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A B S T R A C T

This paper considers a last-mile delivery system in which a delivery truck operates in co-
ordination with a fleet of unmanned aerial vehicles (UAVs, or drones). Deploying UAVs from the
truck enables customers located further from the depot to receive drone-based deliveries. The
problem is first formulated as a mixed integer linear program (MILP). However, owing to the
computational complexity of this problem, only trivially-sized problems may be solved directly
via the MILP. Thus, a heuristic solution approach that consists of solving a sequence of three
subproblems is proposed. Extensive numerical testing demonstrates that this approach effectively
solves problems of practical size within reasonable runtimes. Additional analysis quantifies the
potential time savings associated with employing multiple UAVs. The analysis also reveals that
additional UAVs may have diminishing marginal returns. An analysis of five different endurance
models demonstrates the effects of these models on UAV assignments. The model and heuristic
also support anticipated future systems that feature automation for UAV launch and retrieval.

1. Introduction

This paper introduces the multiple flying sidekicks traveling salesman problem (mFSTSP), in which a delivery truck and a hetero-
geneous fleet of unmanned aerial vehicles (UAVs, commonly called drones) coordinate to deliver small parcels to geographically
distributed customers. Each UAV may be launched from the truck to deliver a single customer package, and then rendezvous (return)
to the truck to be loaded with a new parcel or transported to a new launch location. The objective of the problem is to leverage the
delivery truck and the fleet of UAVs to complete the delivery process and return to the depot in the minimum amount of time.

The problem of pairing UAVs with traditional delivery trucks was first introduced by Murray and Chu (2015). The paper provided
a mathematical programming formulation and a simple heuristic for the problem of coordinating a single traditional delivery truck
with a single UAV, dubbed the flying sidekick traveling salesman problem (FSTSP). Nearly identical problems have been described by
other researchers under the name TSP with drone (e.g., Agatz et al., 2018; Bouman et al., 2018; Ha et al., 2018).

A number of industry implementations have occurred since the original FSTSP paper appeared. For example, Amazon made its
first delivery worldwide (Wells and Stevens, 2016) and its first U.S. delivery a few months later (Rubin, 2017). However, drone-
maker Flirtey beat Amazon to several milestones, including the first Federal Aviation Administration (FAA) approved U.S. drone
delivery (Vanian, 2016). Logistics solution provider UPS also entered the drone delivery race, teaming with UAV manufacturers
Zipline to deliver blood for lifesaving transfusions in Rwanda (Tilley, 2016), CyPhy Works to deliver medical supplies in the U.S.
(Carey, 2016), and electric truck and UAV manufacturer Workhorse to demonstrate a truck/drone tandem (Peterson and Dektas,
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2017). Mercedes-Benz also revealed a concept for a drone delivery van that automatically loads UAVs with parcels without the need
for a driver (Etherington, 2017). The 2016 Material Handling Industry (MHI) Annual Industry Report (The, 2016) notes that 59% of
its survey respondents believe that emerging technologies like drones are already having an impact on supply chains. The report also
claims that adoption rates for technologies like drones are expected to grow to 50% over the next decade.

The present paper extends the original FSTSP, as well as other related studies on truck/UAV routing, in several key respects. It
features a more comprehensive treatment of the operating conditions, to better reflect the realities associated with the complex
nature of this coordinated vehicle routing problem. Specifically, it contributes to the existing literature in the following ways. First,
the mFSTSP considers an arbitrary number of heterogeneous UAVs that may be deployed from the depot or from the delivery truck.
These UAVs may have different travel speeds, payload capacities, service times, and flight endurance limitations. Accounting for
these differences accommodates service providers who may expand their fleet with a variety of drones over time. For example,
Amazon’s UAV designs have evolved from eight-rotor octocopters, to a multi-rotor/fixed-wing hybrid, to the latest four-rotor
quadcopter in just a few years (Amazon, 2019). Given the rapidly-changing technology, it is reasonable to assume that companies will
augment their fleet over time with improved drones. Thus, as companies change the composition of their fleets (either via expansion
or via replacement of drones no longer fit for service), it is expected that companies will increasingly operate heterogeneous fleets.
Similarly, model variations for evolving automated UAV launch and recovery systems (at the depot or within the truck) are also
provided.

Second, because the delivery truck is typically too small to safely accommodate multiple drones landing or launching simulta-
neously, the mFSTSP explicitly queues the aircraft in both the launch and retrieval phases. This additional scheduling problem adds
complexity to the problem, but more accurately reflects the limitations associated with deploying multiple drones from a relatively
small space. Consideration of queuing of these activities is important because they may comprise a significant portion of the total
operational time; disregarding this aspect may result in solutions leading to UAVs running out of power before being safely retrieved.

Finally, this paper provides a comparative analysis of five endurance models, one of which (a non-linear model that determines
energy consumption as a function of velocity and parcel weight) has not been applied to truck/UAV routing problems. The analysis
highlights the potential risks associated with constructing schedules based on overly-simplified endurance models. As with the queue
scheduling, the primary risk of using an optimistic endurance model is solutions resulting in UAVs that fail to return to their recovery
locations.

A small eight-customer example is provided to highlight the time savings that may be afforded by the mFSTSP. Fig. 1 shows a
comparison of vehicle routes for customers located in the Seattle area. The route generated by solving a standard traveling salesman
problem (TSP) demonstrates the long travel distance that must be covered if a single truck makes all eight deliveries. With the
addition of one UAV, the truck visits only five of the customers and avoids the eastern half of the region. When three UAVs are
employed, the truck needs to visit only three customers. The Gantt chart in Fig. 2 highlights the coordination required. In particular,
as more UAVs are utilized, the truck driver must spend more time launching and retrieving the drones. Additionally, the drones may
spend more time waiting for the truck to arrive at the recovery location. Table 1 reveals the significant time savings for even trivially-
sized problems.

The remainder of this paper is organized as follows. An overview of related academic literature is provided in Section 2. A formal
problem definition and mixed integer linear programming (MILP) formulation are provided in Section 3. A three-phased heuristic
solution approach is proposed in Section 4, followed by a numerical analysis in Section 5 to highlight the benefits, and limitations, of
deploying multiple drones from the delivery truck. Additional analysis explores the impacts of the region size, potential automation
improvements, and implications of different endurance models. Finally, conclusions and future research directions are provided in
Section 6.

2. Related literature

This review focuses on problems involving the coordinated use of trucks and UAVs for parcel delivery. While beyond this scope,
we note another class of problems that consider the use of only UAVs to make deliveries (i.e., without a truck). Variants of this

Fig. 1. A comparison of routes for a small eight-customer problem in the Seattle region.
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problem include variable UAV battery energy (Dorling et al., 2017; Venkatachalam et al., 2017; Cheng et al., 2018), multi-objective
(San et al., 2016), multiple UAV replenishment locations (Song et al., 2018), and coordinated UAVs (Oh et al., 2018). Additionally,
numerous works have considered the benefits of UAVs in a variety of non-military applications. Recent examples include UAV
logistics infrastructure (Shavarani et al., 2018; Hong et al., 2018; Kim and Awwad, 2017; Chauhan et al., 2019), healthcare (Scott and
Scott, 2018; Kim et al., 2017), and disaster response (Rabta et al., 2018; Chowdhury, 2018; Zhong et al., 2018). A survey of the
literature on UAVs for civil applications is provided by Otto et al. (2018).

The problem of combining a drone with a traditional delivery truck for parcel delivery was first formally defined by Murray and
Chu (2015). That paper introduced an MILP formulation for the FSTSP, and also defined the parallel drone scheduling TSP (PDSTSP),
where multiple drones are launched from the depot to serve nearby customers, independent of the truck delivery. Greedy con-
struction heuristics for both problems were provided.

Numerous studies have since explored variations of the single-truck single-drone problem, often called the TSP with drone (TSP-D).
For example, Agatz et al. (2018) provided a new MILP model for the TSP-D, as well as several route first-cluster second heuristics. An
improved formulation for the FSTSP was presented by Dell’Amico et al. (2019a). Ponza (2016), Ha et al. (2018), Freitas and Penna
(2018), Daknama and Kraus (2017), and Schermer et al. (2018) explored neighborhood search based heuristics, while Bouman et al.
(2018) and Tang et al. (2019) present dynamic programming and constraint programming approaches, respectively, for obtaining
optimal solutions. A multi-objective variant of the TSP-D, with a non-dominated sorting genetic algorithm, was proposed by Wang
et al. (2019b). Poikonen et al. (2019) provide four branch-and-bound-based heuristics for the TSP-D. Jeong et al. (2019) modified the
FSTSP to consider variable UAV energy consumption and restricted flying areas. Dukkanci et al. (2019) consider a variation of the
FSTSP that minimizes the operational cost and calculate UAV energy consumption as a function of speed.

In the case of single-truck multi-UAV problems, Ferrandez et al. (2016) and Chang and Lee (2018) consider a system in which the
truck deploys multiple drones from distributed launch sites along the truck’s route. The drones return to the truck before the truck
departs for its next destination. Clustering heuristics have been developed, such that the truck is routed to each cluster and nearby
customers are served via UAV. Conversely, similar to the mFSTSP, Yoon (2018) consider a single truck that may launch multiple
UAVs, with the UAVs returning to the truck at a different location. An MILP formulation is provided, which is tested on instances with
up to 10 customers. Tu et al. (2018) propose an adaptive large neighborhood search heuristic for a similar problem, the TSP with
multiple drones (TSP-mD).

The use of multiple trucks and multiple UAVs is considered by Kitjacharoenchai et al. (2019), which is an extension of the FSTSP,
but without endurance limitations and launch/delivery time considerations. While UAVs can be launched from and retrieved at
different trucks, only one UAV can be launched or retrieved at any customer location. They present an MILP formulation and propose
an insertion based heuristic to solve problems with up to 50 customers. Sacramento et al. (2019) extend the FSTSP with multiple
trucks, each carrying a single UAV. A solution approach based on adaptive large neighborhood search is provided. Wang and Sheu
(2019) consider a problem in which multiple UAVs may be launched from multiple trucks at customer locations, where each UAV can
serve multiple customers on a sortie. UAVs must be retrieved at separate docking locations. A branch-and-price algorithm is de-
monstrated on problems with up to 15 customers. Schermer et al. (2019) address a multi-truck problem in which each truck may have
multiple UAVs. A matheuristic is proposed for larger-scale instances. Additionally, Schermer et al. (2019) consider a multi-truck,
multi-UAV problem where UAV launches and retrievals may occur at non-customer locations, termed en route operations. An MILP
formulation for this problem is provided, along with a variable neighborhood search heuristic.

Work related to the PDSTSP includes new heuristics proposed by Mbiadou Saleu et al. (2018) and Dell’Amico et al. (2019b). A

Fig. 2. Detailed vehicle timing for the small Seattle example, using either a single truck (TSP), a truck with one UAV, or a truck with three UAVs.
Numbers on the bars identify each of the eight customers.

Table 1
Comparison of time savings for the small Seattle example.

Makespan [hr:min:sec] Time Savings [hr:min:sec] Improvement over TSP

3 UAVs 0:47:00 0:25:01 34.7%
1 UAV 0:59:29 0:12:32 17.4%

TSP 1:12:01 – –
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multi-truck variant of the PDSTSP, solved via constraint programming, is provided by Ham (2018) in which UAVs can perform both
delivery and pickup activities. Kim and Moon (2019) consider a variation of the PDSTSP in which UAVs can be deployed from the
depot and several drone stations. Another variant, proposed by Wang et al. (2019a), considers a fleet of trucks, each carrying a UAV,
operating simultaneously with additional independent UAVs that are launched from the depot.

Another class of truck/UAV problems assume that only the UAVs may make deliveries, such as the multi-visit drone routing problem
(MVDRP) proposed by Poikonen (2018) and the truck/drone tandems considered by Mathew et al. (2015), Bin Othman et al. (2017),
Peng et al. (2019), Wikarek et al. (2019). Although not a parcel delivery application, Luo et al. (2017) proposed a two-echelon ground
vehicle and UAV cooperative routing problem in which a truck carries one UAV which is responsible for visiting one or more
surveillance targets before returning to the truck.

Several theoretical studies have shown the benefits of using a combined truck-UAV delivery system. Wang et al. (2016) in-
troduced the vehicle routing problem with drones (VRPD), and determined bounds on the ratio of VRPD time savings versus tra-
ditional routing problems (e.g., VRP and TSP). The analysis considered particular cases where trucks and drones follow the same
distance metric and drone battery life is unlimited. Poikonen et al. (2017) relaxed these assumptions to develop bounds on similar
ratios, but with differing distance metrics for trucks and drones and limited drone endurance. Carlsson and Song (2017) consider a
continuous approximation model to replace computationally difficult combinatorial approaches. Their horsefly routing problem
consists of one truck and one UAV. Unlike other models, the UAV launch/retrieval locations are not restricted to customer nodes.
Campbell and Sweeney (2017) and Li et al. (2018) also used continuous approximation methods, and developed cost models to study
the economic impacts. Results by Campbell and Sweeney (2017) suggest that substantial cost savings can be achieved using the
combined truck-drone delivery system with multiple drones per truck, and highlight the benefits associated with automated loading
and reduced delivery service times. Boysen et al. (2018) study the complexity of problems involving a given set of UAV customers and
a fixed truck route.

In contrast to the above studies, Ulmer and Thomas (2018) introduce a problem in which customer orders arrive dynamically. For
each incoming order, the firm must decide whether a truck or UAV will make the delivery (if at all). There is no interaction between
trucks and UAVs.

3. Problem definition and mathematical programming formulation

This section provides a formal definition of the mFSTSP, as well as an MILP formulation of the problem. A summary of the
parameter notation is described in Table 2.

Let C represent the set of all customer parcels, such that = …C c{1, 2, , }. Each customer must receive exactly one delivery by either
the single delivery truck or by one of the heterogeneous UAVs that are denoted by the set V. A particular customer i C is said to be
“droneable” by UAV v V , and thus belongs to the set Cv, if that customer’s parcel is eligible to be delivered by v. This categorization
may be a function of several factors, including the parcel’s weight or size, whether a customer signature is required, whether the
parcel contains hazardous material that should not be flown, or whether the customer’s location is conducive to accommodating a
drone (e.g., apartments or heavily-wooded areas may be inaccessible to a UAV).

Each UAV is capable of carrying one droneable parcel at a time, although the weight or volume capacity of each UAV may differ.
UAVs may be launched from the depot, or from the truck. While a UAV can be launched multiple times, it cannot be launched from
the same location more than once. This assumption, consistent with the definition of the original FSTSP, is made primarily for
algorithmic convenience. A UAV can be retrieved at the depot, or by the truck at a customer location, but it cannot be retrieved at the
same customer location from which it was launched. When a UAV returns to the truck, it may be loaded onto the truck or it can be
launched from the truck (at this location) with a new package. The truck can also make stops between UAV launch and retrieval
locations to serve other customers while UAVs are airborne. It is assumed that the truck can transport all of the available UAVs at
once, although the truck may only launch or retrieve one UAV at a time.

Table 2
Parameter notation.

V Set of UAVs.
C Set of customers; = …C c{1, 2, , }.
Cv Set of customers that may be served by UAV v V C C; v for all v V .
N Set of all nodes; = … +N c{0, 1, , 1}.
N0 Set of nodes from which a vehicle may depart; = …N c{0, 1, , }0 .

+N Set of nodes to which a vehicle may visit; = … ++N c{1, 2, , 1}.
ij Truck’s travel time from node i N0 to node +j N .

vij Travel time for UAV v V from node i N0 to node +j N .

sv i
L
, Launch time for UAV v V from node i N0.

sv k
R
, Recovery time for UAV v V at node +k N .

k Service time by truck at node +k N , where + 0c 1 .

vk Service time by UAV v V at node +k N , where + 0v c, 1 .
P A set of tuples of the form v i j k, , , , specifying all possible three-node sorties that may be flown by UAV v V .
evijk Endurance, in units of time, for UAV v V traveling from nodes i N0 to j Cv to +k N .
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For now, assume that the truck must be present at the depot when the UAVs are launched or retrieved; in Section 3.7 we address a
variant of the problem for cases where the depot features automation or is sufficiently staffed to prepare and receive UAVs without
the driver. We also initially assume that the driver must participate in the launch/recovery process when en route (away from the
depot). However, Section 3.8 describes model modifications that leverage UAV-handling automation within the truck.

Because the truck may launch and retrieve (and re-launch) multiple UAVs at a particular customer location, it is important to
coordinate these activities carefully to avoid mid-air collisions. Thus, the driver’s task of dropping off a customer’s parcel must also be
scheduled with the UAV launch and recovery activities. Fig. 3 shows an example of flow of the scheduled activities.

To characterize the underlying network structure of the mFSTSP, we define the set of all nodes in the network to be
= … +N c{0, 1, , 1}, where nodes 0 and +c 1 represent the depot from which all vehicles must originate and return. This convention

accommodates the case in which the origin depot (0) and destination depot ( +c 1) have different physical locations. The truck may
only depart from node 0, and must return to node +c 1. The set of nodes from which a vehicle may depart is represented by

= …N c{0, 1, , }0 , while = … ++N c{1, 2, , 1} describes the set of all nodes to which a vehicle may visit.
The truck’s travel time along the road network from node i N0 to +j N is given by ij. Similarly, vij represents the time required

for UAV v V to fly from node i N0 to node +j N .
When UAV v V is launched from node i N0, it requires sv i

L
, units of time. This launch time is indexed on v to incorporate

differences in UAVs (some of which may be better designed to load parcels or swap batteries). The launch time is also indexed on the
launch location; launching from the depot may require a different amount of time (e.g., perhaps the drones are already loaded with
their first parcel and already have a fresh battery, or perhaps there’s automation within the depot). The recovery time, sv k

R
, , is similarly

defined for UAV v V retrieved at node +k N .
Truck deliveries require k units of time for service at node +k N , where + 0c 1 as there is no delivery at the depot. Similarly,

UAV v V requires vk units of time to perform the delivery service at node +k N , where + 0v c, 1 . This service time is indexed on
the UAV to reflect differences in delivery mechanisms among UAVs in the fleet. For example, some UAVs deliver goods via a tether
while the drone remains airborne (c.f., Google’s “egg” (Mogg, 2015) and Flirtey’s pizza delivery UAV (Boyle, 2016)), others require
the UAV to land to release the package (c.f., DHL’s ‘parcelcopter’ (Adams, 2016) and UPS/Workhorse truck/UAV tandem (Adams,
2017)), while other designs drop goods via parachute (c.f., Amazon’s patent for a shipping label with built-in parachute (Mogg, 2017)
and Zipline’s blood deliveries (Toor, 2016)).

3.1. UAV endurance

Each UAV v V has a unique endurance, represented as evijk and measured in units of time, for which it may remain operational
as it travels from node i N0 (launch) to j Cv (delivery), and then to +k N (rendezvous). The incorporation of the UAV’s en-
durance is critical, as UAV operations are hampered by limited battery capacity.

To identify potential valid UAV sorties (i.e., the sequence of a launch, customer delivery, and rendezvous), P is defined to be a set
of four-tuples of the form v i j k, , , for v V i N j C, , v0 , and +k N . This set has the following properties:

• The launch node, i, must not be the ending depot node (i.e., i is restricted to N0);
• The delivery node, j, must be an eligible customer for UAV v (i.e., j C j i{ : }v );
• The rendezvous point, k, may be either a customer or the ending depot (but it must not be either node i or j); and
• The UAV’s travel time from i j k must not exceed the endurance of the UAV (i.e., + + evij vj vjk vijk for

+k N k j k i{ : , }).

Fig. 3. A notional example depicting the scheduling activities required at truck customer locations.
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3.2. Objective and decision variables

The objective of the mFSTSP is to minimize the time required to deliver all parcels and return to the depot (i.e., to minimize the
makespan). This is accomplished via determination of decision variable values across six main classes, a summary of which is
provided in Table 3. First, binary decision variable =x 1ij if the truck travels from node i N0 immediately to node +j N j i{ : }.
This decision variable determines the route of the delivery truck. Similarly, in the second class, binary decision variable =p 1ij if the
truck visits node i N0 at some time prior to visiting node j C j i{ : }. We define p 1j0 for all j C to indicate that the truck
must leave the depot (node 0). This decision variable is employed to ensure that a UAV’s launch and recovery nodes are consistent
with the truck’s route (i.e., if a UAV is launched from a truck, it cannot return to the truck at a location that was earlier in the truck’s
route).

In the third class, binary decision variable =y 1vijk if UAV v V travels from node i N0 to customer j C j i{ : }v , re-joining
the truck at node +k N v i j k P{ : , , , }. This decision variable identifies UAV sorties.

The fourth class involves five continuous decision variables to determine the time at which key events for the truck and UAVs
occur. Specifically, t 0i captures the truck’s arrival time to node i N , where t 00 to indicate that the truck is available to begin
operations at time zero. The truck’s service time completion at node +i N is given by t̄ 0i , where t̄ 00 to reflect the fact that there
is no customer associated with the depot. This decision variable indicates the time at which customer i’s parcel has been delivered.
Next, t 0i identifies the truck’s completion time at node i N (e.g., the earliest departure time from this node if i N0). In the
problem variant where the truck is not required to be at the depot when UAVs launch, then t 00 . Similarly, timing for the UAVs is
determined by t 0vi , which denotes the arrival time for UAV v V to node i N , and t 0vi , which identifies the completion time
for UAV v V at node i N .

Next, numerous binary decision variables (all identified by the letter z with sub- and super-scripts) are employed to determine the
coordination between the driver and each UAV, and to establish the sequencing of UAV launches and retrievals at each node. Details
on each of these variables are provided in Table 3.

Finally, +u c1 2i are standard truck subtour elimination variables, defined for all +i N , that indicate the relative ordering
of visits to node i.

Details of the MILP formulation are provided in the remainder of this section. Due to the length of the model, constraints are
grouped according to functionality.

3.3. Core model components from the FSTSP

The mFSTSP leverages core components of the FSTSP model provided by Murray and Chu (2015), with modifications to ac-
commodate multiple UAVs. This model employs several “big-M” constraints, where the value of M represents a sufficiently large
number. One valid value of M is the length of a TSP tour such that the truck visits each customer, plus the sum of truck service times
over all customers.

The objective function and the general constraints related to guaranteeing customer deliveries and eliminating truck subtours are

Table 3
Decision variables.

x {0, 1}ij =x 1ij if the truck travels from node i N0 immediately to node +j N j i{ : }.
p {0, 1}ij =p 1ij if node i N0 appears in the truck’s route before node j C j i{ : }. p 1j0 for all j C .

y {0, 1}vijk =y 1vijk if UAV v V travels from node i N0 to customer j C j i{ : }v , re-joining the truck at node +k N v i j k P{ : , , , }.

t 0i Truck’s arrival time to node i N , where t 00 .
t̄ 0i Truck’s service time completion at node +i N , where t̄ 00 .
t 0i Truck’s completion time at node i N (e.g., the earliest departure time from this node if i N0). If the truck is not required to be at the depot

when UAVs launch, then t 00

t 0vi Arrival time for UAV v V to node i N .

t 0vi Completion time for UAV v V at node i N .

z {0, 1}v v k
R
1, 2, =z 1v v k

R
1, 2, if v V1 and v V v v{ : }2 2 1 are recovered at node +k N , such that v1 is recovered before v2.

z {0, 1}v k
R
0, , =z 1v k

R
0, , if the truck completes its service activities at node +k N before UAV v V is retrieved at node k.

z {0, 1}v k
R
,0, =z 1v k

R
,0, if UAV v V is retrieved at node +k N before the truck completes its service activities at node k. We define +z 0v c

R
,0, 1 for all

v V (since the truck has no service activities at the depot node, the order does not matter).
z {0, 1}v v i

L
1, 2, =z 1v v i

L
1, 2, if UAV v V1 is launched from node i N0 before v V v v{ : }2 2 1 is launched from i.

z {0, 1}v i
L
0, , =z 1v i

L
0, , if the truck completes its service activities at node i N0 before UAV v V is launched from i.

z {0, 1}v i
L
,0, =z 1v i

L
,0, if UAV v V is launched from node i N0 before the truck completes its service activities at node i. If the truck is not required to be

present when UAVs launch from the depot, we may define =z 0v
L
,0,0 for all v V (since the truck has no service activities at the depot node,

the order does not matter).
z {0, 1}v v i1, 2, =z 1v v i1, 2, if UAV v V1 launches from node i C before UAV v V v v{ : }2 2 1 lands at i.
z {0, 1}v v i1, 2, =z 1v v i1, 2, if UAV v V1 lands at node i C before UAV v V v v{ : }2 2 1 launches from i.

+u c1 2i Truck subtour elimination variables, defined for all +i N , which indicate the relative ordering of visits to node i.
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as follows:

+tMin c 1 (1)

+ =
+

x y j Cs. t. 1 ,ij v V vijki N
i j i N

i j
k N

v i j k P

0
0

, , , (2)

=
+

x 1,
j N j0 (3)

=+x 1,
i N i c, 1

0 (4)

=
+

x x j C,ij jki N
i j k N

k j

0

(5)

+
y i N v V1 , ,vijk 0j C

j i k N
v i j k P, , , (6)

+y k N v V1 , ,vijki N
i k j C

v i j k P

0

, , , (7)

+

+

y x x

v V i C j C j i k N v i j k P

2

, , { : }, { : , , , },

vijk hi lkh N
h i

l C
l k

0

(8)

+y x v V j C k N v j k P, , { : , 0, , },v jk hk0
h N
h k

0 (9)

+ +u u c y i C k N k i v V1 ( 2) 1 , { : }, ,k i vijk
j C

v i j k P, , , (10)

+ + +u u c x i C j N j i1 ( 2)(1 ) , { : },i j ij (11)

+u u c p i C j C j i1 ( 2) , { : },i j ij (12)

+ +u u c p i C j C j i1 ( 2)(1 ) , { : },i j ij (13)

+ =p p i C j C j i1 , { : }.ij ji (14)

The objective function (1) seeks to minimize the latest time at which either the truck or a UAV return to the depot. Although +tc 1 is
explicitly defined for only the truck’s return time to the depot, constraints in Sections 3.4 and 3.5 serve to link the UAVs’ and truck’s
return time to the depot. Thus, the objective function is equivalent to + +t tmin{max { , }}v V c v c1 , 1 .

Constraint (2) requires each customer to be visited exactly once. Constraint (3) ensures that the truck departs from the depot
exactly once, while Constraint (4) requires the truck to return to the depot exactly once.

Constraint (5) provides flow balance for the truck, which must depart from each node that it visits (except the ending depot node),
while Constraint (6) states that each UAV may launch at most once from any particular node, including the depot. Similarly, Con-
straint (7) indicates that each UAV may rendezvous at any particular node (including customers and the ending depot) at most once.

If a UAV is launched from customer i and is collected by the truck at node k, then Constraint (8) states that the truck must be
assigned to both nodes i and k. Furthermore, Constraint (9) ensures that if a UAV launches from the starting depot 0 and is collected at
node k, then the truck must be assigned to node k. Similarly, Constraint (10) ensures that the truck must visit i before k if a UAV
launches from customer i and is collected at node k. Subtour elimination constraints for the truck are provided by (11).

Constraints (12)–(14) determine the proper values of pij. Because ui and pij describe the ordering of nodes visited by the truck only,
values of these decision variables are inconsequential for any i and j that are visited only by a UAV.

3.4. UAV timing constraints

The following constraints establish the times at which each UAV launches from either the depot or the truck, arrives at a customer
location, and returns to either the truck or the depot. These constraints also address UAV flight endurance limitations.
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i N k N k i l C l i l k v V
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, { : }, { : , },

vl vk vijk vlmn il

0

j C
v i j k P

j l

m C
m i
m k
m l

n N
v l m n P

n i
n k

, , , , , ,

(15)

+
+

t t s M y v V i N^ 1 , ,vi vi v i
L

vijk, 0
j C
j i

k N
v i j k P, , , (16)

+t t s M z v V i N^ (1 ) , ,vi i v i
L

v i
L

, 0 0 (17)

+t t s M z v V i N^ ¯ (1 ) , ,vi i v i
L

vi
L

, 0 0 (18)

+t t s M z v V v V v v i N^ ^ (1 ) , { : }, ,vi v i v i
L

v v i
L

, , , , 2 2 02 2 (19)

+t t s M z v V v V v v i C^ (1 ) , { : }, ,v i vi v i
L

v v i, , , , 2 22 2 2 (20)

+
+

t t M y v V j C i N i j^ 1 , , { : },vj vi vij vijk 0
k N

v i j k P, , , (21)

+ +
+

t t M y v V j C i N i j^ 1 , , { : },vj vi vij vijk 0
k N

v i j k P, , , (22)

+
+

t t y v V j C^ , ,vj vj vj vijk
i N
i j

k N
v i j k P

0
, , , (23)

+ +
+

t t M y v V j C^ 1 , ,vj vj vj vijk
i N

i j
k N

v i j k P
0

, , , (24)

+ +t t s M z v V k N(1 ) , ,vk k v k
R

v k
R

, 0 (25)

+ +t t s M z v V k N¯ (1 ) , ,vk k v k
R

vk
R

, 0 (26)

+ +t t s M z v V v V v v k N(1 ) , { : }, ,vk v k v k
R

v v k
R

, , , , 2 22 2 (27)

+t t s M z v V v V v v k C^ (1 ) , { : }, ,vk v k v k
R

v v k, , , , 2 22 2 (28)

+ + +t t s M y v V k N j C j k^ 1 , , { : },vk vj vjk v k
R

vijk,
i N

v i j k P
0

, , , (29)

+

+

t S t e M y

v V i N j C j i k N v i j k P

( ) ^ (1 )

, , { ^ : }, { : , , , }.

vk v k
R

vi vijk vijk

v

,

0 (30)

Constraint (15) prohibits individual UAV sorties from overlapping. For example, suppose that UAV v launches from i and returns
to k. Further, suppose that the UAV later launches from l (thus, =p 1il ). This constraint prevents the launch time from l t, vl, from
preceding the return time to k t, vk. If the UAV does not return to k, the UAV does not launch from l, or i does not precede l, then this
constraint will not be binding. This constraint requires the definition of =p 1l0 for all l C.

Constraints (16)–(20) address launching of UAVs. The launch service (preparation) time, sv i
L
, , is included in these constraints to be

consistent with the definition of t vi (the time at which UAV v is launched from node i). Constraint (16) states that v cannot launch
from i (to j and k) until after v has arrived at node i; if v were transported on the truck to node i t, vi would be a meaningless value. Per
Constraint (17), UAV v cannot launch from i until after the truck has arrived to node i if the truck customer is served after v is
launched (i.e., if =z 1v i

L
0 ). Conversely, Constraint (18) states that UAV v cannot launch from i until after the truck has served this

customer if the truck serves the customer before v is launched (i.e., if =z 1vi
L

0 ). In Constraint (19), UAV v cannot launch from i until
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UAV v2 has launched if v2 launches before v (i.e., if =z 1v v i
L

, ,2 ), while Constraint (20) ensures that v2 does not launch until after v has
landed, if v lands before v2 launches (i.e., if =z 1v v i

L
, ,2 ). Note that, in Constraint (20), node i is restricted to being a customer node since

no other node type permits both launching and landing.
Constraints (21) and (22) govern the arrival timing for a UAV serving some customer j; Constraints (23) and (24) perform the

same function for the departure timing. These four constraints ensure that a UAV will travel directly to the customer location, and
will depart immediately after completing service. Any required loitering while waiting to be retrieved by the truck will occur at the
truck’s location. Constraints (25)–(29) address the landing of UAVs at retrieval locations (i.e., not at a drone delivery customer). The
recovery service time (e.g., sv k

R
, ) is included to be consistent with the definition of t vk (the time at which v is deemed to have arrived at

node k). In particular, Constraint (25) states that v can land at node k as soon as the truck has arrived if the truck serves customer k
after retrieving v (i.e., if =z 1v k

R
0 ). However, if the truck serves customer k first (i.e., if =z 1vk

R
0 ), then UAV v cannot land at k until the

truck completed this service.
If UAV v2 is recovered at node k before UAV v (i.e., if =z 1v v k

R
2, , ), Constraint (27) ensures that the arrival time for v is after the

arrival time for v2. Similarly, if v2 is launched from node k before v is recovered (i.e., if =z 1v v k, ,2 ), Constraint (28) requires the arrival
time for v to be after the launch time for v2. In this constraint, k is restricted to the set of customers because UAVs cannot launch and
land from any other nodes. In Constraint (29), UAV v cannot land at k until it has launched from customer j and travels from j to k.

UAV endurance limitations are addressed by Constraint (30). If v travels from i to j to k, then the difference between the arrival
time at k (less the recovery time, which is incorporated in t vk) and the departure time from i must not exceed the endurance limit.

3.5. Truck timing constraints

The following constraints govern the arrival, service, and departure activities for the truck.

+ +t t M x i N j N j i^ (1 ) , { : },j i ij ij 0 (31)

+ +t t x k N¯ ,k k k jk
j N
j k

0 (32)

+ +t t M z k N v V¯ (1 ) , ,k vk k v k
R
0 (33)

+t t M z k C v V¯ ^ (1 ) , ,k vk k v k
L
0 (34)

+t t k N^ ¯ ,k k (35)

+t t M y k N v V^ 1 , ,k vk vijk
i N
i k

j C
v i j k P

0
, , , (36)

+
t t M y k N v V^ ^ 1 , .k vk vklm 0

l C
l k

m N
v k l m P, , , (37)

The truck’s travel time is incorporated in Constraint (31), which states that the truck cannot arrive at j until after it has left i and
traveled from i to j.

Constraints (32)–(34) establish the truck’s service time completion at a customer. Note that there is no customer service time at
the depot (i.e., + 0c 1 ). Thus, the service completion time for the truck when visiting the depot does not have a service time
component, although it does also depend on the arrival of any UAVs to the depot in the event that we require the truck to be present
when UAVs arrive. In Constraint (32), the truck’s service time completion at node k must not be prior to arriving at the node and
finishing service. If the truck does not serve k, then tk will be a meaningless value (probably zero). Constraint (33) states that the truck
cannot complete service to customer k until UAV v has arrived, if v is recovered at node k before the truck service begins (i.e., if

=z 1v k
R
0 ). Similarly, the truck cannot complete its service of customer k until UAV v has launched, if v is launched from k before the

truck begins service (i.e., if =z 1vok
L ), as in Constraint (34). Note that k C (rather than in +N ) because UAVs cannot be launched

from node +c 1.
Constraints (35)–(37) establish the truck’s earliest departure from a node. Constraint (35) prevents the truck from departing a

node until it has completed serving the customer. If the truck does not serve k, then tk will be a meaningless value. In Constraint (36),
if a UAV is retrieved at node k, then the truck cannot depart until that UAV has arrived. Similarly, the truck cannot depart from a node
until after all UAVs have launched from that node, as per Constraint (37).

3.6. Sequencing of retrievals, launches, and truck service

In this section, constraints are provided to establish proper values of the binary decision variables used to sequence the activities
at each node. We begin with constraints for setting the z R

·,·,· values:
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+ = +z z y v V k N, ,vk
R

v k
R

vijk0 0
i N
i k

j C
v i j k P

0
, , , (38)

+z y v V v V v v k N, { : }, ,v v k
R

vijk, , 2 2
i N
i k

j C
v i j k P

2
0

, , , (39)

+z y v V v V v v k N, { : }, ,v v k
R

v ijk, , 2 2
i N
i k

j C
v i j k P

2
0

2, , ,

2

(40)

+ +z z v V v V v v k N1 , { : }, ,v v k
R

v v k
R

, , , , 2 22 2 (41)

+ + +

+

z z y y

v V v V v v k N

1

, { : }, .

v v k
R

v v k
R

vijk v ijk, , , ,

2 2

i N
i k

j C
v i j k P

i N
i k

j C
v i j k P2 2 0

, , ,
0

2, , , 2

(42)

In Constraint (38), if v is retrieved at node k, then the truck must serve k either before or after v arrives. Conversely, zv v k
R
, ,2 cannot

equal one if neither v nor v2 are retrieved at node k, as per Constraints (39) and (40). Constraint (41) states that either v is retrieved
before v v,2 2 is retrieved before v, or at least one of these UAVs is not retrieved at k. Finally, if v and v2 are both retrieved at k, then
either v is retrieved before v2, or v2 is retrieved before v, as in Constraint (42).

Constraints (43)–(47), below, are the launch analogues to Constraints (38)–(42). These constraints are used to set the z L
·,·,· decision

variable values:

+ =
+

z z y v V i N, ,vi
L

v i
L

vijk0 0 0
j C
j i

k N
v i j k P, , , (43)

+
z y v V v V v v i N, { : }, ,v v i

L
vijk, , 2 2 0

j C
j i

k N
v i j k P

2

, , , (44)

+
z y v V v V v v i N, { : }, ,v v i

L
v ijk, , 2 2 0

j C
j i

k N
v i j k P

2

2, , ,

2

(45)

+z z v V v V v v i N1 , { : }, ,v v i
L

v v i
L

, , , , 2 2 02 2 (46)

+ + ++ +z z y y

v V v V v v i N

1

, { : }, .

v v i
L

v v i
L

vijk v ijk, , , ,

2 2 0

j C
j i

k N
v i j k P

j C
j i

k N
v i j k P2 2 , , , 2, , , 2

(47)

Next, constraints are required for nodes at which one UAV launches and another UAV lands. Binary decision variable =z 1v v i, ,1 2 if
UAV v V1 launches from node i C before UAV v V v v{ : }2 2 1 lands at i, while =z 1v v i, ,1 2 if UAV v V1 lands at node i C
before UAV v V v v{ : }2 2 1 launches from i.

+
z y v V v V v v k C, { : }, ,v v k v k l m, , , , , 2 2

l C
l k

m N
v k l m P

2

2, , ,

2

(48)

+
z y v V v V v v k C, { : }, ,v v k v k l m, , , , , 2 2

l C
l k

m N
v k l m P

2

, , , (49)

z y v V v V v v k C, { : }, ,v v k vijk, , 2 2
i N
i k

j C
v i j k P

2
0

, , , (50)

z y v V v V v v k C, { : }, ,v v k v i j k, , , , , 2 2
i N
i k

j C
v i j k P

2
0

2, , ,

2

(51)

+ + + +z z y y

v V v V v v k C

1

, { : }, ,

v v k v v k vijk v klm, , , ,

2 2

i N
i k

j C
v i j k P

l C
l k

m N
v k l m P2 2 0

, , , 2, , , 2

(52)

+z z v V v V v v k C1 , { : }, ,v v k v v k, , , , 2 22 2 (53)

+z z v V v V v v k C1 , { : }, ,v v k v v k, , , , 2 22 2 (54)

+z z v V v V v v k C1 , { : }, .v v k v v k, , , , 2 22 2 (55)

Constraint (48) states that =z 0v v k, ,2 if v2 does not launch from k, while Constraint (49) sets =z 0v v k, ,2 if v does not launch from k.
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Similarly, Constraint (50) requires =z 0v v k, ,2 if v is not retrieved at k and Constraint (51) sets =z 0v v k, ,2 if v2 is not retrieved at k. If v is
retrieved at customer k and v2 is launched from customer k, then either v2 is launched before v lands, or v lands before v2 launches, per
Constraint (52).

Constraint (53) states that it is impossible for v2 to be launched before v lands and for v to land before v2 launches. Similarly,
Constraint (54) indicates that v2 cannot launch before v lands, if v launches before v2 lands; while Constraint (55) states that it is
impossible for v2 to land before v launches and for v to land before v2 launches.

3.7. Variant 1: truck not required at depot

The model above assumes that the truck must be present at the depot when UAVs are launched, and must also be at the depot
when UAVs return. This reflects the case that the driver is responsible for manually performing these activities. However, the model
may be relaxed to allow the UAVs to launch from, and return to, the depot independent of the driver.

We begin by modifying the definitions of two decision variables. First, we define t 00 to allow the truck to immediately depart
from the depot (without waiting for UAVs to be launched). Second, we define z 0v

L
,0,0 for all v V ; since the truck has no service

activities at the depot node, it does not need to be considered in the UAV launch sequencing.
Next, Constraints (25), (26) and (33) need not be satisfied at depot node +c 1, since v can land at the depot independent of the

truck’s arrival and service time completion. Thus, those constraints should be replaced by

+t t s M z v V k C(1 ) , ,vk k v k
R

v k
R

, 0 (56)

+t t s M z v V k C¯ (1 ) , ,vk k v k
R

vk
R

, 0 (57)

+t t M z v V k C¯ (1 ) , .k vk k v k
R
0 (58)

If the objective of the model is to minimize the time at which the last vehicle returns to the depot, then Constraint (36) remains as
is. Otherwise, if the objective is to minimize the time at which the truck returns to the depot, then (36) should be modified to exclude
depot node = +k c 1.

Finally, Constraint (37) should be relaxed for node =k 0 since the departure of UAV v from the depot is now independent of the
truck’s departure. Thus, (37) should be replaced by

+
t t M y k C v V^ ^ 1 , .k vk vklm

l C
l k

m N
v k l m P, , , (59)

3.8. Variant 2: automated launch and recovery systems

The default mFSTSP model assumes that the truck driver must be engaged in the UAV launch and recovery process at customer
locations. However, concept vehicles have been proposed (c.f., Etherington, 2017) that automate these activities. The obvious benefit
of such automation is that the truck driver can make a delivery at a customer location independent of the UAV launches and
retrievals. Note, however, that the truck still has to be present for the launch and recovery at a customer location; the difference is that
the driver is not required.

To accommodate automated launch and recovery systems, the following modifications to the baseline mFSTSP model are re-
quired. First, the UAV launch timing is no longer a function of the driver’s service at the customer. Thus, Constraint (17) should be
replaced by

+
+

t t s M y v V i N^ 1 , ,vi i v i
L

j C j i k N v i j k P
v i j k,

{ : } { : , , , }
, , , 0

(60)

and Constraint (18) should be removed. Similarly, the UAV recovery timing constraints should be modified such that Constraint (25)
is replaced by

+ +t t s M y v V k N1 , ,vk k v k
R

i N j C v i j k P
v i j k,

{ : , , , }
, , ,

0 (61)

and Constraint (26) is removed.
The truck service constraints in (33) and (34) should be removed, as the start of the truck driver’s service at a customer is no

longer dependent upon the UAV arrivals or departures. Similarly, Constraints (38) and (43), which require sequencing for driver
service with recovery and launch operations, respectively, should be removed.

Finally, the decision variables z z z, ,v i
L

v i
L

v k
R

,0, 0, , ,0, , and z v k
R

0, , are no longer required. Although the UAVs still require queueing, driver
service at a customer may start immediately (i.e., the UAV queueing is now independent of the driver’s service at a truck customer).
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4. A three-phased heuristic solution approach

Due to the NP-hard nature of the mFSTSP, heuristic approaches are required for problems of practical size. A three-phased
iterative heuristic, depicted in Fig. 4, is proposed.

In Phase I, customers are partitioned into two sets – those that will be served via truck and those served via UAVs. The minimum
number of customers in the truck set is given by an input parameter called the lower truck limit (LTL). The LTL is initialized to

Fig. 4. Heuristic flowchart.
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C V
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,0

where LTL0 represents the minimum number of truck customers required for a feasible solution. For example, consider a 50-customer
problem. If only 1 UAV is available, =LTL 250 , indicating that at least 25 customers must be assigned to the truck route. If 4 UAVs are
available, then at least 10 customers must be assigned to the truck. The value of the LTL is increased over the course of the iterative
procedure. In addition to partitioning the customer base into truck- and UAV-assigned customers, Phase I also produces a unique TSP-
like truck tour.

In Phase II, sorties for the UAV-assigned customers (as determined in Phase I) are generated. These sorties define the launch and
recovery locations associated with each UAV customer, as well as the UAV assigned to each sortie. At the conclusion of Phase II, all
truck and UAV routes are identified, but the timing of the activities is determined in Phase III.

In Phase III, an MILP is solved to determine the exact timing of the launch, recovery, and service activities for the truck and the
UAVs. Phase III also determines the queueing sequences for the UAVs.

After Phase III is completed, a local search procedure is executed to refine the solution. The value of LTL is then incremented to
add diversity to the search space, and the procedure returns to Phase I. The iterative procedure is repeated until the LTL equals the
number of customers (i.e., until the problem becomes simply solving a TSP tour to visit all customers via truck). Details of each phase
are described in the remainder of this section.

4.1. Phase I – initial customer assignments

The goal of Phase I is to establish a unique truck tour containing at least LTL customers, which is analogous to finding the xij
decision variables in the mFSTSP formulation. Any customer not on the truck’s route will be allocated (if possible) in Phase II to the
UAVs. Pseudocode for Phase I is provided in Algorithms 1–3.

This phase begins by creating a TSP tour of only those customers that are not UAV-eligible (lines 1–4 of Algorithm 1). The getTSP
() function solves an MIP using the “lazy constraints” method detailed in Gurobi Optimization (2018).

Next, customers are added or removed from the truck tour (lines 6–27 of Algorithm 1) according to a savings metric, with the
aim of reducing the makespan. The savings metric captures trade-offs between truck travel times, truck service time, and UAV
launch and recovery times. This process is repeated until either no further improvements are found, or the savings metric suggests a
cycle (i.e., infinite loop) of moving the same customers between the truck and UAVs.

The third step (lines 28–66 of Algorithm 2) ensures that at least LTL customers are served. This step also attempts to evaluate the
feasibility of the UAV assignments that will be made in Phase II. Feasibility is first determined by identifying UAV customers j for any
UAV v that do not have a corresponding valid sortie v i j k P, , , (line 31) for customers i and k that are currently assigned to the
truck’s route.

Feasibility is further assessed via the checkP2Feasibility() function, which solves the following objective-free integer linear
program:

r V i TruckCustomers {0},
j H ij

i (62)

=r j1 UAVCustomers,
i G ij

j (63)

r i j{0, 1} TruckCustomers {0}, UAVCustomers.ij (64)

The set Gj contains all customers i TruckCustomers {0} that can act as a UAV launch point for customer j UAVCustomers,
such that the retrieval point +k N is immediately after i in the TSPtour and v i j k P, , , . Similarly, Hi is the set of customers
j UAVCustomers that can be served by launching from customer i TruckCustomers {0}, such that the retrieval point +k N is
immediately before i in the TSPtour and v i j k P, , , . Binary decision variable rij equals 1 if j UAVCustomers is assigned to
i TruckCustomers {0} as the launch point. Constraint (62) ensures that only a maximum of V UAVs can be launched from any
launch location, while Constraint (63) requires each UAV customer to have exactly one launch point. If a feasible solution to these
constraints exists, the function checkP2Feasibility() returns an empty set; otherwise, the function returns a set of UAV customers
that do not have feasible assignments.

If any infeasible UAV customers are identified, or if the number of truck customers is less than the LTL, one customer at a time
will be added to the truck’s tour. cost jk represents the change in the truck’s makespan that would result from inserting UAV customer j
immediately before customer k in the truck tour. cover jk is the set of customers in infeasCust whose assignment would become
feasible by inserting j in the truck tour immediately before k.

In the event that inserting j into the truck’s route leads to a reduction in the makespan (i.e., a negative cost), the score jk metric is
calculated by multiplying cost jk by the number of UAV customers supported by the insertion. This indicates that the benefit is shared
among numerous UAV customers. Conversely, if the makespan increases by inserting j, score jk is calculated as the cost per infeasible
UAV customer that is being supported. Thus, if two insertions have the same cost, the one that may eliminate a larger number of
infeasibilities would be preferable. In lines 52 and 53, the UAV customers j1 and j2 with minimum cost jk and score jk, respectively, are
identified. If there are no infeasible UAV customers but the number of truck customers is less than LTL, we choose to move the
customer with the cheapest cost to the truck (and re-solve the TSP). However, if infeasible UAV customers have been identified and a
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sufficient number of truck customers have already been added, we choose to insert the customer with the cheapest score immediately
before customer k. Otherwise (i.e., if there are infeasible UAV customers and the length of the truck route is less than LTL), the
customer with the cheapest score is added to the truck route and a new TSP tour is generated. This process of moving customers to the
truck route is continued until there are no more UAV customers with infeasible assignments and there are at least LTL truck cus-
tomers.

Phase I continues in Line 67 of Algorithm 3, where the truck tour is perturbed if it has been previously evaluated. If such a
modification is necessary, the procedure attempts to (1) swap a truck customer and a UAV customer, (2) perform a subtour reversal
(i.e., i j k l becomes i k j l), and (3) reverse the entire TSP tour. The modification that produces a unique truck route
with the minimum associated cost is selected. If no unique tour is found, the value of LTL is increased by one and the procedure
returns to Phase I. Otherwise, a lower bound is generated by using the TSP duration (including truck customer service times) and
adding launch and retrieval times for the UAV customers. If the lower bound exceeds the current incumbent (OFV ), the LTL is
updated and the procedure repeats Phase I. If the bound is less than the current incumbent, the procedure continues to Phase II.

Algorithm 1. Pseudocode for Phase I – Part 1 of 3

1: # Initialize:

2: = j C j C v VTruckCust all { : ^ }v
3: = CUAVCust TruckCust
4: = getTSPTSPtour (TruckCust)
5:
6: # Reduce TSP tour cost by adding/removing truck customers:
7: while (improvements are possible and no cycles occur) do
8: # Try to move customers from UAV to truck:
9: for j UAVCust do
10: = + +s ssavings max ( )v V i k ik vj

L
vj
R

ij jk j, , TSPtour

11: if ( >savings 0) then
12: jTruckCust TruckCust { }
13: end if
14: end for
15: UAVCust UAVCust TruckCust
16: getTSPTSPtour (TruckCust)
17:
18: # Try to move customers from truck to UAV:
19: for j j C v V{TruckCust: for any }v do
20: + + s ssavings max ( )v i j k P ij jk j ik vj

L
vj
R

, , ,

21: if ( >savings 0) then
22: jUAVCust UAVCust { }
23: end if
24: end for
25: TruckCust TruckCust UAVCust
26: getTSPTSPtour (TruckCust)
27: end while

Algorithm 2. Pseudocode for Phase I – Part 2 of 3

28: # Move customers to truck for feasibility (and to satisfy LTL requirement):
29: = Falsefeasible # Assume infeasible by default
30: while (not feasible) do
31: = j v i j k P v V i kinfeasCust all {UAVCust: , , , , TruckCust, TruckCust}
32: If ( = =infeasCust ) then
33: checkP2FeasibilityinfeasCust (UAVCustomers, TSPtour)
34: end if
35: If ( = = and len(infeasCust ) ( (TruckCust) LTL))
36: Truefeasible
37: else
38: for j UAVCust do
39: for +k cTruckCust { 1} do

40: = + + s scost minjk
i k v i j k P

ij jk j ik vj
L

vj
R

, TSPtour, , , ,

41: = l v m l j v j l m P v V morcover all {infeasCust: ( , , , , , , ) , TruckCust}jk

42: If ( j infeasCust) then
43: jcover cover { }jk jk
44: end if
45: if ( <cost 0jk ) then
46: = lenscore cost * (cover )jk jk jk
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47: else
48: = lenscore cost / (cover )jk jk jk
49: end if
50: end for
51: end for
52: = +j k, argmin (cost )j k c jk1 1 UAVCust, TruckCust { 1}

53: = +j k, argmin (score )j k c jk2 2 UAVCust, TruckCust { 1}

54: if = = <and len((infeasCust ) ( (TruckCust) LTL)) then
55: jTruckCust TruckCust { }1
56: getTSPTSPtour (TruckCust)
57: else if and len((infeasCust ) ( (TruckCust) LTL)) then
58: jTruckCust TruckCust { }2
59: j kTSPtour insert in current TSPtour immediately before2 2
60: else
61: jTruckCustomers TruckCustomers { }2
62: getTSPTSPtour (TruckCustomers)
63: end if
64: UAVCust UAVCust TruckCust
65: end if
66: end while

Algorithm 3. Pseudocode for Phase I – Part 3 of 3

67: Modify TSP tour if not unique. If no unique tour is found, increase LTL and repeat Phase I.
68:
69: # Evaluate lower bound:

70: = + +{ }s slowBound TSPcost min ( )v V j vj
L

vj
R

UAVCust

71: if ( >lowBound OFV ) then
72: increaseLTL() # See function below
73: else
74: Continue to Phase II.
75: end if
76:
77: procedure increaseLTL()
78: +LTL LTL 1
79: prevPhase3 = False
80: If C(LTL ) then
81: Return to Phase I with new LTL value.
82: else
83: Stop. Report OFV , TSPtour , UAVsorties , ActivityTimings .
84: end if
85:end procedure

4.2. Phase II – Create UAV sorties

The goal of Phase II is to determine the individual sorties v i j k, , , for each UAV v, where i is the launch location, j is the customer
that is being served by the UAV, and k is the retrieval location. This is analogous to determining the yvijk decision variables in the
mFSTSP formulation. Pseudocode for Phase II is provided in Algorithms 4 and 5.

Inputs to this phase include the set of customers to be assigned to UAVs (UAVcust) and the truck route found in Phase I
(TSPtour). Additionally, the earliest time at which the truck can arrive at each location on the route, denoted as tj for all
j TSPtour, is calculated. While tj incorporates truck customer service times, UAV launch and retrieval times are ignored. Thus, tj is
sum of the arrival time at j according to TSPtour and the service times at all previous truck customer locations.

This phase begins in lines 3–6 by initializing the lists of UAV sorties (UAVsorties), customers with no feasible assignments
(infeasCust), UAVs available at each launch location (availUAVs j), and unassigned UAV customers (UnasgnCust).

Next, in lines 8–12, the number of potential UAV sorties (numOptions j) is determined for each UAV customer j. We define P P
such that v i j k P, , , represents only valid i j k, , combinations where i and k are consecutive stops on the truck’s tour. Thus, in
Phase II, there are no truck customers between the launch and recovery points in the UAV sorties. A local search procedure is applied
in Phase III to relax this restriction (i.e., to allow the truck to make multiple stops while a UAV is en route).

In lines 14–32, UAV sorties are generated. Customers with the minimum numOptions are prioritized, as they possess the fewest
number of feasible candidate sorties. For each chosen UAV customer, j, the assignment v i j k P, , , is selected based on its impact
on the waiting time for both the truck and the UAV. Variable w (line 20) captures the time difference between the UAV’s activities
(travel from launch point i to customer j, serve customer j, and travel to retrieval point k) and the truck’s activities (travel from launch
point i to retrieval point k). A positive value of w indicates that the truck must wait for the UAV. If
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<(WaitTime 0) and (w WaitTime), the current truck assignment incurred a waiting time that can be reduced by assigning this UAV
sortie. Conversely, if < <WaitTime w 0, this UAV assignment would lead to a reduction in the time that a UAV would wait for the
truck. Thus, the aim is to find an assignment that results in zero truck waiting and minimum UAV waiting, or minimum truck waiting
(if zero truck waiting is not possible). If no feasible assignment is found (line 26), the customer is added to the infeasCust list;
otherwise (line 28), the assignment is stored in the UAVsorties list and the corresponding UAV becomes unavailable at the cor-
responding launch location i .

If any UAV customers remain without an assigned sortie, it is necessary to move a UAV customer to the truck route. In lines 34–37
of Algorithm 5 we calculate cheapestInsCost, which is the minimum cost associated with inserting a UAV customer into the
current TSP tour which might make Phase II feasible. The following costs comprise cheapestInsCost, and are associated with the
insertion of UAV customer i into position p of the truck route:

Thus, we may calculate

= + +c c ccheapestInsCost min ( ) .
i p

i p
j

i p j i p j
UAVCust, {TSPtourpositions}

,
ins

infeasCust
, ,
wait

, ,
fail

(65)

The indices resulting in cheapestInsCost are saved as imin and pmin.
The lower bound, (line 40), reflects the truck tour duration (including truck service time), launch and retrieval times for UAV

customers, and cheapestInsCost (in the event that there are UAV customers with no feasible assignments). If the lower bound is
not promising (line 42), increase the LTL and return to Phase I.

If no infeasible UAV assignments have been identified (line 44), the procedure continues to Phase III. Otherwise, if Phase II
infeasibility occurred as a result of trying to improve upon the Phase III solution (line 47), stop the trial for improvement and return
to Phase I with a new (or the same) LTL. In lines 50–57, insert customer imin into position pmin in the truck’s route and update the truck
tour. If this tour is unique, repeat Phase II. Otherwise, return to Phase I with a new (or the same) LTL value.

Algorithm 4. Pseudocode for Phase II – Part 1 of 2

1: Inputs: TSPtour, TruckCust, UAVCust, Truck Arrival Times (t j), prevPhase3
2:
3: =UAVsorties
4: =infeasCust
5: = V javailUAVs TruckCustj
6: UnasgnCust = UAVCust
7:
8: # Determine number of potential sorties for each UAV customer:
9: = jnumOptions 0 UAVCustj

10: for ( v i j k P, , , ) do
11: +numOptions numOptions 1j j
12: end for
13:
14: # Create UAV sorties:
15: while (UnasgnCust ) do
16: =j argmin numOptionsj jUnasgnCust

ci p,
ins = Additional time associated with inserting customer i ∈UAVCust into position p of

the truck’s route.
+ +h i i i k h k, , , ,

where node h is at position p 1 and node k is at position p in TSPtour.

ci p j, ,
wait,launch = Truck waiting time if a UAV were launched from customer i ∈UAVCust inserted

into position p ∈{TSPtour positons} to serve customer j ∈infeasCust ⧹i.
+ +v V

k p
t tmin

{TSPtourpositions after }
{ ( )}v i j v j v j k k i i, , , , , ,

ci p j, ,
wait,retrieve = Truck waiting time if a UAV were retrieved at customer i ∈UAVCust inserted

into position p ∈{TSPtour positons} after serving customer j ∈infeasCust ⧹i.
+ +v V

k p
t tmin

{TSPtour positions before }
{ ( )}v k j v j v j i i k k, , , , , ,

ci p j, ,
wait = Minimum time the truck would spend waiting for a UAV, if the UAV is

launched or retrieved at customer i UAVCust inserted into position
p ∈{TSPtour positions} to serve customer j ∈infeasCust ⧹i.

c cmin{ , }i p j i p j, ,
wait,launch

, ,
wait,retrieve .

ci p j, ,
fail = Cost of inserting j infeasCust into the truck’s route, if inserting customer

i ∈UAVCust ⧹j into position p ∈{TSPtour positions} cannot make the assignment
of customer j feasible.

+ +min i k i j j j k i k, TSPtour , , , .
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17: jUnasgnCust UnasgnCust { }
18: =WaitTime
19: for ( =v i j k P j j v, , , { : and availUAVs })j do
20: = + + t tw ( ) ( )v i j vj v j k k i, , , ,

21: if ( <[(WaitTime 0)and(w WaitTime)] or < <(WaitTime w 0)) then
22: WaitTime w
23: v i j k v i j k, , , , , ,
24: end if
25: end for
26: if = =(WaitTime ) then
27: jinfeasCust infeasCust { }
28: else
29: v i j kUAVsorties UAVsorties { , , , }
30: vavailUAVs availUAVs { }i i
31: end if
32: end while

Algorithm 5. Pseudocode for Phase II – Part 2 of 2

33: =CheapestInsCost 0
34: If (infeasCust ) then
35: Calculate CheapestInsCost per Eq. (65).
36: Store imin and pmin.
37: end if
38:
39: # Calculare lower bound:
40: = + + +s sTSPcost ( ) CheapestInsCostv i j k v i

L
v k
R

, , , UAVsorties , ,

41:
42: if ( OFV )) then
43: increaseLTL() # See function in Algorithm 3
44: else if = =(infeasCust ) then
45: Procede to Phase III
46:else
47: if (prevPhase3 == True) then
48: increaseLTL() # See function below
49: else
50: # Modify Assignment (Insert customer with cheapest cost into truck route):
51: TSPtour TSPtour with customer imin inserted into position pmin
52: if (TSPtour prevTSPtours) then
53: prevTSPtours prevTSPtours TSPtour
54: Repeat Phase II with updated TSPtour
55: else
56: increaseLTL() # See function in Algorithm 3
57: end if
58: end if
59:end if

4.3. Phase III – timing

The role of Phase III is to determine the activity start times for the truck and UAVs (analogous to finding the various versions of
the “t” decision variables in the mFSTSP formulation), as well as the queueing of the launch and retrieval operations (analogous to the
“z” decision variables in the mFSTSP). Phase III makes use of the truck tour found in Phase I and the UAV sorties identified in Phase II.
Pseudocode for Phase III is outlined in Algorithm 6.

Algorithm 6. Pseudocode for Phase III

1: Inputs: TruckCust, UAVCust, TSPtour, UAVsorties,
2:
3: P3ObjVal, ActivityTimings Solve formulation (P3) using an MILP solver
4: prevPhase3 = True
5:
6: if ((Formulation (P3) is infeasible) or ( = =j C zsuch that ¨ 1j )) then
7: increaseLTL() # See function in Algorithm 3
8: else
9: if (P3ObjVal <OFV ) then
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10: # Save new-found incumbent solution
11: OFV , ActivityTimings P ObjVal, ActivityTimings3

12: TSPtour , UAVsorties TSPtour, UAVsorties
13: end if
14:
15: # Improve by moving a customer from truck to a UAV:
16: =candCust # Empty list of candidates
17: for j TruckCust do
18: if ((Launch and retrieval points exist) and ( jTSPtour { } prevTSPtours)) then
19: jcandCust candCust { }
20: end if
21: end for
22: j Customer with maximum potential reduction in makespan among candCust

23: bestSaving Potential reduction in makespan if j is moved to a UAV
24: if ( >bestSaving 0) then
25: Return to Phase II with j removed from TruckCust and added to UAVCust
26: else
27: # Local Search on UAV sorties:
28: =newUAVsorties
29: while True do
30: for k TruckCust do
31: if (Truck has to wait at k for a UAV retrieval) then
32: Assign the retrieval at next truck customer, if feasible assignment possible
33: newUAVsorties Updated UAVsorties with the new retrieval assignment
34: end if
35: end for
36: if (newUAVsorties UAVsorties) then
37: Solve formulation (P3) with newUAVsorties

38: if ((Formulation (P3) is infeasible) or ( = =j C zsuch that ¨ 1j )) then
39: Break while loop; increaseLTL()
40: end if
41: else
42: Break while loop; increaseLTL()
43: end if
44: end while
45: end if
46: end if

Phase III begins by solving an MILP, denoted as formulation (P3). The solution to (P3) provides the detailed timing of truck and
UAV activities, including sequencing of launch, recovery, and service activities performed at the truck. In addition to several pre-
viously-defined decision variables, (P3) requires a new decision variable, z̈ {0, 1}j , defined for all j C , where =z̈ 1j if customer j
was assigned in Phases I and II to be served by a UAV but cannot do so. New parameters used in formulation (P3), most of which are
derived from inputs TSPtour and UAVsorties, are described in Table 4. Formulation (P3) as presented below assumes that the
truck is required at the depot to launch and retrieve UAVs; this assumption is relaxed in Section 4.4.

+ ++t zP3 Min (10) ¨c
j C

j j1
(66)

+t t s z i N vs. t. ^ (1 ¨ ) , ,vi vi vi
L

A v i i( , ) 0 (67)

Table 4
Additional parameters required by formulation (P3).

N0 Subset of nodes from which the truck can depart (excluding the customers not assigned to the truck).

+N Subset of nodes to which the truck may visit.
C Subset of C, represents only customers not assigned to the truck.

i Set of all v V such that v launches from node i (i.e., where v i j k, , , UAVsorties in Phase II for some j C and +k N ).
k Set of all v V such that v lands at node k (i.e., where v i j k, , , UAVsorties in Phase II for some i N0 and j C ).

A v i( , ) The customer who is supposed to be visited by UAV v i after launching from node i. =A v i j( , ) where v i j k, , , UAVsorties.
B v k( , ) The customer who is supposed to be visited by UAV v k before landing at node k. =B v k j( , ) where v i j k, , , UAVsorties.

Optimistic lower bound from Phase II.
x Set of all the pairs i j, such that the truck visits j immediately after i.

j Same definition as in Section 4.2.
M Duration of the TSP tour including return time to depot and truck service times.
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+t t s M z i N v^ (1 ) , ,vi i vi
L

v i
L

i,0, 0 (68)

+t t s M z i N v^ ¯ (1 ) , ,vi i vi
L

v i
L

i0, , 0 (69)

+t t s M z i N v v v v^ ^ (1 ) , , { : },vi v i vi
L

v v i
L

i i, , , 0 2 22 2 (70)

+t t s M z
i N i v v v v

^ (1 )
{ : 0}, , { : },

v i vi v i
L

v v i

i i

, , , ,

0 2 2

2 2 2

(71)

+t t z v i j k y^ (1 ¨ ) , , , ,vj vi vij j (72)

+ +t t Mz v i j k y^ ¨ , , , ,vj vi vij j (73)

+t t z v i j k y^ (1 ¨ ) , , , ,vj vj vj j (74)

+ +t t Mz v i j k y^ ¨ , , , ,vj vj vj j (75)

+ +t t s Mz k N v¨ , ,vk k v k
R

B v k k, ( , ) (76)

+ +t t s M z k N v¯ (1 ) , ,vk k v k
R

vk
R

k, 0 (77)

+ +t t s M z k N v v v v(1 ) , , { : },vk v k v k
R

v v k
R

k k, , , , 2 22 2 (78)

+
++

t t s M z
k N k c v v v v

^ (1 )
{ : 1}, , { : },

vk v k v k
R

v v k

k k

, , , ,

2 2

2 2

(79)

+ +t t s z v i j k y^ ( )(1 ¨ ) , , , ,vk vj vjk vk
R

j (80)

t s t e v i j k y^ , , , ,vk vk
R

vi vijk (81)

+t t i j x^ , ,j i ij (82)

+ ++t t k N k c¯ { : 1},k k k (83)

+ +t t¯ ,c c1 1 (84)

+ +t t M z k N v¯ (1 ) , ,k vk k v k
R

k,0, (85)

+ ++t t M z k N k c v¯ ^ (1 ) { : 1}, ,k vk k v k
L

k,0, (86)

+t t k N^ ¯ ,k k (87)

+t t k N v^ , ,k vk k (88)

++t t k N k c v^ ^ { : 1}, ,k vk k (89)

t t v^ ^ ,v0 0 0 (90)

+ + = +z z z k N v¨ 1 , ,v k
R

v k
R

B v k k0, , ,0, ( , ) (91)

+ +z z k N v v v v1 , , { : },v v k
R

v v k
R

k k, , , , 2 22 2 (92)

+ + +

+

z z z z
k N v v v v

¨ ¨ 1
, , { : },

v v k
R

v v k
R

B v k B v k

k k

, , , , ( , ) ( , )

2 2

2 2 2

(93)

+ + =z z z i N v¨ 1 , ,v i
L

v i
L

A v i i0, , ,0, ( , ) 0 (94)
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+z z i N v v v v1 , , { : },v v i
L

v v i
L

i i, , , , 0 2 22 2 (95)

+ + +z z z z i N v v v v¨ ¨ 1 , , { : },v v i
L

v v i
L

A v i A v i i i, , , , ( , ) ( , ) 0 2 22 2 2 (96)

+ + +z z z z
k N k v v v v

¨ ¨ 1
{ : 0}, , { : },

v v k v v k B v k A v k

k k

, , , , ( , ) ( , )

0 2 2

2 2 2

(97)

+z z k N k v v v v1 { : 0}, , { : },v v k v v k k k, , , , 0 2 22 2 (98)

+ + +t t s z s z k N^ (1 ¨ ) (1 ¨ ) ,k k
v

vk
L

A v k
v

vk
R

B v k( , ) ( , )
k k (99)

=+z v V0 ,v c
R
,0, 1 (100)

t t t i N, ¯ , ^ 0 ,i i i (101)

t t v V i N, ^ 0 , ,vi vi (102)

z i N v v v v{0, 1} , {0 } , {0 : },v v i
L

i i, , 0 1 2 2 11 2 (103)

+z k N v v v v{0, 1} , {0 }, {0 : },v v k
R

k k, , 1 2 2 11 2 (104)

+z i N v v{0, 1} , , ,v v i i i, , 1 21 2 (105)

+z i N v v{0, 1} , , ,v v i i i, , 1 21 2 (106)

z j C¨ {0, 1} .j (107)

The objective function (66) seeks to minimize the makespan, but also includes a penalty for moving UAV customers to the truck’s
route. While Phase II allowed such moves without penalty, these moves are discouraged in Phase III in an effort to minimize
disruptions to the previously-identified assignments. Constraints (67)–(98) are modified from the original mFSTSP formulation, and
reflect the fact that some decisions have been made in the previous phases; Table 5 summarizes these relationships. Constraint (99) is
an optional strengthening constraint, which provides a lower limit for the truck’s departure from each visited node to be equal to its
arrival time plus any applicable UAV launch and recovery times. Constraint (100) states that since the truck has no service activities
at the depot node, the order of activity does not matter. Finally, Constraints (101)–(107) are decision variable definitions.

Infeasibility in Phase III may be identified in two cases. First, formulation (P3) itself may be infeasible. Second (P3) may be
feasible but any of the z̈j variables turn out to be 1, meaning no feasible assignment was found for customer j. If Phase III is infeasible,
the heuristic returns to Phase I with an updated LTL (lines 6–7).

If Phase III is feasible and the objective function value of (P3) is smaller than OFV , a new incumbent has been found. The
corresponding truck tour (TSPtour), UAV sorties (UAVsorties), and the decision variable values corresponding to timings and
coordination (ActivityTimings) from Phase III are stored (lines 9–13). The procedure then continues to an improvement stage.

The first step of the improvement stage is to consider moving a customer from the truck to a UAV. A truck customer that has
feasible launch and recovery points in the current truck tour is a candidate to be moved to a UAV assignment, provided that the
resulting truck tour – after removing that customer – is unique (lines 16–21). The candidate truck customer with the most favorable
savings metric is selected. If the best savings is positive (i.e., it would reduce the makespan), the candidate customer is removed from
the truck tour and the heuristic returns to Phase II. Otherwise, if the best savings is negative, the improvement stage is terminated and
a final local search procedure begins.

The last local search procedure uses the most recent solution obtained after the improvement stage, and identifies customer
locations where the truck waited for a UAV retrieval. For such locations, an attempt is made to shift the retrieval point of that UAV to
the next truck customer location, maintaining assignment feasibility. If no shift in any of the retrieval points is possible, the procedure
is terminated, and the heuristic returns to Phase I with an updated LTL. If the shift is possible for at least one retrieval point, a new set
of UAV sorties is obtained by making all possible shifts. The new set of UAV sorties is then provided to formulation (P3) to generate a

Table 5
Comparison of (P3) constraints with the base mFSTSP formulation.

Constraint Type (P3) Constraints mFSTSP Constraints

UAV Timing (67)–(81) (16)–(30)
Truck Timing (82)–(90) (31)–(37)
UAV Recovery (91)–(93) (38), (41) and (42)
UAV Launch (94)–(96) (43), (46) and (47)
UAV Launch/Recovery Sequencing (97) and (98) (52) and (53)
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new solution. The local search procedure continues until (P3) becomes infeasible, at which point the heuristic returns to Phase I with
an updated LTL.

4.4. Modifying the heuristic for variants

4.4.1. Variant 1 – Truck not required at depot
As described in Section 3.7, the problem can be relaxed to allow drones to launch from, and return to, the depot independently.

The only required heuristic changes are for formulation (P3) in Phase III. First, = = =t t t̄ 00 0 0 , since the truck can immediately
depart from the depot. Second, =z 0v

L
,0,0 for all v V , because the truck does not have any service activity at the depot node. Also,

Constraints (76), (77), and (99) should be modified such that they are no longer applicable at the depot (i.e., ++k N k c{ : 1}).
Moreover, if the objective is to minimize the time at which the last vehicle returns to the depot, Constraint (88) remains as is.
Otherwise, if the objective is to minimize the time at which the truck returns to the depot, (88) should be such that depot node

= +k c 1 is excluded from the constraint. Finally, Constraint (90) should be removed, since the truck is not required for launch/
retrieval of UAVs at depot, and it can leave before the UAVs have been launched from the depot.

4.4.2. Variant 2 – automated launch and recovery systems
The problem can also be modified to allow the driver to make deliveries while UAVs are being launched/collected (as described in

Section 3.8). Again, only formulation (P3) needs to be modified to account for this variant. First, the z z z, ,v i
L

v i
L

v k
R

,0, 0, , ,0, , and z v k
R
0, ,

decision variables are no longer required. Because parcel delivery by the driver and launch/retrieval of UAVs can take place in
parallel, their relative ordering is unimportant. For the same reason, Constraints (68), (69), (77), (85), (86), (91), and (94) should be
removed from formulation (P3). Finally, the constraint

+t t s M z i N v^ (¨ ) ,vi i vi
L

A v i i( , ) 0 (108)

should be added as a replacement for Constraint (68). This ensures that, if customer j has a feasible UAV assignment, then the UAV
may be launched from customer i only after the truck has arrived at customer i and has performed the launch service activity.

5. Numerical analysis

This section provides a quantitative analysis to gain insights from provably optimal solutions and to assess heuristic performance.
We begin with a description of the test instances, including a discussion of five potential approaches to determine UAV endurance.

Next, an analysis of optimal solutions for small-scale problems explores the behavior of the system as more UAVs are added. The
analysis on small-scale problems also investigates the impacts of the size of the region and demonstrates. The benefits of an auto-
mated depot (where the truck is not required to launch or recover UAVs at the depot) and an automated delivery truck (where the
driver is not required for UAV launch or recovery operations at customer locations) are explored. Also provided is an analysis on the
impacts of using different endurance models.

Finally, an analysis is conducted to assess the performance of the heuristic on problems of realistic size. For small-scale problems,
the heuristic is compared against optimal solutions generated via Gurobi. For larger-scale problems, the behavior of the heuristic is
analyzed to demonstrate that it produces expected results and that it scales appropriately.

All computational work was conducted on a Dell desktop PC with an 8-core Intel i7-6700 processor and 16 GB RAM running
Ubuntu Linux 14.04 in 64-bit mode. Where applicable, MILP models were solved via Gurobi version 7.0.1, a popular solver software
package. Heuristics were coded in Python version 2.7.6. All test problems, and source code for running both the MILP model and the
heuristic, are available at https://github.com/optimatorlab/mFSTSP.

5.1. Test problem development

As the mFSTSP is a new problem, there are no existing benchmark problems (and, therefore, no existing solution approaches
against which to compare). Thus, a suite of test problems has been generated. These test problems are comprised of 100 unique
customer collections, such that 20 problems were created for each of 5 levels of customer numbers (8, 10, 25, 50, and 100 customers).
Within each of the 20-problem subgroups, 10 were generated on the map of Buffalo (small city), and the other 10 on the map of
Seattle (large city). Of the 10 instances (for both Buffalo and Seattle), 5 have a depot located in the middle of the customer locations,
while 5 have a depot at the periphery. Each problem instance was solved with 1, 2, 3 and 4 UAVs, and also with four different types of
UAVs: (i) low speed and low range; (ii) high speed and low range; (iii) low speed and high range; and (iv) high speed and high range.
Thus, 320 problem instances were solved for each of the 5 levels of number of customers, resulting in 1600 test instances.

Truck travel times were generated via pgRouting (pgRouting, 2017), a PostgreSQL extension, with data from OpenStreetMap
(OpenStreetMap, 2017). UAV travel times were calculated assuming Euclidean distances, with speed and altitude parameters shown
in Table 6. The speed parameters are comparable to the specifications for the DJI Phantom 4 UAV (DJI, 2016). The cruise altitude of
50 meters is selected in accordance with the FAA regulation that the maximum allowable altitude is 400 feet (122 meters) above
ground level (Dorr, 2018).

UAV launch times (sv i
L
, ) of 60 s and recovery times (sv k

R
, ) of 30 s are assumed. Truck service times are assumed to be 30 s, while

UAV service times are 60 s. UAV payload capacities were chosen as 2.27 kg (5 lbs). Averaged over all the test problems, 85% of the
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packages were light enough to be UAV-transported. For the purpose of the analysis, the UAVs in a particular problem instance are
considered to be identical (although the model does not require this). Thus, each customer can either be served by any of the UAVs or
none of them.

5.1.1. UAV endurance and range specification
We consider five different approaches to specifying UAV endurance, as described by the evijk parameter:

1. A non-linear model provided by Liu et al. (2017), in which energy consumption depends both on the parcel weight and the UAV
speed. This model has not been previously applied in the truck-UAV routing literature.

2. A linear model, similar to Dorling et al. (2017) but with different parameter values, in which energy consumption only depends
on the parcel weight.

3. Fixed time-based endurance, where all UAVs are considered to have the same maximum flight duration, irrespective of speed,
distance, or parcel weight. In this case, evijk is constant for all v i j k, , , combinations. This is the most common endurance model
in the combined truck-UAV delivery literature.

4. Unlimited endurance, where UAV battery energy restrictions are ignored. In this case, also pervasive in the truck-UAV literature,
=evijk for all v i j k, , , combinations.

5. Fixed distance-based endurance, where UAV flights are limited solely as a function of travel distance. As there is no limit on the
flight duration, unlimited waiting is permissible at the retrieval location provided that the destination is within the distance limit.

To estimate endurance for the non-linear and linear models (the first two cases), the UAV flight profile is partitioned into eight
distinct phases. Suppose UAV v launches from location i, delivers the parcel to customer j, and rejoins the truck at location k. This
requires a takeoff time from location i (denoted as vi

t), cruise time from location i to j ( vij
c), landing time at location j ( vj

l), service
time at location j ( vj), takeoff time from j ( vj

t), cruise time from j to k ( vjk
c ), and a landing time at location k ( vk

l ). We denote this
minimum travel time by:

= + + + + + +T .vijk vi vij vj vj vj vjk vk
min t c l t c l

Note that Tvijk
min does not include any time that the UAV might spend waiting for the truck to arrive at node k, as such waiting time

is not known prior to solving the problem. This waiting time, the eighth flight phase, is addressed below.
During each phase of flight, a UAV may carry a different payload weight, may travel at a different speed, and may consume a

different amount of power. In particular, during the leg from node i to j, the UAV carries a parcel of weight wj kg, but it travels empty
from node j to k. Suppose that UAV v’s travel speeds for the takeoff, cruise, and landing phases are given by ,v

t
v
c, and v

l, respectively.
The power consumption in the two energy-based models is described next.

5.1.2. Endurance in the non-linear model
The equations for power consumption in the non-linear model are taken from Liu et al. (2017) – with some notational changes to

distinguish among the different flight phases – are as follows:

• Power consumed during vertical takeoff or landing:

= + + + + + +P w V k W w g V V W w g
k

c W w g,
2 2

( ) (( ) ) ;tl
vert 1

vert vert
2

2
2 2

3/2

• Power consumed during horizontal cruise:

= + + + +P w V c c W w g c V c V c V( , ) ( )[(( ) ( cos ) ) ( ) ] ;c
air 1 2 5 air

2 2
4 air

2 2 3/4
4 air

3

• Power consumed while waiting to land (i.e., hovering):

= + +P w c c W w g( ) ( )(( ) ) ;h
1 2

3/2

where k k c c c, , , ,1 2 1 2 4, and c5 are model coefficients whose values were estimated by Liu et al. (2017), and are provided in Table 7.
Additionally, W is the UAV frame weight (considered as 1.5 kg), w is the parcel weight, g is the gravitational constant (9.8 m/s2),

Table 6
Speed Parameters for UAVs.

Takeoff Speed Cruise Speed Landing Speed Cruise Altitude
Speed Class [m/s] ([mph]) [m/s] ([mph]) [m/s] ([mph]) [meters]

Low Speed 7.8 (17.5) 15.6 (35.0) 3.9 (8.75) 50.0
High Speed 15.6 (35.0) 31.3 (70.0) 7.8 (17.50) 50.0
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is the forward tilt of the UAV while flying horizontally (e.g., the “angle of attack”, assumed to be 10 degrees), Vvert is the vertical
UAV speed (during ascent or descent), and Vair is the horizontal UAV speed (during cruise). It is assumed that power consumption
during the service is negligible. Thus, the minimum energy required for UAV v to complete the visit from i to j to k is expressed as:

= + + + + +E P w P w P w P P P( , ) ( , ) ( , ) (0, ) (0, ) (0, ).vijk vi j v
t

vij j v
c

vj j v
l

vj v
t

vjk v
c

vk v
lmin t tl c c l tl t tl c c l tl

We denote the energy of the battery loaded on UAV v by Ev
avail. Thus, the UAV requires E Evijk v

min avail to safely fly from i to j to k. If
this requirement is satisfied, the endurance evijk (in seconds) is given by

= +e T
E E

P (0)
,vijk vijk

v vijkmin
avail min

h

where the second term in the expression captures the maximum length of time that the UAV may hover above node k while
waiting for the truck to arrive.

5.1.3. Endurance in the linear model
The energy consumption in the linear model is a function of parcel weight (but not velocity), similar to the model by Dorling et al.

(2017). Power consumed during different flight phases (takeoff, cruise, landing, or hovering) is considered the same, and is given by

= +P w w( ) ,tclh

where is the power consumed per unit parcel weight, is the power consumed to keep an empty UAV moving, and w is the parcel
weight. Note that the functional form used here is the same as in the model by Dorling et al. (2017), the values of and are
different. The method of their value estimation is explained in Section 5.3. The minimum energy required for UAV v to complete the
visit from i to j (carrying a parcel of weight wj) and from j to k (without a parcel, which was delivered to j) is:

= + + + + +E P w P( ) ( ) ( ) (0).vijk vi vij vj j vj vjk vk
min t c l tclh t c l tclh

If this requirement is less than the energy available (Ev
avail) then endurance evijk is given by

= +e T
E E

P (0)
.vijk vijk

v vijkmin
avail min

tclh

5.1.4. Range specification
In the numerical analysis, a low-range UAV is defined to have sufficient battery power to carry a 2.27 kg (5 lb) parcel up to 3

miles, with an empty return to the launch location (i.e., 6 miles round-trip). Note that a UAV carrying less than its full capacity
(2.27 kg) would have a range longer than 3 miles. For a high-range UAV, the battery is sufficient to carry a 2.27 kg parcel up to 6
miles, with an empty return. Table 8 provides the battery capacities for low- and high-range UAVs.

5.2. Analysis of optimal solutions

We first examine properties of optimal mFSTSP solutions, as generated by the MILP model and solved via Gurobi. Due to the

Table 7
Coefficient values for the non-linear endurance model as
in Liu et al. (2017).

Coefficient Value

k1 0.8554 [Unitless]
k2 0.3051 kg/m
c1 2.8037 m/kg
c2 0.3177 m/kg
c4 0.0296 kg/m
c5 0.0279 Ns/m

Table 8
Battery capacity, represented by Ev

avail.

Ev
avail

UAV Range Low Speed [kJ] High Speed [kJ]

Low 291.1 457.5
High 563.0 904.0
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computational complexity of the problem, provably optimal solutions may only be obtained for small-scale problems. Therefore, the
analysis has been conducted for 8-customer problems only.

A cutoff time of 1-h was given to Gurobi for each of the 320 8-customer problems; 212 of which (about 66%) solved to optimality
within the time limit. Hence, the optimal solution analysis below is performed on these 212 problems.

Fig. 5 provides a summary of the percentage improvement in makespan if UAVs are used in synchronization with the truck, as
compared to the truck-only case. Increasing the number of UAVs does serve to reduce the makespan. However, due to the limited
number of customers, the impact of additional UAVs is minimal. By contrast, more significant improvement is observed in the large-
scale problems discussed in Section 5.4. To help put the percentage improvements in perspective, Table 9 provides average delivery
times.

As shown in Fig. 6, the system rarely serves all “droneable” customers via UAVs. This is a function of the proximity among
customers, the service times for preparing and retrieving the UAVs, and the flight endurance.

An analysis was also conducted to study the impacts of an automated depot and an automated delivery truck. Table 10 sum-
marizes five cases involving combinations of these automation technologies, with two different metrics. After modifying the con-
straints corresponding to these different variants (as described in Sections 3.7 and 3.8), the same set of 212 problems (for which we
obtained optimal solutions) were run using the IP model to study the improvements in makespan over a baseline system where (1) the
truck is not automated for launch/recovery by itself, and (2) the truck is required at the depot for launch/recovery.

The results of this analysis, summarized in Fig. 7, indicate a 4.4% average savings of the makespan if the truck is automated to
launch and recover UAVs by itself (Case 1). The savings increases to an average of 7.0% if, instead, the truck is not required to launch
and recover UAVs at the depot (Case 2a). However, if the objective is to minimize the time at which the truck returns to depot (i.e.,
the time at which the UAVs return is ignored), the savings further improves to 8.9% (Case 2b). When both Cases 1 and 2a are
combined – so the truck is automated and is also not required at the depot – the average improvement over the default case becomes
10.2% (Case 3a). Finally, Case 3b provides the maximum average improvement of 12.8%. This analysis indicates that automation at
the depot may be more beneficial than automating the truck. To put these savings into perspective, the average makespan for the
default setting is 49 min. The average makespans (in min:sec) for the other cases are 47:32 (Case 1), 46:07 (Case 2a), 45:20 (Case 2b),
44:58 (Case 3a) and 43:58 (Case 3b). It should be noted, however, that the conclusions here are drawn from only small 8-customer
instances in which the time required by the truck for launch/delivery at the depot occupies a relatively large fraction of the total
makespan. System behavior for larger problems is unknown due to the lack of provably optimal solutions.

5.3. Comparison of endurance models

We next examine the impacts of using the five different endurance models introduced in Section 5.1.1. The parameters for the

Fig. 5. Impact of increasing the number of UAVs for eight-customer problems in a small (Buffalo) and a large (Seattle) city.

Table 9
Comparison of average objective function values between the TSP and mFSTSP with differing numbers of UAVs, for 8-customer problem instances.

Avg. Objective Function Value

Buffalo Seattle

[hr:min:sec] % Savings [hr:min:sec] % Savings

TSP 0:23:49 – 1:16:19 –

mFSTSP 1 0:20:22 14.30 1:04:24 15.75
UAVs 2 0:19:44 16.99 1:01:10 20.14

3 0:19:36 17.51 1:00:02 21.61
4 0:19:33 17.75 0:59:37 22.19
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non-linear model are specified in Table 7. The parameter values for the other four models are chosen here such that the resulting
endurance values (in seconds) are comparable to the non-linear model in an ‘average’ sense. For example, battery capacity for the
linear model is considered the same as in Table 8. Additionally, the coefficients for this model are estimated such that it linearly
approximates the power consumed by the non-linear model. A complete specification of the other four models is provided in
Table 11.

The same set of 212 problems, for which optimal solutions were obtained, were run using the different endurance models. Results

Fig. 6. A comparison of the number of customers assigned to UAVs.

Table 10
A summary of the five cases studied for future automation enhancements.

Metric Condition

Driver not req’d at Truck not req’d at
customer locations for depot for

Time at which the … launch/recovery launch/recovery

Case 1 last vehicle returns to depot.
Case 2a last vehicle returns to depot.
Case 2b truck returns to depot.
Case 3a last vehicle returns to depot.
Case 3b truck returns to depot.

Fig. 7. Comparison of percentage improvement for five different cases over a default system in which the truck is required to launch and retrieve
UAVs at the depot, and the driver is required to participate in the launch and retrieval process at each customer location.

Table 11
Specifications for endurance models

UAV Type Linear Fixed (time) Unlimited Fixed (distance)
Speed/Range [W/kg] [W] [s] [s] [miles]

Low/Low 210.8 181.2 700 6
Low/High 210.8 181.2 1400 12
High/Low 24.2 1392.0 350 6
High/High 24.2 1392.0 700 12
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are compared against the baseline case of non-linear endurance, as presented in Fig. 8. As expected, different endurance models
produce different objective function values (makespans) for the same problem instance, since the feasible set of tuples P is affected.
Specifically, the percentage of problems with objective function values that differ from the default case is: 41% for linear; 62% for
fixed-time endurance, 52% for unlimited endurance, and 50% for the fixed-distance endurance models.

The largest improvement in the objective function value over the non-linear model is shown by the unlimited endurance model, as
in Fig. 8a. This is intuitive, since all v i j k, , , combinations are feasible if endurance is ignored. This is followed by fixed endurance
models (both time and distance), where both positive and negative improvements in objective function values are observed. Note that
the fixed-distance model tends to overestimate the endurance when compared to the fixed-time model, as the fixed-distance model
ignores the endurance impacts when drones wait for the truck (waiting does not involve any additional travel distance). Thus, the
fixed-time model is the more restrictive of the two. The least difference between the objectives corresponds to the linear model, since
it is the closest approximation to the baseline non-linear endurance model. Fig. 8b provides the distribution of additional customers
assigned to UAVs, as compared to the non-linear model. The greater improvement in makespan for the unlimited endurance model is
attributed to the fact that more customers were assigned to UAVs in that case. Conversely, the poor performance of the fixed
endurance (time) model in terms of objective function value is due to fewer customers being assigned to UAVs. This shows that using
a fixed endurance model, instead of an energy consumption-based model, may result in under-utilization of resources.

Finally, we consider the risks of using an “incorrect” endurance model. For this analysis, non-linear endurance is assumed to be
the true energy consumption model. Solutions obtained from the other endurance models were input to the MILP model with non-
linear endurance to determine if feasibility was maintained. This test was conducted on the same set of 212 problems for which
optimal solutions were obtained. The percentage of problems for which the MILP model with non-linear endurance was feasible was:
84% for the linear model, 94% for the fixed-time endurance, 42% for unlimited endurance, and 58% for fixed-distance endurance.
Thus, if the solutions were generated by assuming fixed-distance endurance, then 42% of problems would be infeasible if the UAV
energy consumption was actually non-linear with speed and payload weight. Similarly, while only 6% of the solutions determined by
the fixed-time endurance model were infeasible when assessed with the non-linear model, 58% of the unlimited endurance model
were infeasible. In such cases, there is a danger of UAVs running out of battery power while en route, if the routes were generated via
an incorrect energy consumption model.

5.4. Heuristic performance

The effectiveness of the heuristic was assessed on 320 instances for each of the 8-, 10-, 25-, 50-, and 100-customer problems. A
comparison of heuristic solutions to optimal solutions is only provided for 8-customer problems, due to the inability of Gurobi to
generate optimal solutions (or, frequently, even feasible solutions) for larger-scale problems in a reasonable time. In the mFSTSP
heuristic, a 5-s cutoff time was imposed when solving formulation (P3) in Phase III.

Table 12 provides a comparison of runtimes and gaps between Gurobi and the proposed heuristic. Recall that Gurobi was given a
1-h (3600-s) cutoff time, such that 108 of the 320 8-customer test instances were unable to solve to optimality within this time limit.
The average runtime for Gurobi to solve the 8-customer problems is 1428.3 s (about 24 min), while it is 0.10 s for the heuristic. One
interesting observation is that the Gurobi runtimes for Seattle problems were nearly 78% less than for the Buffalo problems. One
possible explanation is that the presence of multiple waterways in Seattle reduced the number of similarly-attractive truck tours. To
put the optimality gaps into perspective, the 5% average gap associated with the heuristic indicates that this solution approach
produces solutions that result in only 147 s of additional delivery time beyond what was found by the complete MILP formulation
solved via Gurobi. Furthermore, the relatively long launch and recovery times relative to the makespan provide little margin for error
for these small-scale problems (e.g., the 60-s launch time is approximately 2% of the average optimal makespan of 2943 s).

To assess the solution quality of larger-scale problems, for which the MILP formulation becomes computationally intractable, a
comparison with TSP solutions is provided. Table 13 summarizes the runtimes and percentage improvement over TSP solutions for

Fig. 8. Impact of using different endurance models for eight-customer problems.
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these problems. As expected, the runtime increases with problem size, with most problems up to 50 customers solving in a minute or
less. While the 100-customer problems have longer runtimes, the largest problems are still solved in approximately 17 min.

Also of note, the average improvements over the TSP for 10-, 25-, 50-, and 100-customer problems are 14%, 23%, 22% and 19%
respectively. We suggest two possible explanations for this non-increasing behavior. First, it is possible that the heuristic is not
providing near-optimal solutions for the 50- and 100-customer problems. Unfortunately, there is no existing method for assessing an
optimality gap for the mFSTSP. However, there is evidence that the relatively time-expensive launch time (60 s), recovery time (30 s),
and customer service time (30 s longer for a drone delivery than a driver delivery) make it less beneficial to deploy the UAVs when
the customer density increases (recall that the service region remains unchanged as more customers are added).

These factors also contribute to the diminishing rates of improvement as the number of UAVs is increased, as shown in Fig. 9.
However, the results do demonstrate that additional UAVs lead to a reduction in makespan, indicating that the heuristic’s behavior is
consistent with expectations.

5.5. Analysis of queue scheduling conflicts

We conclude the numerical study with an analysis of queue scheduling conflicts exhibited in the test problems. Table 14 sum-
marizes the frequency of conflicts for a variety of problem sizes (based on a total of 960 test instances). The last column describes the
average number of truck customers where two or more UAV activities occurred (e.g., multiple launches, multiple retrievals, or a mix
of launches and retrievals). Even in cases with just two UAVs, conflict at truck customer locations occurs between 28% and 50% of
the time. As expected, conflict occurrences generally tend to increase as more UAVs are available.

Table 12
Summary statistics for 8-customer problem instances.

% Gap to MILP % Gap to MILP

Avg. Runtime [s] 212 Optimal Solns All 320 Solns

MILP Heuristic Avg. Min Max Avg. Min Max

UAVs 1 51.4 0.05 5.0 0.0 21.1 5.0 0.0 21.1
2 1075.5 0.10 4.9 0.0 44.2 4.6 0.0 44.2
3 2155.6 0.11 4.7 0.0 32.7 3.5 0.0 32.7
4 2430.5 0.14 5.4 0.0 32.3 2.8 0.0 32.3

City Buffalo 2349.1 0.11 5.1 0.0 18.9 3.3 0.0 18.9
Seattle 507.4 0.08 4.9 0.0 44.2 4.7 0.0 44.2

Overall 1428.3 0.10 5.0 0.0 44.2 4.0 0.0 44.2

Table 13
Heuristic solution statistics.

Cust- Avg. Run- Avg. TSP Obj. Avg. mFSTSP Avg. Improv.
omers UAVs time [s] [hr:min:sec] Obj. [hr:min:sec] over TSP [%]

10 1 0.1 0:55:48 0:49:09 10.2
2 0.1 0:55:48 0:46:56 13.7
3 0.1 0:55:48 0:45:54 15.3
4 0.2 0:55:48 0:45:46 15.7

25 1 1.0 2:34:32 2:08:06 16.9
2 2.0 2:34:32 1:58:47 22.7
3 3.4 2:34:32 1:54:56 25.3
4 3.7 2:34:32 1:53:11 26.6

50 1 10.7 3:40:03 3:09:20 13.9
2 26.7 3:40:03 2:53:16 21.3
3 55.5 3:40:03 2:44:55 25.2
4 65.4 3:40:03 2:41:25 26.8

100 1 175.5 5:31:49 4:51:43 11.7
2 434.3 5:31:49 4:28:45 18.6
3 709.5 5:31:49 4:14:36 22.8
4 1009.7 5:31:49 4:08:31 24.6
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6. Conclusions and future research

This paper introduced the mFSTSP, whereby customer parcels may be delivered via multiple heterogeneous UAVs and a single
delivery truck. These UAVs may be deployed from, and recovered by, the truck to extend the drones’ effective range. The flight
endurance for each drone is modeled as a function of the drone’s battery size, payload, travel distance, and flight phases (e.g., takeoff,
cruising, and landing). To reflect the realities of deploying multiple aircraft from a single truck, detailed queue scheduling for UAV
arrivals and departures is incorporated within the proposed MILP formulation. A three-phased heuristic solution approach provides
high-quality solutions with reasonable runtimes for problems of realistic size.

From the analyses conducted in this paper, we obtain some critical insights into the truck-UAV system design. Although it is

Fig. 9. Impacts of additional UAVs for larger-scale problems.

Table 14
UAV launch/retrieval conflicts.

Average number of
Number of Average number of truck customers where

Customers UAVs truck customers conflict occurs

10 2 6.79 1.90 (27.98%)
3 6.49 2.10 (32.36%)
4 6.39 1.89 (29.58%)

25 2 13.34 6.66 (49.93%)
3 11.60 6.53 (56.29%)
4 10.69 6.22 (58.19%)

50 2 27.09 12.94 (47.77%)
3 22.38 12.85 (57.42%)
4 20.24 12.71 (62.80%)

100 2 56.15 23.30 (41.50%)
3 45.20 24.36 (53.89%)
4 40.54 23.10 (56.98%)
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generally faster to reach a customer with a UAV rather than truck, it is rarely beneficial to serve all UAV-eligible customers via drone.
Adding more UAVs to an existing fleet tends to have diminishing marginal makespan improvements, with UAVs offering a greater
benefit in instances involving a larger number of customers. Furthermore, we observed that problem instances involving densely-
distributed customers tend to benefit the most. The analyses reveal that automation within both the truck and the depot result in time
savings, with depot automation providing the greatest savings. Finally, the analysis also demonstrated the influence of a chosen
endurance model on UAV assignments. Of particular importance is the danger of operational failure if a schedule is constructed using
constant or unlimited endurance. Such endurance models do not account for speed and parcel weight in UAV energy consumption,
and may lead to solutions that are not implementable in practice.

There are myriad opportunities for future research in this area. For example, the mFSTSP can be extended to allow UAVs to re-
launched multiple times from the same location. The UAV queue scheduling presented in this paper could also be applied to problems
in which large numbers of UAVs are deployed from a depot (as in the PDSTSP). Furthermore, this study considers a last-mile delivery
service whereby all parcels are available at the depot at the beginning of the delivery period; no additional orders arrive after the
vehicle assignments have been made. However, UAVs also promise benefits to companies that seek to fulfill incoming orders directly
from distribution centers (an obvious example of which is Amazon). In such a case, orders for on-hand products arrive throughout the
day, resulting in a dynamic routing problem.

Of course there also remain opportunities to develop more efficient heuristic approaches, and to continue adding realism to the
models by eliminating unrealistic simplifying assumptions. New theoretical bounds that capture such features as heterogeneous UAVs
and queue scheduling would be valuable in assessing heuristic performance for large-scale problems. Further studies that provide
managerial insights would also be of great benefit. For example, although the mFSTSP model presented here considers UAVs of
differing capacities, there was no analysis regarding the impact of these capacities. Additional studies may consider the impacts of
customer density, and could further analyze the economic impact of these novel delivery systems.

Acknowledgements

The authors are grateful to Editor-in-Chief Yafeng Yin and the two anonymous reviewers whose helpful suggestions have im-
proved the quality of this research. The authors also wish to acknowledge Amanda Chu and Eddie Rivera for their contributions to the
preliminary modeling efforts.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.trc.2019.11.003.

References

E. Adams.DHL’s tilt-rotor ‘Parcelcopter’ is both awesome and actually useful, 2016. URL: <https://www.wired.com/2016/05/dhls-new-drone-can-ship-packages-
around-alps/>.

Adams, E., 2017. UPS tests drone delivery, launching UAV from top of truck, 2017. URL <http://www.techrepublic.com/article/ups-tests-drone-delivery-launching-
uav-from-top-of-truck/>.

Agatz, N., Bouman, P., Schmidt, M., 2018. Optimization approaches for the traveling salesman problem with drone. Transport. Sci.
Amazon, 2019. <https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011>.
Bin Othman, M.S., Shurbevski, A., Karuno, Y., Nagamochi, H., 2017. Routing of carrier-vehicle systems with dedicated last-stretch delivery vehicle and fixed carrier

route. J. Inform. Process. 25, 655–666.
Bouman, P., Agatz, N., Schmidt, M., 2018. Dynamic programming approaches for the traveling salesman problem with drone. Networks 72 (4), 528–542.
Boyle, A., 2016. Flying saucer? No, it’s the first drone pizza delivery, from Domino’s and Flirtey, 2016. URL <https://www.geekwire.com/2016/drone-delivery-pizza-

dominos-flirtey/>.
Boysen, N., Briskorn, D., Fedtke, S., Schwerdfeger, S., 2018. Drone delivery from trucks: drone scheduling for given truck routes. Networks 72 (4), 506–527.
Campbell, J.F., Sweeney II D.C., Zhang, J., 2017. Strategic design for delivery with trucks and drones. URL <https://www.researchgate.net/profile/James_

Campbell3/publication/316169890_Strategic_Design_for_Delivery_with_Trucks_and_Drones/links/58f4efb7a6fdcc11e569fb5d/Strategic-Design-for-Delivery-with-
Trucks-and-Drones.pdf>.

Carey, N., 2016. UPS launches U.S. drone test flights for urgent medical deliveries, 2016. URL http://www.reuters.com/article/united-parcel-drones-delivery-
idUSL2N1BY1UY.

Carlsson, J.G., Song, S., 2017. Coordinated logistics with a truck and a drone. Manage. Sci.
Chang, Y.S., Lee, H.J., 2018. Optimal delivery routing with wider drone-delivery areas along a shorter truck-route. Exp. Syst. Appl. 104, 307–317.
Chauhan, D., Unnikrishnan, A., Figliozzi, M., 2019. Maximum coverage capacitated facility location problem with range constrained drones. Transport. Res. Part C:

Emerg. Technol. 99, 1–18.
Cheng, C., Adulyasak, Y., Rousseau, L.M., 2018. Formulations and exact algorithms for drone routing problem. Technical report, 2018. URL <https://www.cirrelt.ca/

DocumentsTravail/CIRRELT-2018-31.pdf>.
Chowdhury, S., 2018. Drone routing and optimization for post-disaster inspection. PhD thesis. Mississippi State University.
Daknama, R., Kraus, E., 2017. Vehicle routing with drones. arXiv preprint arXiv:1705.06431, 2017. https://arxiv.org/pdf/1705.06431.pdf.
Dell’Amico, M., Montemanni, R., Novellani, S., 2019a Drone-assisted deliveries: New formulations for the flying sidekick traveling salesman problem. arXiv preprint

arXiv:1905.13463, 2019a.
Dell’Amico, M., Montemanni, R., Novellani, S., 2019b. Matheuristic algorithms for the parallel drone scheduling traveling salesman problem. arXiv preprint

arXiv:1906.02962, 2019b.
DJI, 2016. <https://www.dji.com/phantom-4/info>.
Dorling, K., Heinrichs, J., Messier, G.G., Magierowski, S., 2017. Vehicle routing problems for drone delivery. IEEE Trans. Syst., Man, Cybernet.: Syst. 47 (1), 70–85.
Dorr, L., 2018. Federal Aviation Administration, 2018. URL <https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=22615>.
Dukkanci, O., Kara, B.Y., Bektas, T., 2019. The drone delivery problem. Available at SSRN, January 2019. <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=

3314556>.
Etherington, D., 2017. Check out the real world version of the Mercedes-Benz drone delivery van, 2017. <https://techcrunch.com/2017/01/10/check-out-the-real-

C.C. Murray and R. Raj Transportation Research Part C 110 (2020) 368–398

396

https://doi.org/10.1016/j.trc.2019.11.003
https://www.wired.com/2016/05/dhls-new-drone-can-ship-packages-around-alps/
https://www.wired.com/2016/05/dhls-new-drone-can-ship-packages-around-alps/
http://www.techrepublic.com/article/ups-tests-drone-delivery-launching-uav-from-top-of-truck/
http://www.techrepublic.com/article/ups-tests-drone-delivery-launching-uav-from-top-of-truck/
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0015
https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0025
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0025
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0030
https://www.geekwire.com/2016/drone-delivery-pizza-dominos-flirtey/
https://www.geekwire.com/2016/drone-delivery-pizza-dominos-flirtey/
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0040
https://www.researchgate.net/profile/James_Campbell3/publication/316169890_Strategic_Design_for_Delivery_with_Trucks_and_Drones/links/58f4efb7a6fdcc11e569fb5d/Strategic-Design-for-Delivery-with-Trucks-and-Drones.pdf
https://www.researchgate.net/profile/James_Campbell3/publication/316169890_Strategic_Design_for_Delivery_with_Trucks_and_Drones/links/58f4efb7a6fdcc11e569fb5d/Strategic-Design-for-Delivery-with-Trucks-and-Drones.pdf
https://www.researchgate.net/profile/James_Campbell3/publication/316169890_Strategic_Design_for_Delivery_with_Trucks_and_Drones/links/58f4efb7a6fdcc11e569fb5d/Strategic-Design-for-Delivery-with-Trucks-and-Drones.pdf
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0055
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0060
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0065
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0065
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2018-31.pdf
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2018-31.pdf
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0075
arxiv:https://arxiv.org/pdf/1705.06431.pdf
https://www.dji.com/phantom-4/info
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0100
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=22615
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3314556
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3314556
https://techcrunch.com/2017/01/10/check-out-the-real-world-version-of-the-mercedes-benz-drone-delivery-van/


world-version-of-the-mercedes-benz-drone-delivery-van/>.
Ferrandez, S.M., Harbison, T., Weber, T., Sturges, R.R., Rich, R., 2016. Optimization of a truck-drone in tandem delivery network using k-means and genetic algorithm.

J. Industr. Eng. Manage./ 9 (2), 374.
Freitas, J.C., Penna, P.H.V., 2018. A variable neighborhood search for flying sidekick traveling salesman problem. arXiv preprint arXiv:1804.03954, 2018. https://

arxiv.org/pdf/1804.03954.pdf.
Gurobi Optimization. tsp.py, 2018. <https://www.gurobi.com/documentation/8.1/examples/tsp_py.html>.
Ha, Q.M., Deville, Y., Pham, Q.D., Hà, M.H., 2018. On the min-cost traveling salesman problem with drone. Transport. Res. Part C: Emerg. Technol. 86, 597–621.
Ham, A.M., 2018. Integrated scheduling of m-truck, m-drone, and m-depot constrained by time-window, drop-pickup, and m-visit using constraint programming.

Transport. Res. Part C: Emerg. Technol. 91, 1–14.
Hong, I., Kuby, M., Murray, A.T., 2018. A range-restricted recharging station coverage model for drone delivery service planning. Transport. Res. Part C: Emerg.

Technol. 90, 198–212.
Jeong, H.Y., Lee, S., Song, B.D., 2019. Truck-drone hybrid delivery routing: payload-energy dependency and no-fly zones. Int. J. Prod. Econ.
Kim, K., Awwad, M.A., 2017. Modeling effective deployment of airborne fulfilment centers. In: Proceedings of the American Society for Engineering Management 2017

International Annual Conference.
Kim, S., Moon, I., 2019. Traveling salesman problem with a drone station. IEEE Trans. Syst., Man, Cybernet.: Syst. 49 (1), 42–52.
Kim, S.J., Lim, G.J., Cho, J., Côté, M.J., 2017. Drone-aided healthcare services for patients with chronic diseases in rural areas. J. Intell. Robot. Syst. 88 (1), 163–180.
Kitjacharoenchai, P., Ventresca, M., Moshref-Javadi, M., Lee, S., Tanchoco, J.M.A., Brunese, P.A., 2019. Multiple traveling salesman problem with drones: mathe-

matical model and heuristic approach. Comput. Industr. Eng.
Li, Y., Zhang, G., Pang, Z., Li, L. Continuum approximation models for joint delivery systems using trucks and drones. Enterprise Inform. Syst., pp 1–30, 2018.
Liu, Z., Sengupta, R., Kurzhanskiy, A., 2017. A power consumption model for multi-rotor small unmanned aircraft systems. In: 2017 International Conference on

Unmanned Aircraft Systems (ICUAS). IEEE, pp. 310–315.
Luo, Z., Liu, Z., Shi, J., 2017. A two-echelon cooperated routing problem for a ground vehicle and its carried unmanned aerial vehicle. Sensors 17 (5), 1144.
Mathew, N., Smith, S.L., Waslander, S.L., 2015. Planning paths for package delivery in heterogeneous multirobot teams. IEEE Trans. Autom. Sci. Eng. 12 (4),

1298–1308.
MHI, 2016. The 2016 MHI Annual Industry Report – Accelerating change: How innovation is driving digital, always-on supply chains. Technical report, Material

Handling Institute, 2016.
Mogg, T., 2015. Watch Google’s new Project Wing drone deliver a package, 2015. URL <https://www.digitaltrends.com/cool-tech/watch-googles-new-project-wing-

drone-deliver-a-package/>.
Mogg, T., 2017. Amazon patents shipping label with built-in parachute for drone deliveries, 2017. URL <http://money.cnn.com/2017/05/31/technology/amazon-

parachute-shipping-label/index.html>.
Murray, C.C., Chu, A.G., 2015. The flying sidekick traveling salesman problem: optimization of drone-assisted parcel delivery. Transport. Res. Part C: Emerg. Technol.

54, 86–109.
Oh, G., Kim, Y., Ahn, J., Choi, H.L., 2018. Task allocation of multiple UAVs for cooperative parcel delivery. In: Advances in Aerospace Guidance, Navigation and

Control. Springer, pp. 443–454.
OpenStreetMap, 2017. <http://openstreetmap.org>.
Otto, A., Agatz, N., Campbell, J., Golden, B., Pesch, E., 2018. Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: a

survey. Networks 72 (4), 411–458.
Peng, K., Du, J., Lu, F., Sun, Q., Dong, Y., Zhou, P., Hu, M., 2019. A hybrid genetic algorithm on routing and scheduling for vehicle-assisted multi-drone parcel delivery.

IEEE Access 7, 49191–49200.
Peterson, K., Dektas, M., 2017. UPS tests residential delivery via drone launched from atop package car, 2017. URL <https://www.pressroom.ups.com/pressroom/

ContentDetailsViewer.page?ConceptType=PressReleases&id=1487687844847-162>.
pgRouting, 2017. <http://pgrouting.org>.
Poikonen, S., 2018. Multi-visit drone routing problem. Working Paper, 2018. URL <http://www.stefan-poikonen.net/MVDRP_September_2018.pdf>.
Poikonen, S., Wang, X., Golden, B., 2017. The vehicle routing problem with drones: extended models and connections. Networks.
Poikonen, S., Golden, B., Wasil, E.A., 2019. A branch-and-bound approach to the traveling salesman problem with a drone. INFORMS J. Comput. 31 (2), 335–346.
Ponza, A., 2016. Optimization of drone-assisted parcel delivery. Master’s thesis, Università Degli Studi Di Padova, 2016.
Rabta, B., Wankmüller, C., Reiner, G., 2018. A drone fleet model for last-mile distribution in disaster relief operations. Int. J. Disaster Risk Reduct. 28, 107–112.
Rubin, B.F., 2017. Amazon Prime Air drone completes its first U.S. public delivery, 2017. URL <https://www.cnet.com/news/amazon-prime-air-first-drone-delivery-

us-public-sunscreen-mars/>.
Sacramento, D., Pisinger, D., Ropke, S., 2019. An adaptive large neighborhood search metaheuristic for the vehicle routing problem with drones. Transport. Res. Part

C: Emerg. Technol. 102, 289–315.
Mbiadou Saleu, R.G., Deroussi, L., Feillet, D., Grangeon, N., Quilliot, A., 2018. An iterative two-step heuristic for the parallel drone scheduling traveling salesman

problem. Networks 72 (4), 459–474.
San, K.T., Lee, E.Y., Chang, Y.S., 2016. The delivery assignment solution for swarms of UAVs dealing with multi-dimensional chromosome representation of genetic

algorithm. In: Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE Annual, IEEE, 2016, pp. 1–7.
Schermer, D., Moeini, M., Wendt, O., 2018. Algorithms for solving the vehicle routing problem with drones. In: Asian Conference on Intelligent Information and

Database Systems. Springer, pp. 352–361.
Schermer, D., Moeini, M., Wendt, O., 2019. A hybrid VNS/tabu search algorithm for solving the vehicle routing problem with drones and en route operations. Comput.

Oper. Res. 109, 134–158.
Schermer, D., Moeini, M., Wendt, O., 2019. A matheuristic for the vehicle routing problem with drones and its variants. Transport. Res. Part C: Emerg. Technol. 106,

166–204.
Scott, J.E., Scott, C.H., 2018. Models for drone delivery of medications and other healthcare items. Int. J. Healthcare Inform. Syst. Inform. (IJHISI) 13 (3), 20–34.
Shavarani, S.M., Nejad, M.G., Rismanchian, F., Izbirak, G., 2018. Application of hierarchical facility location problem for optimization of a drone delivery system: a

case study of Amazon Prime Air in the city of San Francisco. Int. J. Adv. Manuf. Technol. 95 (9–12), 3141–3153.
Song, B.D., Park, K., Kim, J., 2018. Persistent UAV delivery logistics: MILP formulation and efficient heuristic. Comput. Industr. Eng.
Tang, Z., van Hoeve, W.J., Shaw, P., 2019. A study on the traveling salesman problem with a drone. In: International Conference on Integration of Constraint

Programming, Artificial Intelligence, and Operations Research. Springer, pp. 557–564.
Tilley, A., 2016. UPS experiments with drone delivery in partnership with Zipline, 2016. URL <https://www.forbes.com/sites/aarontilley/2016/05/09/ups-

experiments-with-drone-delivery-in-partnership-with-zipline/#58f1c1d145a4>.
Toor, A., 2016. Drones will begin delivering blood and medicine in the U.S., 2016. URL <https://www.theverge.com/2016/8/2/12350274/zipline-drone-delivery-us-

launch-blood-medicine>.
Tu, P.A., Dat, N.T., Dung, P.Q., 2018. Traveling salesman problem with multiple drones. In: Proceedings of the Ninth International Symposium on Information and

Communication Technology, ACM, pp. 46–53.
Ulmer, M.W., Thomas, B.W., 2018. Same-day delivery with heterogeneous fleets of drones and vehicles. Networks 72 (4), 475–505.
Vanian, J., 2016. This drone startup just achieved a milestone in doorstep delivery, 2016. URL <http://fortune.com/2016/03/25/flirtey-drone-legal-delivery-

urban/>.
Venkatachalam, S., Sundar, K., Rathinam, S., 2017. Two-stage stochastic programming model for routing multiple drones with fuel constraints. arXiv preprint

arXiv:1711.04936, 2017. <https://arxiv.org/pdf/1711.04936.pdf>.
Wang, D., Hu, P., Du, J., Zhou, P., Deng, T., Hu, M., 2019a. Routing and scheduling for hybrid truck-drone collaborative parcel delivery with independent and truck-

C.C. Murray and R. Raj Transportation Research Part C 110 (2020) 368–398

397

https://techcrunch.com/2017/01/10/check-out-the-real-world-version-of-the-mercedes-benz-drone-delivery-van/
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0120
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0120
https://www.gurobi.com/documentation/8.1/examples/tsp_py.html
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0135
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0140
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0140
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0145
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0145
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0150
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0155
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0155
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0160
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0165
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0170
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0170
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0180
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0180
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0185
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0190
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0190
https://www.digitaltrends.com/cool-tech/watch-googles-new-project-wing-drone-deliver-a-package/
https://www.digitaltrends.com/cool-tech/watch-googles-new-project-wing-drone-deliver-a-package/
http://money.cnn.com/2017/05/31/technology/amazon-parachute-shipping-label/index.html
http://money.cnn.com/2017/05/31/technology/amazon-parachute-shipping-label/index.html
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0210
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0210
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0215
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0215
http://openstreetmap.org
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0225
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0225
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0230
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0230
https://www.pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=PressReleases&id=1487687844847-162
https://www.pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=PressReleases&id=1487687844847-162
http://pgrouting.org
http://www.stefan-poikonen.net/MVDRP_September_2018.pdf
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0250
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0255
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0265
https://www.cnet.com/news/amazon-prime-air-first-drone-delivery-us-public-sunscreen-mars/
https://www.cnet.com/news/amazon-prime-air-first-drone-delivery-us-public-sunscreen-mars/
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0275
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0275
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0280
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0280
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0290
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0290
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0295
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0295
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0300
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0300
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0305
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0310
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0310
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0315
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0320
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0320
https://www.forbes.com/sites/aarontilley/2016/05/09/ups-experiments-with-drone-delivery-in-partnership-with-zipline/#58f1c1d145a4
https://www.forbes.com/sites/aarontilley/2016/05/09/ups-experiments-with-drone-delivery-in-partnership-with-zipline/#58f1c1d145a4
https://www.theverge.com/2016/8/2/12350274/zipline-drone-delivery-us-launch-blood-medicine
https://www.theverge.com/2016/8/2/12350274/zipline-drone-delivery-us-launch-blood-medicine
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0335
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0335
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0340
http://fortune.com/2016/03/25/flirtey-drone-legal-delivery-urban/
http://fortune.com/2016/03/25/flirtey-drone-legal-delivery-urban/
https://arxiv.org/pdf/1711.04936.pdf
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0355


carried drones. IEEE Internet Things J.
Wang, K., Yuan, B., Zhao, M., Lu, Y., 2019b. Cooperative route planning for the drone and truck in delivery services: a bi-objective optimisation approach. J. Oper. Res.

Soc., pp 1–18, 2019b.
Wang, X., Poikonen, S., Golden, B., 2016. The vehicle routing problem with drones: several worst-case results. Optim. Lett. 4 (11), 679–697.
Wang, Z., Sheu, J.B., 2019. Vehicle routing problem with drones. Transport. Res. Part B: Method. 122, 350–364.
Wells, G., Stevens, L., 2016. Amazon conducts first commercial drone delivery, 2016. URL <https://www.wsj.com/articles/amazon-conducts-first-commercial-drone-

delivery-1481725956>.
Wikarek, J., Sitek, P., Zawarczyński, Ł., 2019. An integer programming model for the capacitated vehicle routing problem with drones. In: International Conference on

Computational Collective Intelligence. Springer, pp. 511–520.
Yoon, J.J., 2018. The traveling salesman problem with multiple drones: An optimization model for last-mile delivery. Master’s thesis. Institute of Technology,

Massachusetts.
Zhong, L., Garlichs, K., Yamada, S., Takano, K., Ji, Y., 2018. Mission planning for UAV-based opportunistic disaster recovery networks. In: Consumer Communications

& Networking Conference (CCNC), 2018 15th IEEE Annual. IEEE, pp. 1–6.

C.C. Murray and R. Raj Transportation Research Part C 110 (2020) 368–398

398

http://refhub.elsevier.com/S0968-090X(19)30250-5/h0355
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0365
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0370
https://www.wsj.com/articles/amazon-conducts-first-commercial-drone-delivery-1481725956
https://www.wsj.com/articles/amazon-conducts-first-commercial-drone-delivery-1481725956
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0380
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0380
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0385
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0385
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0390
http://refhub.elsevier.com/S0968-090X(19)30250-5/h0390

	The multiple flying sidekicks traveling salesman problem: Parcel delivery with multiple drones
	Introduction
	Related literature
	Problem definition and mathematical programming formulation
	UAV endurance
	Objective and decision variables
	Core model components from the FSTSP
	UAV timing constraints
	Truck timing constraints
	Sequencing of retrievals, launches, and truck service
	Variant 1: truck not required at depot
	Variant 2: automated launch and recovery systems

	A three-phased heuristic solution approach
	Phase I – initial customer assignments
	Phase II – Create UAV sorties
	Phase III – timing
	Modifying the heuristic for variants
	Variant 1 – Truck not required at depot
	Variant 2 – automated launch and recovery systems


	Numerical analysis
	Test problem development
	UAV endurance and range specification
	Endurance in the non-linear model
	Endurance in the linear model
	Range specification

	Analysis of optimal solutions
	Comparison of endurance models
	Heuristic performance
	Analysis of queue scheduling conflicts

	Conclusions and future research
	Acknowledgements
	Supplementary material
	References




