell Sort
	13.6	Summary and Conclusion
	13.7	Review Questions
	13.8	Exercises
	13.9	Review Question Answers

	14	Recurrences
	14.1	Introduction
	14.2	Setting Up Recurrences
	14.3	Solving Recurrences
	14.4	Summary and Conclusion
	14.5	Review Questions
	14.6	Exercises
	14.7	Review Question Answers

	15	Merge sort and Quicksort
	15.1	Introduction
	15.2	Merge Sort
	15.3	Quicksort
	15.4	Improvements to Quicksort
	15.5	Summary and Conclusion
	15.6	Review Questions
	15.7	Exercises
	15.8	Review Question Answers

	16	Trees, Heaps, and Heapsort
	16.1	Introduction
	16.2	Basic Terminology
	16.3	Binary Trees
	16.4	Heaps
	16.5	Heapsort
	16.6	Summary and Conclusion
	16.7	Review Questions
	16.8	Exercises
	16.9	Review Question Answers

	17	Binary Trees
	17.1	Introduction
	17.2	The Binary Tree ADT
	17.3	The Binary Tree Class
	17.4	Contiguous Implementation of Binary Trees
	17.5	Linked Implementation of Binary Trees
	17.6	Summary and Conclusion
	17.7	Review Questions
	17.8	Exercises
	17.9	Review Question Answers

	18	�Binary Search and Binary Search Trees
	18.1	Introduction
	18.2	Binary Search
	18.3	Binary Search Trees
	18.4	The Binary Search Tree Class
	18.5	Summary and Conclusion
	18.6	Review Questions
	18.7	Exercises
	18.8	Review Question Answers

	19	Sets
	19.1	Introduction
	19.2	The Set ADT
	19.3	The Set Interface
	19.4	Contiguous Implementation of Sets
	19.5	Linked Implementation of Sets
	19.6	Summary and Conclusion
	19.7	Review Questions
	19.8	Exercises
	19.9	Review Question Answers

	20	Maps
	20.1	Introduction
	20.2	The Map ADT
	20.3	The Map Interface
	20.4	Contiguous Implementation of the Map ADT
	20.5	Linked Implementation of the Map ADT
	20.6	Summary and Conclusion
	20.7	Review Questions
	20.8	Exercises
	20.9	Review Question Answers

	21	Hashing
	21.1	Introduction
	21.2	The Hashing Problem
	21.3	Hash Functions
	21.4	Collision Resolution Schemes
	21.5	Summary and Conclusion
	21.6	Review Questions
	21.7	Exercises
	21.8	Review Question Answers

	22	Hashed Collections
	22.1	Introduction
	22.2	Hash Tablets
	22.3	HashSets
	22.4	HashMaps
	22.5	Implementing Hashed Collections in Ruby
	22.6	Summary and Conclusion
	22.7	Review Questions
	22.8	Exercises
	22.9	Review Question Answers

	23	Graphs
	23.1	Introduction
	23.2	Directed and Undirected Graphs
	23.3	Basic Terminology
	23.4	The Graph ADT
	23.5	The Graph Class
	23.6	Contiguous Implementation of the Graph ADT
	23.7	Linked Implementation of the Graph ADT
	23.8	Summary and Conclusion
	23.9	Review Questions
	23.10	Exercises
	23.11	Review Question Answers

	24	Graph Algorithms
	24.1	Introduction
	24.2	Graph Algorithms in Ruby
	24.3	Searching Graphs
	24.4	Depth-First Search
	24.5	Breadth-First Search
	24.6	Paths in a Graph
	24.7	Connected Graphs and Spanning Trees
	24.8	Summary and Conclusion
	24.9	Review Questions
	24.10	Exercises
	24.11	Review Question Answers

	Glossary



