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CHAPTER 1 – INTRODUCTION 

Nowadays design and manufacturing of small Unmanned Aerial Vehicles (UAV) is the 

most dynamically developing branch of high technologies (Beard and McLain, 2012), (Austin, 

2010). One of the key problems in this area is the creation of the airborne integrated navigation 

and flight control systems (Beard and McLain, 2012), (Siouris, 1993, 2007), (Grewal, Weill and 

Andrews, 2001). The basic requirements to these systems are contradictive: from one hand they 

must possess sufficient accuracy and reliability in order to perform complicated flight missions, 

and from the other hand they must be acceptably cheap and simple for conforming to the same 

properties of small UAV.  

Taking in account the last remark and considering the Strapdown Inertial Navigation 

Systems (SINS), which are the main navigation core for small UAV, it is necessary to note that 

they use sufficiently cheap Micro-Electro-Mechanical Sensors (MEMS) as the basic components 

(accelerometers and rate gyros) of the Inertial Measurements Unit (IMU). However, these 

sensors possess low accuracy and need to be corrected with other sensors: GPS, magnetometers, 

and barometric altimeters, as well as with usage of corresponding algorithmic means for their 

data fusion (Beard and McLain, 2012), (Austin, 2010), (Siouris, 1993, 2007), (Grewal, Weill and 

Andrews, 2001). It is necessary also to note that the SINS software consists of sophisticated 

algorithms of rotational and translational mechanizations along with algorithms of the SINS 

integration with other aforementioned sensors (Siouris, 1993, 2007), (Grewal, Weill and 

Andrews, 2001).  Some very precise SINS algorithms cannot be implemented in cheap onboard 

microprocessors due to their insufficient computational power. This circumstance creates very 

important problem, consisting in the development of the SINS software, which will possess 

sufficient accuracy of the navigation problem solution, and simultaneously sufficient low cost 

and simplicity for implementation in the small UAV hardware. The only way of finding 

acceptable compromise between these two mutually exclusive requirements is taking into 

account the basic properties of small UAV flight missions, notably: small flight distances, small 

flight times, small flight speeds etc. These circumstances create practical background for 

simplification of the SINS algorithms, simultaneously preserving their accuracy at the acceptable 

level, which is reasonable for these flight missions.     

It should be noted that in the process of the SINS correction some sensors failures of the 

navigation system might be detected. In this connection very important problem of the faulty 

element detection arises.   
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It is also appreciable to note, that MEMS sensors are not always able to provide required 

range of the UAV angular rates measurements. This is the reason of the intensive development 

of the gyro-free accelerometer based SINS (Hajiyev and Guler, 2017), and some aspects of this 

problem are considered in this monograph.  

Eventually it must be noted, that practical implementation of mentioned above algorithms 

is tightly connected with laboratory, ground and flight experiments. These experiments require 

certain test and telecommunication equipment, data processing software, and methods of 

experiment performing. These aspects are also the object of research work undertaken by 

authors.    

Beyond the general characteristic of problems, which are discussed in this monograph, it is 

expedient to describe briefly its structure and contents of each its chapter.   

In the 2-nd chapter the SINS software structure is considered, and the basic relations of the 

analytical mechanics, which are the mathematical background of this software, are given.   

The definitive peculiarity of the rotational mechanization algorithms, which are described 

in this chapter, is the usage of procedures based on the analytical expressions for approximations 

of quaternions corresponding to the rigid body small turn. Several methods of these 

approximations allow variation of the accuracy of kinematic equations integrating, thus making a 

trade-off between complexity and accuracy of algorithms. The usage of the quadratic spline 

approximation for quasi-coordinates essentially simplifies the procedures of rotational and 

translational mechanizations and preserves the accuracy of integration.    

The algorithms of rotational and translational mechanization for gyro-free accelerometer-

based SINS are also considered in this chapter. Nowadays creation of such systems attracts 

considerable attention of researchers (Hajiyev and Guler, 2017). These algorithms are especially 

effective for UAV spinning respectively longitudinal axis with large angular rate. It is shown, 

that increasing of number of the redundant accelerometers above minimal value leads to essential 

increasing of the accuracy of the rotational and translational mechanization’s algorithms of gyro-

free SINS. 

 The 3-rd chapter is devoted to the algorithms of SINS correction using external with 

respect to SINS sensors: GPS, magnetometer and barometric altimeter. Several variations of 

Kalman filtering algorithms are considered and special attention is paid for usage of the 

generalized Cholesky factors for improvement of the Kalman filtering procedure convergence.    

Algorithms of the GPS, magnetometer, and altimeter data fusion are also proposed and 

analyzed along with the gyro’s bias compensation. The efficiency of the theoretical results 

achieved in this chapter is proved by mathematical modeling.  
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 In the 4-th chapter the methods of SINS initial alignment and calibration of IMU sensors 

are described. Initial alignment procedures are very important for increasing the accuracy of 

integration procedures, which are key parts of the rotational and translational mechanization.  As 

far as the accuracy of the MEMS sensors is reduced, and in particular the MEMS gyros can’t 

measure the Earth rotation rate, the simplest methods of initial alignment procedures based on 

the accelerometers and magnetometer readouts are considered. Numerical examples prove the 

efficiency of these methods. The calibration of the MEMS sensors used in the SINS has also 

significant importance for evaluation of the parameters of the IMU mathematical model, which 

is used in the SINS algorithms. In this chapter the simplest means for sensors calibration is 

proposed, when simplicity low cost of the motion table is balanced with algorithms of the 

experimental data processing. Results of experiments with real accelerometers and rate gyros are 

given. 

 The 5-th chapter is devoted to the solution of fault detection problem in system with 

redundant sensors. The structure of the fault detection system is based on the principle of 

analytical redundancy, proposed in (Desai, Deckert and Deyst, 1979), Deyst et.al, 1981), and 

some simple algorithms created on this principle. This software is augmented with several 

algorithms of various complexities. The fault detection procedure is based on monitoring of 

SINS outputs, including all algorithms of rotational and translational mechanization and errors 

correction. If some statistics obtained by monitoring algorithm exceeds certain prescribed value, 

then it indicates appearance of fault of some sensor. In this case the outputs of the redundant 

sensors have to be processed by one of three algorithms, which can identify faulty sensor. The 

choice from these 3 algorithms might be done by designer taking into account his/her 

preferences or some other considerations. Note, that in this chapter we consider only the fault 

detection problem. The reconfiguration problem is not represented here. 

 Eventually the 6-th chapter is devoted to the laboratory, ground and flight testing of 

integrated SINS for small UAV. Laboratory testing is based on the simplest mechanical rotating 

motion table and more sophisticated radio engineering methods of data acquisition and 

processing. Ground testing is based on the estimation of the accuracy of navigation problem 

solution in condition of walking with SINS equipment and its moving by automobile. Flight 

testing was made using small UAV controlled manually as well as automatically. Results of 

flight experiments were compared with the same results obtained by some COTS-available 

SINS. This comparison along with results of other testing proves ability of proposed algorithms 

to be applied for the small UAV navigation problem solution. 
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CHAPTER 2 – ALGORITHMS OF THE STRAP-DOWN INERTIAL 

NAVIGATION SYSTEMS FUNCTIONING 

2.1. Structure of the Strap-down Inertial Navigation Systems Operation 

Algorithms 

The basic feature of the strap-down inertial navigation system (SINS) lies in a fact, that the 

current values of the position, velocity and attitude defined by this system can be obtained by 

integrating the readouts of the UAV acceleration and angular rate sensors (accelerometers and 

rate gyros (RG)), which are rigidly mounted onboard (Titterton and Weston, 2004; Siouris, 1993, 

2007; Grewall, Weill and Andrews, 2001). So the raw information is acquired in the UAV body 

frame but the final solution of the navigation problem must be obtained in some navigation 

frame. This feature determines the structure of the SINS operation algorithms, because it requires 

the attitude determination and the mapping of the current values of the accelerations readouts 

from the body frame to the navigation frame.  

Therefore, depends on the choice of navigation frame, the solution of the navigation 

problem (implementation of navigation algorithms) will be different. Navigation frame is the 

system that is used for numerical integration of differential navigation equations (so called 

mechanization algorithms). It could be, for example, Earth Centered Inertial (ECI) Frame, Earth 

Centred Earth Fixed (ECEF) Frame or some Local-level topocentric frame, where the axes are 

directed North East Down (NED) or East North Up (ENU) (Lurie, 2002; Siouris, 1993, 2007; 

Titterton and Weston, 2004). The choice of frame depends on many considerations of system 

designers. For example, for a long-range aircraft the Earth Centered Earth Fixed (ECEF) 

coordinate system (Titterton and Weston, 2004) is the most often used for navigation in Earth's 

atmosphere. While the local-level topocentric frame is used as navigation frame in many 

practical applications of UAV, it is convenient to use such frame for distribution of vertical and 

horizontal velocity components. NED frame coincides with the axes of body frame 

(roll/pitch/yaw) when the vehicle is leveled in horizontal plane and is directed to the north. In 

body frame, direction of axis Х (roll axis) usually coincides with that of longitudinal axis of the 

UAV, axis Y (pitch axis) with that of lateral one, and axis Z (yaw axis) is directed downwards. 

Such choice of axes is also called airplane axes (Lurie, 2002; Siouris, 1993, 2007). As is seen 

from Fig. 2.1, counterclockwise angles are positive.  



9 

 

 

Figure 2.1 – Body and navigation frames 

 

As far as this book is devoted to the navigation algorithms for small UAV, which are 

flying at much shorter distances, the local topocentric system is used as navigation frame taking 

into account essential simplification of the navigation problem solution in this case. We can 

conventionally distinguish the following main stages in the algorithm (Petovello 2003; Ilnytska 

2012): 

 Initial data input: attitude, position and velocity as initial conditions for solving 

kinematic differential equations; 

 Error estimates: correction of the raw measurements, obtained by inertial sensors,  

with some other external measurements;  

 Rotational Mechanization: integrating rotational kinematic equations to update 

current attitude values; 

 Mapping  the accelerations from BF  into NF on the basis of current attitude; 

 Translational Mechanization: integrating translational kinematic equations to 

calculate current position and velocity values.  

Presenting these stages of solution of navigation equations as respective units, we obtain 

general SINS computation flow chart (Fig. 2.2), where rectangles denote main calculation units 



10 

 

and rounded rectangles denote input/output data. Note, that in practice the rate gyros (RG) and 

accelerometers are united in the single inertial measurement unit (IMU). 

 
Figure 2.2 – Flow chart of SINS calculations 

 

Correction of raw measurements of sensors is not represented by a separate unit in 

Fig. 2.2. Nevertheless, it is carried out either inside inertial measurement units or in onboard 

computers. Signals at the outputs of accelerometers and RG’s contain, along with useful signals, 

errors of scale factors, misalignment of sensitivity axes, zero biases, and noise components of 

errors. 

The manufacturers of inertial sensors compensate high frequency noise components of 

measurement errors by including internal digital filters in the IMU. To correct other errors listed 

above, it is necessary either to know their numerical values, which can also be provided by the 

manufacturer in technical specifications, or to obtain them by calibration, which we will consider 

in more detail in Sec. 4. 

Now let us analyze the algorithms for, which are included in the aforementioned basic 

stages of obtaining navigation solution of SINS. The mathematical background of these 

algorithms consists of some basic relations, which we consider below.  

2.2. Basic Relations 

Let us present the well-known relations that pertain to determining angular orientation of a 

rigid body (Lurie, 2002), (Onishchenko, 1983), (Larin, 2001), (Wittenburg, 1977). We will 
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describe various techniques of the attitude determination. The relations presented in this section 

are the theoretical basis for all the SINS operation algorithms described below. 

The Euler angles  ,,  (precession, nutation, and intrinsic rotation) define body’s 

orientation, i.e., its transformation from the initial position defined by Oxyz axes of the fixed 

frame to the final position defined by zyxO  axes of moving frame (Fig. 2.3). This 

transformation can also be carried out by means of one turn by angle   with respect to the axis 

whose direction is specified by angles   , , . Therefore, four Rodriguez-Hamilton parameters 

(Lurie, 2002)    0 1 2 3, , ,  (Euler's parameters (Wittenburg, 1977)) can characterize body’s 

orientation:    

2
sincos1


  ,  

2
sincos2


  ,  

2
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2
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
             (2.1) 

 
Fig. 2.3. Fixed and moving frames 

Obviously:   12
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2

2
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2

0   . The Rodrigues-Hamilton parameters can be expressed 

in terms of Euler’s angles as follows (Lurie, 2002):  

2
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
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Other interpretation of Euler's angles that is widely used on practice are so called "aircraft 

angles" (roll, pitch and heading) (Lurie, 2002). So, afterwards in practical examples the "aircraft" 

Euler angles are meant.   

In terms of such Euler angles (roll, pitch and heading) the quaternion elements are given in 

(Siouris, 2007), relations (2.74a) – (2.74d) as the following:  
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   (2.3) 

The presented above relations (2.3) define uniquely the quaternion components for a 

chosen set of roll, pitch and heading angles (Euler angles). However, those relations are not very 

convenient for initialization due to potential inaccuracies, resulting from numerous 

multiplications and trigonometric functions evaluations. 

We can describe orientation of a rigid body with respect to fixed frame Oxyz by direction 

cosine matrix (DCM) A of transformation of coordinates (the matrix of cosines of angles 

between axes of the fixed and moving frames), i.e., if m is some vector in the fixed frame and 

components of vector k are projections of this vector onto axes of the moving frame zyxO  , 

then 

Amk  .                                                         (2.4) 

This matrix has the following representation in terms of the Rodriguez-Hamilton 

parameters  0 , 1,  2 ,  3  (Siouris, 1993, 2007), (Lurie, 2002):  
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A               (2.5) 

Note that if the trihedrons Oxyz  and zyxO   are close (the Euler angles are small), we can 

use approximate expression (for example (26) in (Wittenburg, 1977)) for matrix A
~

:  


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












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



1

1

1
~

12
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23







A  ,                                                 (2.6) 

where 321 ,,  are small angles of rotation of trihedron Oxyz about axes zyx ,, , 

respectively.  

Inverse relations also take place. For example, if  ijaA  , 1,3=ij   

and 01 332211  aaa , then (see, for example, (Onishchenko, 1983), (Siouris, 1993, 2007) 

(Branets and Shmyglevsky, 1973), (Farrell, 2008): 
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3322110 1

2

1
aaa  ,            

332211

3223
1

12 aaa

aa




 ,              

                                                  

(2.7)
332211

1331
2

12 aaa

aa




 ,            

332211

2112
3

12 aaa

aa




 .    

It should be noted that there are three more approaches to determine the elements of 

quaternion from rotation matrix, which are detailed in (Farrell, 2008), (Shuster, 1993).  

The projections 321 ,,   of body’s angular velocity vector on BF axes through the 

Euler’s angles from a classic mechanics could be presented as in (Lurie, 2002), equations (2.9.3):    



















cos

sincossin

coscossin

3

2

1

       (2.8) 

The projections 321 ,,   of body’s angular velocity vector on BF axes through the 

Euler’s angles (roll, pitch, heading) are presented as in (Siouris, 2007), equations (2.20):  







sincoscos

cossincos

sin

3

2

1













        (2.9) 

Given the rigid body position at the initial instant of time and measuring the projections of 

body’s angular velocity vector  T321 ,, ω  on BF axes, we can find the vector 

 T3210 ,,, λ  (quaternion) (Kantor and Solodovnikov, 1973) of the Rodriguez-Hamilton 

parameters as a result of integration of the kinematic equations:   

 
2

1 ,                                                           (2.10) 
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1
2

  T

.
 

Hereinafter,   denotes spectral matrix norm (Wittenburg, 1977) and the superscript Т 

stands for transposition.   

The conversion from the normalized quaternion to Euler angles (roll, pitch, and heading) 

can be written as follows (Titterton and Weston, 2004), (Siouris, 2007), (Grewal, Weill and 

Andrews, 2001), (Coopmans, Chao and Chen, 2009): 
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    (2.11) 

The body (UAV) attitude with respect to the local-level topocentric NED frame can be 

described by means of rotation around axes roll (X), pitch (Y), and yaw (Z) of the body, 

beginning with the instant of time when these axes coincide with NED axes. As a result, we 

obtain the DCM n

b
C , which can be used to find the Euler angles (roll, pitch, and yaw) as well as 

the corresponding elements of the quaternion (Titterton and Weston, 2004), (Siouris, 2007), 

(Grewal, Weill and Andrews, 2001):  
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(2.12) 

By examining matrix n

b
C , the Euler angles (roll, pitch, heading) may be derived from it 

(Titterton and Weston, 2004), (Siouris, 2007):   
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 (2.13) 

where 
ij

C , 3),(1  ji  – are the ),( ji -th elements of matrix 
n

bC .  

Concluding this part of item regarding rotational motion, it is necessary to note, that here 

we presented the basic relations for the classic Euler angles  ,, (precession, nutation, and 

intrinsic rotation), which are used mostly in the analytical mechanics (Lurie, 2002). The same 

relations are presented for other interpretation of Euler angles, i.e. ones describing aircraft 

dynamics  ,,  (roll, pitch, and heading), which are more relevant in some specific areas of the 

SINS and UAV applications (Beard and McLain, 2012), (Lurie, 2002), (Onishchenko, 1983), 
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(Coopmans, Chao and Chen, 2009), (Farrell, 2008), (Siouris, 1993, 2007). Actually, there is a 

difference in the Rodrigues-Hamilton parameters definition in terms of Euler angles. Here the 

relations (2.2) work for classic Euler angles, and relations (2.3) for the roll, pitch and heading 

(Euler) angles. For the mapping of body angular velocity to the Euler angles there are relations 

(2.8) for the first case and (2.9) for the second. All other relations for quaternions usage and 

processing, which are presented above and will be presented below, remain the same for both 

cases. 

To describe translational motion (i.e. change of object position), we take Eqs. (30) from 

(Bronkhorst, 1978), as it was done in (Larin, 2001). It reflects the theorem about addition of 

accelerations in case of complex point’s motion (the Coriolis theorem),   

 ,,~

,2

Rgggaa

Vga
V





m

m
dt

d

                                (2.14) 

where a  - specific force, m
a  - accelerometers readouts, transformed to navigation frame, g  is 

the gravity  acceleration, g  is the result of subtraction of centripetal Earth’s acceleration from 

gravity acceleration, V  - ground speed,    is angular velocity of the Earth rotation, and R is 

position vector of a point in geocentric coordinate system.   

2.3. Algorithm of Inertial Navigation Systems Including Rate Gyros and 

Accelerometers 

2.3.1.  Rotational Mechanization Algorithms 

Thus, the described INS operation scheme involves integration of a system of differential 

equations. From the point of view of the realization of such INS, it is expedient to consider 

“sampling” of this system, i.e., to consider the case where sensors are readout not continuously 

but in regular time intervals t , i.e., with frequency tf  /1 . Respectively, the required 

navigation parameters (cosine matrix  A , velocity v , and coordinates r ) are calculated in 

time interval t . Since different "sampling" procedures can be used to find navigation 

parameters, we will dwell on each of them. We will begin with estimating quaternions at the 

discrete time instants tttt iii  1, ; ki ,3,2,1  (Larin, 2001).    

Let us suppose that quasi-coordinates (components of vector 





t
i

t

i
t

i dt



 ) are known on 

a small time interval t . We will use them to express  it , the solution of Eq. (2.10) on time 
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interval t  under the initial condition  T0001 (or any other quaternion obtained as a result 

of initial alignment), i.e., calculate the quaternion corresponding to small rotational displacement 

of the rigid body in time t , and then determine the body’s orientation by sequential 

multiplication of the "elementary" quaternions  it    

)()()( 1 iii ttt   ,                                             (2.15) 

 Tiiiii ttttt )()()()()( 3210   . 

In the matrix form, this procedure looks as follows:
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 .                     (2.16) 

In (Larin, 2001) quaternions  it  are expressed in terms of the vector of quasi-

coordinates i , which ensure one quality of approximation or another depending on the 

expressions complexity. For example (Branets, and Shmyglevsky, 1973), 
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                 (2.17) 

The first two quaternions 1  and 2  (corresponding to Euler's method and modified 

Euler's method) approximate the displacement of rigid body on time interval t  as rotation 

about the axis collinear to vector i . The third-order approximation  3  takes into account 

the non-commutativity  of rotations.  

Hereinafter, we will use the following approximation of quaternion  it  (relation (2.6) in 

(Larin, 2001)):   

  .
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1
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1
1

1
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
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
                                      (2.18) 
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Likewise to (Larin, 2001), in order to calculate i  we can use quadratic spline 

approximation of the angular velocity vector  t . For example, if the values      iii ttt  ,, 12   

are known, then  

      .85
12

21  


 iiii ttt
t

                                         (2.19) 

Thus, for given RGs readouts we can use relations (2.15)–(2.19) to update the quaternion 

for rotational motion. Then we may find the direction cosine matrix (DCM) according to (2.5), 

and calculate the roll, pitch and heading values from the updated quaternion directly using 

(2.11), or from obtained DCM using (2.13) relation.  

2.3.2. Translational Mechanization Algorithms 

Obtained at the previous step parameters of orientation are used to transform accelerometer 

readouts by means of DCM. It should be noted that it is possible to do this operation using 

quaternion parameters directly, as it was done in (Kharchenko et.al, 2013). Then the value of the 

specific force a~  is calculated according to (2.14) relation.   

The next step is the procedure of integration of Eq. (2.14), which will allow finding 

object’s current coordinates and velocity.  

As well as in (Bronkhorst, 1978), we consider the term V2  (Coriolis acceleration) as a 

small correction and do not take it into account in the example below. In this regard, if it is 

necessary to take the Coriolis acceleration into account, like in (Larin, 2001), when calculating it 

at the i  th step, it is possible to use the value of velocity V corresponding to the instant of time 

1it . This assumption allows replacing the procedure of integration of Eq. (2.14) with calculation 

of quadratures.    

Thus, based on the readouts of accelerometers and DCM we can find a~ , the values of the 

right-hand side of Eq. (2.14). Given the values of a~  at moments of times iii ttt ,, 12   
, we can write 

the relations similar to (2.19) that define )(),( ii trtv , i.e.,  
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 
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Summarizing, we note that relations (2.5), (2.15)–(2.19), (2.11), (2.13), (2.14), (2.20) – 

(2.21) determine the INS operation algorithm, i.e., allow using the results of RGs and 

accelerometers readings at instants of time it  to estimate navigation parameters at time it . This, in 

turn, allows using traditional GPS and INS integration algorithms to correct the results of 

operation of the INS under study. 

 

2.3.3. Estimating the Integration Accuracy of Kinematic Equations 

 

Following (Avraamenko and Larin, 1983), (Larin and Naumenko, 1983), let us consider in 

more detail the procedure of numerical integration of Eq. (2.10) (constructing the quaternion   

that appears in formula (2.15)). In the problem about motion of a rigid body relative to a fixed 

point, the procedure of numerical integration of Eq. (2.10) is often based on the Picard method, 

(see, for example, (Branets and Shmyglevsky, 1973), Sec. 4.1). Namely, as we have already 

mentioned, having approximated the solution of Eq. (2.10) with some accuracy on a small time 

interval t , we find the rigid body position by successive multiplication of such elementary 

quaternions. In case of such technique of numerical integration of kinematic equations, 

quaternions are usually considered as four-dimensional vectors, which predetermines 

approximation accuracy criteria. However, in the problem under consideration this vector 

contains information about axis direction and value of rotation angle; hence, when 

approximating an elementary quaternion, it is necessary to minimize losses of such information. 

To consider these problems in more detail, we will use an elementary problem example of 

integration of Eq. (2.10) in case of a body rotating about a fixed axis (Larin and Naumenko, 

1983). This example is of interest because as it was mentioned in (Branets and Shmyglevsky, 

1973), (Chelnokov, 1977), the hypothesis of such motion is often used in constructing an 

elementary quaternion (2.17).   

Example 2.1 

The purpose of this example consists of obtaining analytical expressions for estimation of 

accuracy of the aforementioned methods of rotational mechanization in a case of some given 

specific rigid body rotation. These expressions will be used for further numerical examples. 

Thus, let the body rotate about axis х, i.e., 01   ,  and 032  . Then in time t the body 

will turn about axis х by angle  dt0  (the integration time is from 0 to t ). The solution of 



19 

 

Eq. (2.10) (the quaternion corresponding to body rotation in time t ) for the initial condition 

 T0001)0(   has the form    

    T00sincos 2
1

2
1                                                   (2.22) 

The value   is usually supposed to be small and  2
1sin and 2

1cos  that appear in 

quaternion (2.22) are approximated by a certain number of terms of Taylor series, i.e., not 

quaternion (2.22) but quaternions (2.17) are taken as elementary ones,  

 T001 2
11  

,   T001 2
12

8
12   ,                               (2.23)  

and are called first-order, second-order, etc. approximation (Branets and Shmyglevsky, 

1973). It is natural to consider that along with Taylor approximation, other approximations can 

be used for this purpose, in particular, it is possible to use the Pade approximation of function 









2
exp i . For example, the first-order Pade approximation leads to the expression  

 Tp 001
1

1
2

12
16

1
2

16
1

1 


 


                                        (2.24) 

   When we call (2.23) for small   an approximate value of (2.22) of first, second, etc. 

order, we mean )(1  O , )( 22  O  , i.e., approximation accuracy of vector (2.22), 

(2.23) or (2.24) in the sense of Euclidean norm. Since in the problem under study vector (2.22) is 

a quaternion, it is necessary to clarify how vectors (2.23) after an appropriate normalization (in 

case of Pade approximation, the norm of 
1

p  is equal to one) approximate (2.22) as a quaternion, 

i.e., to find errors in axis orientation and rotation angle. Note that in this case all the 

approximating quaternions do not contain errors in the orientation of rotation axis (it is clear 

from their structure that the rotation is about the axis). Let us find the angles 21,  and p  of 

rotation about axis х, corresponding to 
21,  and 

1

p  (according to (2.22), the true value is  ).  

It is obvious that in case of rotation about axis х ( 032   ), we can find the rotation 

angle   as  

 01 /2  arctg  ,                                           (2.25) 

hence 

  ...2 3
2

1
2

1
1   arctg  
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    ...122 3
24

12
8

1
2   arctg  

    ...122 3
48

12
16

1   arctgp  

These formulas show that, generally speaking, increase in the approximation accuracy of 

quaternion (2.22) considered as a vector does not respectively increase the approximation 

accuracy of the rotation angle (2 and  p differ from   by the value of the same order as 

1 ). Thus, in this example, when constructing an elementary quaternion, it is necessary to 

minimize the residue    (  is defined by expression (2.25)) instead of increasing the 

approximation accuracy of vector  . In line with these reasons, we can use vector 

 Tm 001 2
12

12
1    as an approximation of elementary quaternion. Its structure does 

not differ from 2 , but it better approximates the rotation angle  

    ...122 5
120

12
12

1   arctgm     

To illustrate the efficiency of different approximations of quaternion (2.22), we will use 

the following numerical example. 

Example 2.2 

A body rotating with constant angular velocity about axis x makes a complete revolution in 

time Т, i.e.,  ( )0 1 0 0 0
T

and    ( ) cos sinT
T

 0 0  
T

1 0 0 0 . Let 

interval Т be divided into n equal time intervals, i.e. 
  0 2 n

. In this example, procedure 

(2.16) of the multiplication of elementary quaternions has the form   
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
 ,                               (2.26) 

since as  2 3 0( ) ( )i i        (i=1,2,...,n). 

In (2.26), parameter takes the following values: q=0,
8

1 , 
16

1  and 1
12

 in a case of the 

quaternion approximation (2.22) by vectors
121 ,, p  and m respectively. We will estimate the 

approximation accuracy by the formula  )(10)()( 0

2

1  nnn   (for precise integration 

n ( )  0 ).  Table 2.1 shows the results of numerical integration. Note that    m O( ) , 

i.e., vector m approximates vector  worse than
2

 does. However, as follows from Table 2.1, 
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angle  m approximates angle  much better than 2 does. Thus, if we drop the normalization 

requirement ( )t i 1 at each integration step (for example, only carry out normalization at the 

end of the integration process), we can increase the approximation accuracy or simplify the 

expression for  . In this regard, the following modification of quaternion 
2

 was proposed in 

(Larin and Naumenko, 1983):   




















i

i
m
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
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21

1211
2

2

.

 

In (Larin and Naumenko, 1982) it was proposed the following approximation for 

quaternion 
3

: 

 

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
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
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1
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24121
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i
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


.

                                         (2.27) 

There are general relations that allow estimating the integration accuracy of kinematic 

equations (2.6) (see, for example, (Bodanskiy and Furman, 1970)). However, these relations are 

rather cumbersome. For the case of conical motion, it became possible in (Avraamenko and 

Larin, 1983)  to obtain simple formulas to estimate average drift rate (the velocity of 

accumulation of integration error) when one integration algorithm or another is used. Moreover, 

the examples considered in (Avraamenko and Larin, 1983) give an idea about the accuracy of 

integration of Eq. (2.6) in case of using different algorithms to construct  .  

Table 2.1. 

   n 
       n ( )1

         n ( )2
        n p( )1        n m( )  

5 35,0 -18,1 9,79 0,986 

6 25,7 -13,0 6,91 0,491 

7 19,1 -9,92 5,12 0,270 

8 14,9 -7,72 3,95 0,161 

9 12,0 -6,14 3,13 0,102 

10 9,79 -5,01 2,55 0,0664 

11 8,16 -4,17 2,11 0,0455 
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12 6,91 -3,51 1,78 0,0323 

 

Example 2.3 

A body undergoes precession motion with parameters t25.12/   , t75.3 , 

3/4tg , i.e.,
 

'
ω 3cos(1.25t); 3sin(1.25t);1  The integration time is 6.1T , i.e., 

   0 T . For the frame that should be turned according to quaternion  t , we will take the 

system coinciding with moving frame at the initial instant of time, i.e.,   T
0,0,0,10  . 

Table 2.2 shows the results of integration demonstrating normalized values of quaternion 

 T   when elementary quaternions  50/,,, 3221 Tm   are used (Larin and 

Naumenko, 1982).   

Table 2.2 

     

     

     

     

     

 

As it is seen from Table 2.2, the vectors of orientation errors (as the coordinates of these 

vectors in the moving frame whose rotation at instant of time Tt   is defined by Euler’s angles 

3/4tan,0,
2

 


  , we can take      TTT 321 2,2,2   are almost collinear to axis Z  of 

the fixed coordinate system XYZ  and moreover are directed in opposite directions. Thus, if we 

consider the procedure of integration of Eq. (1.1) with "elementary" quaternion 

, (2.28) 

which coincides with 2  for 
8

1q  and with 
2

m  for 
12

1q , we may expect that for the 

appropriate value of parameter q  between 
8

1 and 
12

1 , integration error will substantially 

decrease. The numerical optimization procedure (  3221 ,,,min  m ) yields the optimal 
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value 0939.0q and, respectively  
T

T 5135 106.4,109,102.6,1   . Comparing this 

result with the last column in Table 2.2, we conclude that for such value of q  and for Tt   the 

errors of the algorithm under study are commensurable with errors of the algorithm that takes 

into account the non-commutativity of rotations ( 3 ). Let us explain this effect. The difference 

of displacements of the rigid body in time t , defined by the quaternions 
2

m  and 
3

m
 
(the 

approximation error), is characterized by the vector of small rotation  *

1

*

12
1

 iii    

since  

, 

The task is to analyze the process of summation of these vectors. To this end, we can 

accept the following approximation:  dttii ω * . Hence, when subscript i  varies, vector 

i (as well as vector  itω ) will rotate about axis Z of the fixed coordinate system with angular 

velocity    (the term "rotate" implies that as subscript i  increases by one, the vector i  turns 

about axis Z  by angle t ). Thus, it is convenient to investigate the process of summation of 

vectors i  (the process of accumulation of integration errors) by decomposing vector i  into 

two orthogonal components, one lying in plane XY  of fixed coordinate system, and second 

being directed along axis Z . The sums with respect  i  of each of the marked component behave 

differently. For example, absolute value of the vector sum of the component errors i  lying in 

plane XY  is a periodic function of  i   whose mean value over the time interval is zero. 

Projections of vector i   onto axis Z  will be added, i.e., will be the main cause of systematic 

drift. This conclusion agrees well with the note made in the analysis of the results in the example 

of numerical integration that error vectors, when quaternions 2 and 
2

m  are used, are directed 

along axis Z . Thereupon, the above possibility of "adjusting" parameter q  in quaternion 
2

q  can 

be explained by the effect of compensation of the projection of error (vector of small rotation) 

onto axis Z . Indeed, with accuracy within third-order small values we have: 

, .    (2.29) 
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Comparing this expression for 
2

q  with 
2

m  (we can disregard factor   in 

the last expression for 
2

q ; its effect is eliminated by the subsequent normalization (Larin and 

Naumenko, 1982)). We conclude that when using quaternion 
2

q , we can obtain average drift 

corresponding to the procedure of integration with quaternion 3  if the appropriate choice of 

coefficient   ensures the equality of the last components of these quaternions. We can obtain 

similar relation for finding coefficients   or q  from the condition that the last component of 

quaternion  (projection of the error onto axis Z ) is zero. After transformations, 

this condition becomes , or: 

                     (2.30) 

where  is projection of vector  onto axis Z . If not Euler’s angles are 

specified but projections of the vector of angular velocity onto axes of moving coordinate system 

(for example, )), then taking into account that 

  in this case as well, we can 

rearrange relation (2.30) as , i.e., the optimal value of q  can 

be expressed in terms of motion parameters as follows: 

    

                                             (2.31) 

For the initial data of the considered numerical example ( ), the 

value of  
*q  calculated by formula (2.31) turns out to be equal to , which coincides 

well with the above value of q obtained by means of numerical optimization.  

Similar reasoning allows us to obtain the approximate formula for the drift rate (the 

velocity of accumulation of integration error) when elementary quaternion 
2

q  is used for the 

values of q  that are quite different from 
*q  (formula (2.31)). Since for 

*qq   algorithm (2.28) 

ensures much higher accuracy than for other values of  q , when deriving the approximate relation 

we will consider the error for 
*qq   equal to zero. Moreover, like above, we assume that 

average drift is defined by the projection of small rotation onto axis Z , which characterizes 

integration error. According to (2.29), this error is defined by the projection of the vector of 

small rotation onto the same axis: 
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Thus, in the first approximation, we can assume relative integration error to be equal to 

. Finally, taking into account the above assumptions, we can find average drift 

rate U  for algorithm (2.28) as follows:  

     (2.32) 

where f  is the sampling frequency ( f
t 1 ). 

Table 2.3 gives some idea about the accuracy of this formula. It presents the values of drift 

rate (dimension here and in Table 2.4 is angular second per second) for two types of motion: the 

upper number is calculated by formula (2.32), the lower one as a result of computer modeling of 

the integration process (Larin and Naumenko, 1982, 1983). The results are obtained for two 

types of motion. In the first case (I): , i.e., . In the 

second case (II), motion parameters are the same as in the example considered above, i.e.,  

. 

Table 2.3 

Motion type    

I 5329 

5130 

2665 

2626 

 

26 

II 5863 

5797 

1954 

1938 

651 

660 

Table 2.4 

 , deg    

0 5863 

5766 

1954 

1927 

651 

660 

30 5077 

4998 

1692 

1673 

564 

573 

45 4145 

4084 

1381 

1368 

460 

468 

60 2931 

2890 

979 

970 

326 

331 

90 0 

10 

0 

2 

0 

0.8 

 

The assumptions made while deriving formula (2.32) make possible to obtain similar 

estimate of average drift rate when the process of integration of kinematic equations is 

accompanied at each step by correction of integration results by measurement of projections onto 
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the axes related to the body of any vector  whose position is known in a fixed coordinate 

system (Larin and Naumenko, 1983). Considering the results of measurement of projection of 

this vector accurate, we can suppose in functional (3.3) from (Larin and Naumenko, 1983) 

. In this case, the effect of correction of the error of integration results (the vector 

of small turn ) will be elimination of the component of vector  that is 

orthogonal to vector  (according to (3.13) from (Larin and Naumenko, 1983) for 

), i.e., projection of vector  onto the direction of vector . Thus, the resultant 

average drift rate will be defined by the sum of projections of vector  onto the direction of 

vector .  

Let us decompose vector  into two components: one directed along axis  and the other 

being orthogonal to this axis. Since the second component uniformly rotates in plane  with 

angular velocity , the sum of its projections onto the direction of vector , when the vector is 

fixed in the fixed frame, will be a periodic function of time with zero contribution to the average 

drift rate. As to the first component, as we already mentioned when deriving formula (2.32), the 

sum of projections of vector  onto axis   will be an increasing function of time and will define 

average drift rate. Hence, if the position of vector  is fixed in the fixed coordinate system and  

is the angle between axis  and vector , then average drift rate in the integration of kinematic 

equations according to algorithm (2.28) and correction of the integration results according to 

(Larin and Naumenko, 1983) is as follows: 

 .    (2.33) 

The value  appearing in (2.33) is defined by formula (2.32). It is possible to ensure the 

same average drift rate by making correction not at each integration step but once during the 

change of angle  by .   

The efficiency of formula (2.33) is characterized by the data presented in Table 2.4 for the 

motion of a rigid body with the parameters , i.e., 

. For each value of  , the upper number is calculated by 

formula (2.33), the lower one is obtained by modeling the integration process. Integration time is 

, sampling frequency is  . The correction was made at the end of 

integration interval. Table 2.3 gives the value of average drift rate for integration without 

correction.  

According to the report (Bogdanov et.al, 2011), creating a navigation system that can 

efficiently operate with very fast (about 5000 °/sec and above) rotating objects where a 

"classical" SINS, constructed using AVSs and accelerometers, is inefficient represents a very 
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important problem. An alternative here is SINS constructed with accelerometers only. We will 

consider it in the next chapter.   

2.4. Algorithms of the Accelerometer-Based  INS (without Rate Gyros Usage) 

As well as in (Larin and Tunik, 2010 a), we will consider two problems of determining 

kinematic parameters of motion of a rigid body. In the first one, the results of measurement of 

the velocities of three points of the body are used to find the vectors of angular velocity and 

velocity of the point accepted as the origin of body-fixed moving coordinate system. In the 

second problem, the results of observation of the acceleration of three points of the body and 

known angular velocity of the body are used to calculate angular accelerations and accelerations 

of the origin of moving frame.   

Below, based on the obtained results, we will analyze INS model that does not use angular 

velocity sensors. Such INS scheme can be efficient, for example, in case of motion of an object 

with large angular velocity when, as is mentioned in (Bogdanov et.al, 2011), using RGs may be 

problematic.   

 

2.4.1 Finding the Velocities 

Several authors considered the problem of finding angular velocity of a rigid body and 

velocity of its one point from the results of observation of the velocities of three points of the 

body (see (Fenton and Willgoss, 1990), (Laub and Shiflett, 1983) and references therein). The 

problem statement looks like follows (see Fig. 2.4).  

 
Fig. 2.4. Installation of velocity sensors 

Three vectors 321 r,r,r determine points of a rigid body at which linear velocity is measured. 

From the results of these measurements it is necessary to find the vectors of body’s angular 

velocity (  T321  ) and of linear velocity (  T3210 vvvv  ) of the origin of body-fixed 
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coordinate system О1. Taking into account the well-known relation (see, for example (2.7.8) in 

(Bogdanov et.al, 2011), (2) in (Avraamenko and Larin, 1983)) for the velocity of a point of rigid 

body specified by vector r :  

rvv 0 
,
                                                                      (2.34) 

we can write the following linear relations (Eqs. (6) in (Krasovskiy, 1993), (4) in 

(Avraamenko and Larin, 1983)), which associate the required components of vectors v,  and 

the results of observation of the velocities of selected points   

T

0hvPV 
,
                                                                    (2.35) 

where 
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,  321 rrrP ,  T111h , and V  is the matrix whose 

columns are velocity vectors of points defined by vectors 321 r,r,r  . 

Let  321 ,,   and 321 ,,    be columns of matrices TP and TV :  321 ,, TP ,  

 321 ,, TV . 

In this case, we can write relation (2.35) as a system of linear equations with respect to 

0v,
: 

BxAv                                                                             
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3

2

1

B ,       (2.36) 

where o is 13  zero matrix. 

Since velocity measurements involve errors, we will rearrange (2.36) as  

v0v nBxA   ,                                                                   (2.37) 

where vn  are measurement errors and vector  0B  consists of exact values of velocities of the 

considered points. 

 

2.4.2. Finding the Accelerations  

By analogy with the problem described above, we can consider finding body’s angular 

acceleration and acceleration of its one point based on the results of observation of the 

acceleration of three points of the body. We will formulate the problem as follows. Let three 

vectors 321 ,,   define rigid body’s points at each of which three accelerometers are located 
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that allow measuring components of the acceleration vector of that point. It is necessary to use 

the results of these measurements and the value of angular rate vector (  T321   ) to find 

angular acceleration   









dt

dT 
 321

  and linear acceleration (  Twwww 3210  ) of the origin 

of the body-fixed coordinate system. As applied to the problem under study, an analog of 

relation (2.34) is relation ((2.17.9) (Bogdanov et.al, 2011)), which specifies the acceleration  of 

rigid body’s point defined by vector )(w :  

)(ww 0 
.
                                                          (2.38) 

Denoting  321 WWWU  , iW  are acceleration vectors of points defined by )3,2,1( ii  . Then 

based on (2.38), we can write an analog of relation (2.35) 

T

ww hwEPPU 0

2  .                                                      (2.39) 

Here  321wP  , 
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and matrices h, are similar to those 

appearing in (2.35). 

As well as (2.35), we can represent relation (2.39) as a system of linear equations with 

respect to 0w, . Let 321 ,,  ; 321 ,,  ; 321 ,,    be columns of matrices
T

w

2T

w

T )P(,P,U 
, 

i.e.,  321

TU  ,    321

T

wP  ,   321

T

w

2 )P(  . 

Then we can write relation (2.39) similarly to (2.36), namely:  
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              (2.40) 

o is 13  zero matrix, as well as in (2.36).  

Like in case of relation (2.36), we suppose that readouts of the accelerometers are 

corrupted with  errors. So we rearrange (2.40) as   

wwow nBBxA                                                                             (2.41) 

where wn  are measurement errors and components are formed by exact values of accelerations. 
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2.4.3.  Inertial Navigation System 

Taking into account 
dt

dv
w 0

0  , 
dt

d
 , we can consider system (2.41) as a system of 

nonlinear differential equations with respect to  . In other words, considering signals of 

accelerometers  )B( w  as known external inputs, under given initial conditions we can find )t(   

and )t(v0  by integrating (2.41). Thus, the approach under study allows us to obtain information 

about angular velocity of the object without using angular velocity sensors. However, in this case 

when creating an inertial navigation system, it is necessary to take into account the following 

circumstances. 

The vector x  appearing in (2.41) is specified in a moving frame. Since we are 

investigating object’s position in the inertial frame, it is expedient to map the second component 

of vector x  (vector 0w ) into the inertial coordinate system followed by integration in this 

system. Then it is possible to find the velocity and coordinates of object’s point 1O  (see Fig.1) in 

the moving frame. The point 1O  is assumed to be the origin of the moving coordinate system. As 

to the first part of vector x  (vector ), it should be used to find current body’s orientation, 

which can be defined both by the Rodriguez-Hamilton parameters (2.2) and by the DCM (2.4) 

(they are related by (2.5) and (2.7)). In our case, it is convenient to find the Rodriguez-Hamilton 

parameters by integrating Eq. (2.10) where components of vector   can be found from 

integration of Eq. (2.41). Then the value of matrix A  , which is used to map into the inertial 

coordinate system, can be found by (2.5). This matrix allows us to map vector 0w  into the 

inertial coordinate system and, as we have mentioned above, use integration to find current 

object’s velocity and coordinates. Thus, realization of this type of inertial system includes the 

following:  

 finding   by integrating three differential equations (the first three relations in 

(2.41)); 

 finding the quaternion  , which defines according to (2.5) the DCM A  (which 

allows mapping the acceleration vector 0w   into the inertial coordinate system) by 

integrating system (2.10) (four equations); 

 finding object’s velocity and coordinates by integrating six equations. 

In other words, it is necessary to integrate a system of differential equations of the 13th 

order. The initial conditions for this system are the values of the following quantities at the initial 
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instant of time: object’s position (  T0000 zyxr  ), initial orientation (quaternion  ) or 

respective DCM )(A  , object’s linear velocity (  T0z0y0x0 vvvv  ), and angular velocity 

vector (  0z0y0x0  ). 

Note that we can find 0v , 0   from GPS measurement of the velocity of three points of the 

object by the algorithm described in Sec. 3.1. 

Since the size of matrix wA  in (2.41) is equal 69 , we can eliminate three rows in system 

(2.41) (not to consider the readings of three accelerometers). In other words, we can create an 

inertial navigation system using six accelerometers only (see Example I). 

 Under considerable operation time, such inertial system using rather simple and cheap 

hardware may not ensure an adequate accuracy of navigation parameters. In such situations, it is 

expedient to adjust the results of operation of such system by means of GNSS (Phillips and 

Schmidt, 1996), (Greenspan, 1996), (Schmidt, 2008, 2011). 

Example 2.4  

To illustrate the above algorithms, we will consider the following navigation problem. Let 

the navigation frame Oxyzbe related to the Earth surface. In this frame, the object (to which 

system zyxO   is related) circles in the plane xy  with the velocity smv /30  and 

period sT 60  . During the motion, its orientation (frame zyxO  ) is defined by the following 

time  dependence of the Euler angles:
 

0,0,
2

,  



T

t  . According to (2.8), 

projections of the angular velocity onto axes of the moving coordinate system are as follows:
 

 
321 ,0 . According to (2.2), initial object’s orientation is specified by the quaternion 

 T0001 and hence, according to (2.5), the DCM is a unit matrix. At time 0t , the object is 

located on axis y  at the distance 



2

vT
R 0

 and its velocity (vector  appearing in (2.35)) and 

acceleration  in (2.39) are defined by the following relations  T0 00vv  , 

T

g
R

v
w 










0

2

0 0 , where 
2g 9,81 m / sec   is gravity acceleration. Accelerometers are 

installed at the trihedron axes so that matrix wP  in (2.39) looks like follows:
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1 0 0

0 1 0 1 0

0 0 1

wP ,

 
 

 
 
   .

 

We assume that there are six 

accelerometers and they are located so that 

matrix in (2.39) has the following structure:  

                
























2313

3212

3121

ww

ww

ww

U , 

where dashes denote missing components of 

acceleration measurements. We can illustrate 

this arrangement of accelerometers by the 

instrumental trihedron presented in Fig. 3, where 1 1 1X ,Y ,Z   are points on trihedron axes at which 

pairs of accelerometers are installed. The superscript specifies the axis where the accelerometer 

is installed, and the subscript specifies the direction of its measurement axis. For example, 
y

xa  

means that the accelerometer measures acceleration of point 1Y  in the direction of  OX axis.  

Errors of accelerometers ( wn in (2.41)) can be modeled by uniformly distributed 

uncorrelated random numbers with zero expectation and variance
3 2

w 10 m / sec  . 

Thus, the above initial conditions and the assumptions about accelerometer errors allow us 

to model the operation of the inertial navigation system under study, which does not contain 

angular velocity sensors. However, to illustrate the algorithm described in Sec. 3.1, we will 

consider the situation where initial values of object velocities (angular and linear) can be found 

by GNSS by velocity measurements data processing of three points of the object for 0t . In that 

regard, we assume that matrix in (2.35) is as follows: 



















000

110

001

P

. 

Note that since matrix 1P  does not exist, it is impossible to use algorithm (Laub and 

Shiflett, 1983).  

Figure 2.5. 
z 
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 Measurement errors (components of vector vn in (2.37)) are assumed to be uncorrelated 

uniformly distributed random numbers with zero expectation and variance 
1

v 10 m / sec  . 

Using the algorithm in Sec. 3.1 for these initial data, we obtained the following estimates:  

               T33 1024,0104,610)0(   , 
 T3

0 0101,0104,39955,29)0(v 
 

and accepted them as respective initial conditions in modeling the inertial navigation system. 

For other parameters, namely parameters that determine object’s initial position and 

attitude, their initial values are accepted as their exact values for 0t . 

Simulation of the system’s operation during 15 sec with the use of MATLAB procedures, 

namely, used procedure ode 45.m to integrate the system of differential equations and procedure 

rand.m, to generate random numbers. 

The results of modeling are presented in Figs. 2.6–2.14. Figures 2.6–2.8 show how 

projections of the estimate of vector   (deg/sec) vary in time. The horizontal line (6 deg/sec) in 

Fig. 2.8 corresponds to the exact value of z . Figures 2.10–2.12 present the errors of 

determining object’s coordinates. Figures 2.9–2.11 show the errors of finding the 

orientation zyx ,,   (in degrees), which are upper diagonal elements of matrix )(A)(AT   

approximated in the form of (2.6) (Wittenburg, 1977):  

























1

1

1

)(A)(A

xy

xz

yz

T

, 

where   denotes the value of the quaternion obtained by integration,   is the exact value. 

Respectively, )(A),(A  are the exact value of the cosine matrix and its estimate obtained as a 

result of integration. 
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Fig. 2.6. Error of estimate of  x                         Fig. 2.7 Error of estimate of y  

     

       Fig. 2.8. Estimate of  z                           Fig. 2.9. Error of estimate of coordinate X  

 
Fig. 2.10. Error of estimate of coordinate Y            Fig. 2.11.  Error of estimate of coordinate Z  
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Fig 2.12. Estimate of rotation error        Fig. 2.13. Estimate of rotation error    

             about axis X .      about axis Y . 

 
Fig. 2.14. Estimate of rotation error about axis Z . 

 

Thus, as we can see from the above results of simulation, such inertial system using rather 

simple hardware (six accelerometers as in the example), under considerable operation time, may 

not ensure an adequate accuracy of navigation parameters. In such situations, it is expedient to 

correct the results of operation of such system by means of GPS. To this end, we will consider 

creation of the integrated system GPS/INS as applied to the INS under study. Thereupon, it is 

necessary to consider the "discrete" variant of INS described in Sec. 2.4.4.  

2.4.4.  Discrete Variant of INS 

As we mentioned in Sec. 2.4.3, operation of the INS under study involves integration of a 

non-linear system of differential equations of 13th order. From the point of view of realization of 

such INS, it is expedient to consider "sampling" of this system, i.e., the case where the readings 

are taken not continuously but in regular intervals t  , i.e., with frequency
t

f


 1 . Respectively, 

the required navigation parameters (DCM )(A   , velocity v  , and position r ) are calculated in 

time interval t .  
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In Sec. 2.3.1 we have presented expressions for quaternions  it  in terms of the vector of 

quasicoordinates i , which provide one approximation quality or another depending on the 

complexity.   

In what follows, we will use elementary approximations (Euler's method) for quaternion  

 it
 and for i : 

 















i
i

2
1

1
t ,   

   
t

2

tt 1ii
i 


  , 

      tttt i1ii   ,                                                            (2.42) 

where  it  is the vector of angular accelerations defined by (2.40), from the results of 

accelerometer readings at instant of time it  (in (2.39), components of vector  1it   are taken as 

elements of matrix  ). Given the estimate of quaternion  it  obtained from (2.42), we use 

(2.15) and (2.16) to find the quaternion  it  and then due to (2.5) to obtain matrix   itA 
. 

Using matrix   itA   defined by expression (2.40) to map vector  i0 tw  into the fixed frame, 

we can find estimates of the velocity   itv  and coordinates   itv  of the object (analogs of 

relations (2.20) and (2.21)): 

      ttw~tvtv i1ii   , 

   
   

t
2

tvtv
trtr 1ii

1ii 


 


. 

Thus, the above relations allow using accelerometers’ readouts at time instants it  to 

estimate navigation parameters at the same it . This, in turn, allows using traditional integration 

algorithms GPS and INS to correct the results of operation of the INS under study. 

  

2.4.5. Algorithms to Increase the Accuracy of Finding Object’s Angular Velocity 

We will show that increase in the number of accelerometers can be used to increase the 

accuracy of finding object’s angular velocity  (Larin and Tunik, 2013).  

Let us consider the case of nine accelerometers. We will supplement the scheme of six 

accelerometers in Fig. 2.5 by three accelerometers at the point O  whose sensitivity axes are 

directed along axes OZ,OY,OX , respectively, i.e., these accelerometers measure the 

acceleration of the origin of coordinates. Let us denote the readouts of these accelerometers by  
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0

z

0

y

0

x a,a,a  and assume that the distance of each point 111 ,, ZYX  from the origin of coordinates is 

L . 

Denote:
0

y

x

y

x

y aan  , 
0

x

y

x

y

x aan  , 
0

z

x

z

x

z aan  , 
0

y

y

z

y

z aan  , 

0

x

z

x

z

x aan  ,
0

y

z

y

z

y aan  . With such installation of the accelerometers, (2.38) or (2.39) yield 

the following relations: 

                   
z

y

y

z1 nnL2  , 

      
x

z

z

x2 nnL2                                                               (2.43) 
y

x

x

y3 nnL2  . 

z

y

y

z32 nnL2  , 

x

z

z

x31 nnL2                                                             (2.44) 

y

x

x

y21 nnL2  . 

Noteworthy is that Eqs. (2.43) coincide with (3.390) from (Andreev, 1967). Thus, in case 

of nine accelerometers, relations (2.44) define three more values: 323121 ,,  . It is 

expedient to use this information to adjust the results of integration of the angular acceleration  . 

Note that if two out of three components of vector   are zero (rotation about a fixed axis), 

relations (2.44) cannot be used to adjust the results of integration.  

Thereupon, it is expedient to supplement the above system of nine accelerometers with 

three more accelerometers such that acceleration along axis OX  is also measured at the point 

1X , and  respectively: along axis OY  - in the point 1Y
,   and along axis OZ  - in the point 1Z

. 

Note that this layout of accelerometers coincides with that in Fig. 3.7 (Andreev, 1967). Let 

readouts of these three accelerometers be
z

z

y

y

x

x a,a,a  . Denote:  

0

x

x

x

x

x aan 
, 

0

y

y

y

y

y aan  , 
0

z

z

z

z

z aan 
. 

In the measurement system of 12 accelerometers under study, relations (2.43) and (2.44) 

should be supplemented with the following ones:  

                      
z

z

y

y

x

x

2

1 nnnL2  , 

       
z

z

y

y

x

x

2

2 nnnL2                                                       (2.45) 

                
z

z

y

y

x

x

2

3 nnnL2   

Thus, in the case under consideration (12 accelerometers), we can use relations (2.44) and 

(2.45) to adjust the results of integration of the angular acceleration. 
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 Let us briefly consider the problem of using relations (2.44) to increase the accuracy of 

determination of    in case of nine accelerometers and a similar problem in case of 12 

accelerometers. In the latter case, relations (2.45) are used along with the above-mentioned 

relations (4.2). Thus, let us consider the case of nine accelerometers whose readings determine 

both the angular acceleration vector   (relations (2.43)) and components of vector  

 T123132n   (relations (2.44)). Assuming that )t()t( 1iii   is a small 

value, we can write the following relations: 

0nin H     



















0

0

0

12

13

23







H      Tn 2131320  .              (2.46)  

In (2.46) n   is defined by (2.44), and the values of components of vector  ,  appearing 

in H and 0n , correspond to the values of components of vector )t( 1i . In other words, as a 

result of the assumption about the smallness of, we obtain a standard problem of parameters 

estimation by the weighed least squares method (Bryson and Ho-Yu-Chi, 1969). Namely, there 

is some initial estimate t
2

)t()t( 1ii
i 


   . Vector z  is observed according to (2.46) as 

follows: 

,0   Hz nn                                                           (2.47) 

where   is the vector of measurement errors. The estimate of i


 is defined by relation (12.2.7) 

(Bryson and Ho-Yu-Chi, 1969): 

)Hz(RPH i

1T

ii  
                                               (2.48) 

HRHMP 1T11   . 

Here, M  is the covariance matrix of errors of estimate i , R   is the covariance matrix 

of errors of measurements   in (2.47). Finally, the value of vector  at time  is defined by the 

relation 

i1ii )t()t(  


                                                (2.49) 

where i


can be found from (2.48). 

Matrix 1P  can be ill-conditioned; therefore, to find matrix P  appearing in (2.48) it may 

be expedient to use the approach from (Larin, 1999, 2006).   
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Since matrices R,M are symmetric and positive definite, we can represent them as 

,rR,mM 22  т.е. 2
1

2
1

Rr,Mm   . Respectively, we can write the expressions for matrix  

1P as 

   T1T11T11 rHmrHmP   .                                                     (2.50) 

Using the procedure of QR -factorization, we will rearrange matrix  T1T1 rHm 
as 

follows: 

   T
T1T1 0QrHm 

,                                                            (2.51) 

where Q  is an orthogonal matrix and    is an invertible matrix. 

With regard for IQQT 
, substituting (2.50) into (2.51) yields  T1P

 or:  
T1P   . 

Thus, we can represent expression (2.48) as  

)Hz(RH i

1TT1

ii  
.                                            (2.52) 

If we assume that IM 2 , IR 2  , then we can write relations (2.52) as  

)Hz(H i

TT1

ii  
 ,                                             (2.53) 

where   is defined by the QR-factorization of the following matrix  

     TTHI     



 .                                                                (2.54) 

Note that the aforementioned correction algorithm can also be used in case of 12 

accelerometers. In this case, the matrix H  and vector 0n  appearing in (2.46) are as follows: 

T

H



















312

213

123

2000

0200

0020







,     Tn

2

3

2

2

2

12131320  . 

As well as in case of nine accelerometers, components H  and
 0n  are defined by 

components of vector )t( 1i . Components of vector n are defined by relations (2.44) and 

(2.50). 



40 

 

Example 2.5 

Nine accelerometers are mounted at the object, namely, six accelerometers as is shown in 

Fig. of 3.2 and three more accelerometers at the origin of coordinates. The origin of coordinates 

of the instrumental trihedron fixed to the moving frame )zyxO(   is specified by 

vector  T010R   . The orientation of the moving coordinate system is specified by the 

following time dependence of Euler angles ,0)0(,
4

)0(,0)0(  


 10,0,1    . 

Projections of the angular velocity onto axes of moving coordinate system are defined by (2.8):  

.cos

,sincossin

,cossinsin

3

2

1



















 (2.55) 

In the example under consideration, absolute value of the angular velocity vector exceeds 

600 deg/sec. In this regard, in the example we assume that 310t   sec. The initial orientation 

(quaternion) is defined by relations (2.2) and we assume that 
3

w 10 m/sec
2
 and 1,0L  m. 

We modeled the error of the initial alignment of angular velocity as follows. As the initial value 

we took 

                                              )0(
2

1
)0(~                                                      (2.56) 

where   is the exact value defined by (2.55). 

We assume that 1,0  in (2.54). The results of the errors of determination of kinematic 

parameters of motion obtained in modeling of the motion during 15 sec are presented in Figs. 

2.15 and 2.16. 

  
Fig. 2.15. Error of the estimate of          Fig. 2.16. Errors of finding the orientation 

 

Figure 2.15 shows the values (dimension deg/sec) of following parameter: 
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k)t(~)t()t(dom
k

1i

iik 







 



,  

where )t(~
i  is the estimate of angular velocity obtained according to (2.49) and )t( i  is the 

exact value of the angular velocity vector, i.e., the quantity characterizes the accuracy of the 

estimate of current value of the angular velocity vector obtained according to (2.49) (in Fig. 2.16 

the dimension of dom  is deg/sec). Figure 2.16 shows the values of errors of finding the 

orientation ( x – dashed line, y – dash-and-dot line, z  – solid line, dimension is deg). Thus, 

based on the above results we may state that in the example under study using the correction 

algorithm (2.49) has substantially increased the accuracy of finding the current value of   and 

thus increased the accuracy of finding the orientation. According to the graph dom  (Fig. 2.15), 

the 15 sec error of   is about 2 deg/sec, while according to (2.56), the error of the initial   is 

about 300 deg/sec. As a result, we may state an increase in the accuracy of determination of the 

orientation (Fig. 2.16). For example, the error of finding the orientation initially increases in 

different ways due to coarse initial setting of  . However, after a decrease in the error of 

determination of the current value of   we may state that errors of finding the orientation do not 

undergo substantial changes. 

Let us emphasize that while the error of initial setting of angular velocity is about 300 

deg/sec, the error of finding object’s orientation for 15 sec is about 10 degrees. 

Example 2.6 

Let us consider a measurement system containing 12 accelerometers. We will keep the 

initial data from Example 2 (motion parameters, error of the initial setting, etc.) and only change 

the values of w  and  . We assume that 
1

w 10 m/sec
2
 and 700 , i.e., the accuracy of 

accelerometers is two orders of magnitude less. The results of modeling are presented in 

Figs. 2.17 and 2.18 (the notation coincides with that accepted in Figs. 2.15 and 2.16). 

             
Fig 2.17 –Error of the estimate of  .  Fig. 2.18 –Error of the orientation finding  
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These results witness a much higher efficiency of the measurement system containing 12 

accelerometers. As we can see from Fig. 2.17, despite of the fact that acceleration measurement 

errors have increased by two orders of magnitude, the error of current value of   for 15 sec is 

of almost the same order as in Example 2. We may state that in such system the error of the 

initial setting of   decreases much faster and hence the errors of finding the orientation 

decrease (comparing Fig. 2.18 and Fig. 2.16). 

Example 2.7 

Let us continue considering Example 2.4. We will keep all the input data (motion 

parameters, accelerometers accuracy, etc.) from Example 2.4. However, we will assume that the 

measurement system contains not 6 but 12 accelerometers (like in Example 2.6). We assume in 

(2.54) that 7 . Figure 2.19 shows the simulation results. 

 
Fig. 2.19 

 

Comparing them with the results presented in Fig. 2.16, we may state that the accuracy of 

finding the orientation substantially increases. In this example, unlike Example 2.4, to estimate 

 , we used the procedure of integration of a nonlinear differential equation (ode 45.m)  

(Mathworks.com, 2018) for the finite-difference scheme (2.47).  

We have presented the algorithms of operation of autonomous inertial navigation systems 

that do not contain angular velocity sensors. We have considered systems containing six, nine, 

and 12 accelerometers. Since six accelerometers are enough to measure angular acceleration of 

the object, for a system that contains nine or 12 accelerometers there is a possibility to increase 

the accuracy of finding the angular velocity vector of the object by using additional information 

due to additional accelerometers. We have presented respective correction algorithms and have 

used examples to show that such systems can be efficient if the object moves with a large 

angular velocity (when using RGs is known to become problematic (Bogdanov et.al., 2011)). 

 



43 

 

2.5. Summary for Chapter 2 

2.5.1. In the 2
nd

 chapter it was considered the SINS software structure and the basic relations, 

which are used for implementation of separate algorithms in this structure. 

2.5.2. The distinctive feature of considered algorithms of the rotational mechanization consists 

of procedures, using analytical expressions for approximation of quaternions corresponding to 

the rigid body small turn. Using several methods of approximation of these quaternions, it is 

possible to vary the accuracy of the rotational mechanization algorithms.  

2.5.3. Procedure of approximation of the quasi-coordinates by quadratic splines is used in the 

rotational as well as in the translational mechanization algorithms allowing obtaining the results 

of computing in quadratures instead of direct integration of the rotational and translational 

differential kinematic equations.  

2.5.4. Distinctive features mentioned in the items 2.5.3 and 2.5.4 allow us to simplify 

essentially the SINS algorithms and simultaneously to preserve their acceptable accuracy.  

2.5.5. In this chapter the algorithms of the rotational and translational mechanization for the 

gyro-free accelerometer based SINS were considered also. They are essentially effective for 

UAV spinning with respect to the longitudinal axis with comparatively great angular rate. It was 

shown that increasing of number of redundant accelerometers above minimal number leads to 

significant increasing of accuracy of the gyro-free SINS integration algorithms. 

2.5.6. Algorithms presented in this paper were tested by results of the mathematical modeling, 

which witness sufficiently high accuracy of the rotational and translational mechanization 

algorithms for the traditional as well as for the gyro-free SINS.   
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CHAPTER 3 – ALGORITHMS OF CORRECTION OF INERTIAL 

NAVIGATION SYSTEM 

The design process of GNSS/INS integrated navigation system includes the tradeoff 

between performance and cost, and the cost may be significantly influenced by the level of 

modifications required to be done inside of both systems (Grewal, Weill, and Andrews, 2001). 

There is a wide variety of integration approaches, from loosely coupled and to ultra-deep 

integration (Schmidt, 2008, 2011), (Schmidt and Phillips, 2008, 2011 a, 2011 b).  

The majority of loosely coupled implementations use only standard outputs of the GNSS 

receiver (like position and velocity) and INS (position, velocity, and attitude) as inputs to a 

system integration filter (typically, Kalman filter). More tightly coupled implementations use 

less standard subsystem outputs such as pseudoranges from GNSS receivers or raw accelerations 

from INS and usually require more intervention in the subsystem operation. For more details 

regarding integration techniques, see (Grewal, Weill, and Andrews, 2001).  

Figure 3.1 presents the scheme of loosely coupled approach (compensation scheme) of 

GNSS/INS integration. 

Extended 

Kalman Filter

GNSS

INS
e

+
-

 GNSSGNSS V,R


 corcorcor V,R,A


 


 INSINS V,R


 INSA


 

Figure 3.1 – Scheme of loosely coupled approach of GNSS/INS integration (Schmidt, 2011), 

(Schmidt and Phillips, 2011 a, 2011 b), (Titterton and Weston, 2004, fig. 13.18) 

 

3.1. Algorithms of correction of inertial navigation system 

Let us write filter equations. Denote by rv  ,,  vectors of INS errors in the inertial frame 

(  is the vector of small turn of attitude error, rv  , are vectors of velocity and coordinate 

errors). Let  Taaaa 321
~,~,~~   be vector of specific force (hereinafter, the superscript T means 

transposition). We accept the equation of INS errors propagation, in the form similar to (7.149) 

(Grewal and Andrews, 1993): 
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n  is white noise vector. Hereinafter, 0 and I  are zero and unit matrices of respective sizes (3x3).  

Expressions for matrix F  (3.1) and (7.149) in (Grewal and Andrews, 1993) are analogous. 

Thus, in (3.1) we neglect the Earth rotation rate   and the square of the Schuler frequency 2

s . 

This neglecting is justified by low sensitivity of primary MEMS sensors, which are applied in 

small UAV navigation systems. 

 As a discrete analog of (3.1), i.e., relation that expresses errors propagation in terms of a 

small time interval t , the following equation is taken:  
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 ,                                        (3.2) 

where kn  is vector of random errors of INS operation. The subscript k  corresponds to instant of 

time tk . We may suppose that t  is a step of INS operation and (3.2) is the initial equation of 

errors. Assume that at the k th  step of INS operation, GPS provides information about estimates 

of coordinates and velocity of the object, i.e., the following observation process takes place:  

                                                           kkk Hxz   

                                                              









I

I
H

00

00
,                                                      (3.3) 

where k  is the measurement error. 

If INS errors are corrected at the same step, then the error modification equation 

corresponding to (3.2) is  

                                      ,1 kkkkkk nuxx                                               (3.4) 

where ku  is a correcting signal. The choice of matrix k  determines the correction process. 
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 Thus, using relations (3.3) and (3.4), we can formulate the INS correction problem as a 

standard linear quadratic Gaussian problem. It is generally known (see for example, item 14.7 in 

(Bryson and Ho-Yu-Chi, 1969)) that solution of this problem is given by  

                                                   

,ˆ

,ˆ

,ˆ

1 kkkkk

kkkkk

kkk

uxx

xHzKxx

xDu









                                             (3.5) 

where the matrix kD  of feedback loop coefficients is defined by the form of the functional being 

optimized. The filter gain matrix ( kK ) generating the vector of optimal estimate kx̂  is defined as 

follows (the filter equations) (Grewal and Andrews, 1993): 
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T

kkkk QPM   (3.7) 

  .T

kk

T

kkkk KRHHMKMP 
 (3.8) 

Matrices kk RQ ,  are covariance matrices of noise kn , k , which appear in (3.3) and (3.4). 

0M  is a given covariance matrix of initial estimate of vector x . Note that correction of INS 

errors usually happens after m> 1 steps. In this case, between the times of correction, INS errors 

are modified according to Eq. (3.2), and their complete correlation matrix is modified according 

to (3.7) (we may assume that 0H  at these steps). At the correction step, modifications of the 

complete correlation matrix are described by Eq. (3.8).   

A significant feature of the problem under study is that matrices k  and H  form an 

incompletely observable pair in observability matrix (Larin, 1999). The observability matrix has 

the following form (Katsuhiko, 1997): 
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and can be calculated in Matlab by means of "obsv" function ("MATLAB Documentation", 

2018). 

Let us consider a bit more detailed matrices k  and H . Since the skew-symmetric C  

appeared in Eqs. (3.1) (3.2) is singular (its rank is equal to 2), some orthogonal matrix U  exists, 

which can transform C  as follows:   
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Here   is an invertible 2x2 matrix. If we form 9x9 matrix V (containing matrices U at the 

main diagonal) from the equation above and two unit matrices (  EEUdiagV ,, ) and then 

apply it to similarly transform matrices k  and H , they will have the following structure:  
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It might be seen that matrix V transformed k  in such a manner that the first element of 

new matrix k  is equal to 1, and all other elements of the first column and row are zero. Due to 

the specific form of matrix H , multiplication by matrix V  did not change its form. As is seen, 

elements of the first column of this matrix are zero. 

Hence the pair  Hk ,  has one unobservable mode. Specific meaning of this mode 

depends on the structure of matrix C , i.e., on the specific value of acceleration vector w . This 

requires various maneuvers of the object to be used to correct all the components of its attitude 

vector (see, for example, (Bar-Itzhack, 1982)).  

3.1.1 Substantiating the Necessity of Computing the Cholesky Multipliers in the Kalman 

Filtering Algorithms 

Ensuring the convergence of evaluations is one of the basic problems in using Kalman 

filtration in traditional form in integrated navigation systems. A significant feature of the Kalman 

filtration is that the covariance matrix of state variables kP  is ill-conditioned. Also, as was 

shown above, the pair of matrices  Hk ,  has one unobservable mode. Moreover, the other 

modes may be weakly observable. These circumstances can lead to accumulation of computing 

error and cause divergence of calculations in Kalman filtration algorithms. 

As is generally known, loss of positive definiteness of a priori )(P  and a posteriori 

)(P  covariance matrices of state variables of expanded Kalman filter is the main reason that 

the algorithm of expanded Kalman filter stops converging (Watanabe and Tzafestas, 1989). To 

avoid this phenomenon (which stops expanded Kalman filter), attention is paid to perform all 

operations with these matrices in the form of generalized Cholesky multipliers, whose product is 

always a positive definite matrix. Moreover, using Cholesky multipliers improves the 

convergence of Kalman filtration problem since the condition number of Cholesky multiplier is 

the square root less than the condition number of the respective matrix.  



48 

 

The study (Grewal and Andrews, 1993) analyzes roundoff error propagation in Kalman 

filters. The Kalman filtering algorithm is considered as two computational loops: estimation loop 

(where kx̂  is calculated) and gain loop (where kP  and kK  are calculated). Experimental analysis 

shows that roundoff errors in the estimation loop are compensated by the feedback mechanism if 

gain loop is correct. This correction applies to all type of errors, including those introduced by 

roundoff, due to noise and apriori estimation errors. In the gain loop the effects of roundoff error 

cannot be detected and corrected and, therefore, they propagate and accumulate unchecked 

(Grewal and Andrews, 1993). Due to big number of matrix multipliers in the gain loop it suffers 

more from roundoff errors propagation in "conventional" form of Kalman filter. Even bounded 

errors in the computed value of kP  may momentarily destabilize the estimation loop. Those 

roundoff errors can cause the computed value of kP  to have a negative characteristic value. And 

since kP  is a factor in the Kalman gain, its negative characteristic value can cause gain in the 

prediction error feedback loop to have the wrong sign, which may momentarily destabilize the 

estimation loop. And even after recovery the convergence would be slower than it should be 

(Grewal and Andrews, 1993).   

Therefore, it makes sense to increase the accuracy of computing procedures. Thereupon, 

such problems usually use algorithms that allow calculating the Cholesky multipliers (factors) of 

respective covariance matrices. 

According to (Grewal and Andrews, 1993), techniques to solve the Riccati equation in 

more numerically stable implementations of Kalman filter include the following ones: 

1. Factoring the covariance matrix of state estimation uncertainty P  (the dependent 

variable of the Riccati equation) in Cholesky factors or into modified Cholesky 

factors (unit triangular and diagonal factors).  

2. Factoring the covariance matrix of measurement noise R  to reduce the 

computational complexity of the observational update implementation.  

3. Block matrix factorizations of matrix expressions in the Riccati equation. In the 

common approach, two different factorizations are used to represent two sides of 

equation  
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The alternative Cholesky factors C  and  BA must then be related by orthogonal 

transformations (triangulizations). A QR
 
decomposition of  BA  will yield the corresponding 

solution of the Riccati equation in terms of Cholesky factor of the covariance matrix.  Also it is 
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necessary to mention about another method of the Cholesky factors computing via Bierman’s 

UD  factorization (Bierman, 1977), which will be used further.  

Here are listed the techniques implemented in our approach. For more details regarding 

other techniques, see (Grewal and Andrews, 1993). Note that for description of a matrix 

transformation process into an equivalent product of factors both terms decomposition and 

factoring (factorization) are used usually interchangeably (Grewal and Andrews, 1993). 

 

3.1.2 Evaluating the Cholesky multipliers by means of QR factorization 

A number of algorithms for evaluating the Cholesky multipliers of the covariance matrix 

of filter (3.7), (3.8) are known (see, for example (Grewal and Andrews, 1993)). Below we will 

describe an algorithm (similar to that presented in (Larin, 1992, 1993), (Larin and Aliev, 1993), 

(Aliev and Larin, 1998)) based on QR decomposition of matrix (Voyevodin and Kuznetsov, 

1984), (Lawson and Hanson, 1974).  

QR decomposition (or QR factorization) of a matrix is its decomposition into an 

orthogonal matrix and a triangular matrix.  

Any real square matrix A may be decomposed as  

A=QR, 

where Q  is an orthogonal matrix (i.e., IQQT  ) and R is an upper triangular matrix (or right 

triangular matrix). If A is nonsingular (i.e., invertible), then this factorization is unique.  

More generally, it is possible to decompose a complex rectangular [mxn] (m≥n) matrix A 

as a product of unitary [mxm] matrix Q and upper triangular [mxn] matrix R. The bottom (m-n) 

rows of [mxn] upper triangular matrix entirely consist of zeros. 

There are several methods to actually compute QR decomposition, such as the Gram–

Schmidt process, Householder transformations, and Givens rotations. Each has a number of 

advantages and disadvantages. For more details about actual computing of QR decomposition 

see (Grewal and Andrews, 1993). In Matlab, the QR decomposition algorithm is implemented by 

"qr" function (Mathworks.com, 2018).  

Let us outline two variants of the algorithm of computing the Cholesky multipliers of the 

covariance matrix of the filter. In the first case, we will assume that matrix kR  is invertible, in 

the second we will not assume this.  

 Thus, let us consider the case of invertibility of matrix kR . Let kkkk rqpm ,,,  be the 

Cholesky multipliers of matrices kkkk RQPM ,,, , respectively, i.e.,  

         .R    ,Q   ,P   , T

kkk

T

kkk

T

kkk

T

kkk rrqqppmmM                           (3.9) 



50 

 

In the case of invertibility of matrix kR , we can rearrange relation (3.8) as  
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Let us present the expression in parentheses as the product of two rectangular matrices  

 .   

,

1

1









k

TT

kk

T

kkkk

TT

k

rHmIN

NNHmRHmI
 

By means of orthogonal matrix U and using the algorithm of QR decomposition, we will 

transform matrix TN as follows:  

                                            ,
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                                                    (3.11) 

where kS  is an invertible matrix. 

Thus, according to (3.10) we get  

                                                                   .1 kkk Smp                                                         (3.12) 

Similarly, we will represent the right-hand side of (3.7) as the product of two rectangular 

matrices and will use QR decomposition of these matrices (Voyevodin and Kuznetsov, 1984), 

(Lawson and Hanson, 1974) by the orthogonal matrix kV : 

                                                             ,11

T

kk

T

kk TTmm   

                                                                ;  kkkk qpT                                                 (3.13) 

                                                                 ,
0

T

k

T

k TV
X









                                                   (3.14) 

                                                                  .1 kk Xm                                                      (3.15) 

Thus, we will calculate the multiplier kp  from the given kk rm ,  according to (3.11) and 

(3.12) and then calculate multiplier 1km  according to (3.13-3.15).  

Now, let us remove the assumption about invertibility of matrix kR . Generally, to exclude 

the operation of inversion of matrix kr , we will transform matrix kN . Using the orthogonal 

matrix k  in the QR decomposition, we will bring matrix 
TT

k Hm  to the following form:  
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Assuming that matrix kY
 is invertible, we will introduce the following square matrix with 

 IYrdiagW k

T

kk ,
~ 1  and will use it to transform matrix kN . 
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Thus, if the orthogonal matrix U
~

 transforms matrix TN
~

 similarly to (3.11), i.e., 
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we can write the following expression for matrix kp , which does not contain operation of 

inversion of matrix kr : 

                                                                   
1~~  k

T

k

T

kkk SWmp . 

The relations that define 1km  in the considered case of singular matrix kr  obviously will 

not change, i.e., matrix 1km  will be defined by relations (3.13)-(3.15). 

Derivation of the relations (3.10)-(3.15) is given in Appendix A. 

 

3.1.3 Calculating the Cholesky Multipliers by the Cholesky and Bierman Methods 

(Applying the Cholesky and Bierman methods in Kalman filtration algorithms) 

Along with QR factorization, Cholesky decomposition algorithms are also used.  

The Cholesky decomposition algorithm is a procedure to calculate elements of triangular 

Cholesky factor of a symmetric, nonnegative definite matrix. It solves the Cholesky 

decomposition equation 
TCCP   for a triangular matrix C , given the matrix P  (Grewal and 

Andrews, 1993). Two variants of Cholesky decomposition algorithm are presented in (Grewal 

and Andrews, 1993), (Table 6.3): with lower and upper triangular results. A matrix is called 

upper triangular if its nonzero elements are on and above its main diagonal and lower triangular 

if they are on or below the main diagonal. In Matlab, the Cholesky decomposition algorithm is 

implemented by function "chol" (Mathworks.com, 2018). 

Kalman filtration also widely uses modified Cholesky decomposition algorithm. Modified 

Cholesky decomposition (or as it is often called, Bierman’s UD decomposition) of a symmetric 
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positive definite matrix M  is product decomposition TUDUM   such that U  is unit upper 

triangular and D  is diagonal (Bierman, 1977). The upper triangular matrix U  is called unit 

upper triangular if all its diagonal elements are 1. Similarly, a lower triangular matrix L  is called 

unit lower triangular if all its diagonal elements are 1. (Grewal and Andrews, 1993).   

A procedure for implementing UD decomposition is presented in Table 6.4 from (Grewal 

and Andrews, 1993). As is stated, this algorithm is only slightly different from the upper 

triangular Cholesky decomposition algorithm presented in Table 6.3 from (Grewal and Andrews, 

1993). An important distinction of this modified Cholesky decomposition algorithm is that it 

does not require taking square roots. That is why it has been called as “square root filtering 

without square roots” (Grewal and Andrews, 1993).  

Let us consider here the Bierman method for calculation of Cholesky multipliers.  

Using the Bierman method in factorization of covariance matrices substantially reduces the 

amount of operations of the Kalman filtration algorithm (in comparison with the QR-

factorization algorithms) and respectively, accelerates the process of calculation of the 

navigation solution as a whole. This method deals with matrix elements rather than entire 

matrices or vectors. This method also does not include the operation of calculating the inverse 

matrix and square root. Thus, the main advantage of the Bierman method as compared with QR 

factorization is the reduced amount of operations in calculating the Cholesky multipliers. 

However, a special feature of the Bierman method as applied for factorization of 

covariance matrix is that this method can only be used for decomposition of symmetric 

covariance matrices. 

But this inconvenience is resolved by using the Joseph form to calculate a posteriori 

covariance matrix of state variables:  

       .T

kkk

T

kkkkkk KRKHKIPHKIP                                 (3.16) 

Though calculation of covariance matrices by means of the Joseph form (3.16) is more 

complicated and requires a greater amount of mathematical operations as compared with 

concatenation of matrices, such form has advantages as well. As it is shown in (Grewal and 

Andrews, 1993), Joseph form allows overcoming the problem of matrix  kP   ill-conditioning 

making it a positive definite matrix, thus increasing robustness of the computational procedure. 

Now, we will consider the Kalman filtration algorithm with factorization by the Bierman 

method. The EKF equation with the use of Joseph form is as follows: 
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Similarly to the previous filter, kkkk rqpm ,,,  are Cholesky multipliers of the corresponding 

matrices kkkk RQPP ,),(),(  , i.e., .R    ,Q   ,)(P   ,)( T
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Then we can rearrange relations (3.17), (3.18), and (3.19) as  
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Thus, given kkk rqm  , , , we will use the Bierman method and calculate the multiplier kp  

from Eq. (3.21) and then find the multiplier 1km  from Eq. (3.22).  

3.1.4 Advantages and Disadvantages of Different Methods for Calculation of Cholesky 

Multipliers and their Application in the Kalman Filtration algorithms 

QR factorization as applied to calculate the Cholesky multipliers is a universal and 

qualitative method. This method allows calculating the Cholesky multiplier for nonsymmetric 

matrices. Due to this feature of the QR factorization method, the expression for calculation of a 

priori and a posteriori matrices of state variables of the expanded Kalman filter was factored in 

the paper (Larin and Tunik, 2012) using the matrix concatenation procedure. Thus, expression 

was obtained to calculate the Cholesky multipliers of the a priori and a posteriori covariance 

matrices without calculating the covariance matrices (see subsection 3.1.2). Such simplification 

allows us to only deal with the Cholesky multipliers of covariance matrices with considerably 

larger condition numbers. Avoiding the procedure of calculation of covariance matrices 

increases the calculation accuracy as a whole and improves the convergence of calculations. 

However, such form of calculations (concatenation of matrices) increases matrix size, which 

increases the amount of mathematical operations in calculating the Cholesky multipliers.  

A significant shortcoming of the QR factorization method is that it uses a considerable 

amount of mathematical operations to calculate the Cholesky multipliers:  

    
    .1285 22





n

mnj
QORT mmnnjjE

     (3.23)
 

The reason is that this method deals with vectors and matrices in calculating Cholesky 

multipliers. 
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To compare the efficiency and to estimate the computational complexity of the Bierman 

method and QR factorization method, we performed analytical and program calculation of the 

amount of mathematical operations used by these methods to calculate Cholesky multipliers. 

Using analytical methods to find the computational complexity allowed making a 

preliminary estimation of the efficiency of the Bierman method for factorization of covariance 

matrices (Bierman, 1977). These methods resulted in the following analytical formula for finding 

the computational complexity of factorization by the Bierman method:  
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   (3.24)
 

where m  is the rank of covariance matrix. To check the correctness of the analytical formula, we 

modeled the algorithm of the Bierman method for factorization of covariance matrix and 

calculated the amount of mathematical operations by means of flops function from Matlab 

software package. For modeling, we took a 9х9 symmetric positive definite matrix and 

decomposed it into Cholesky multipliers. As a result of modeling in Matlab 5 with the use of 

function flops, we obtained 497 operations. Calculating the amount of operations by the 

analytical formula (3.24) yielded 516 operations. These results are rather close; therefore, we can 

consider them reliable. 

Similarly, we used mathematical methods to find the computational complexity and 

derived the analytical formula for the computational complexity of the QR factorization 

algorithm: 
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where mn,  are dimensions of the covariance matrix. We performed similar modeling in the 

Matlab environment with the use of flops function for the algorithm with QR factorization. As a 

result of modeling and calculation by the analytical formula (3.25) with 9х9 symmetric positive 

definite matrix, we obtained the same number, namely, 29 154 operations.  

Thus, having analyzed expressions (3.24) and (3.25) for calculation of the computational 

complexity of both methods, we may state that the Bierman method is more efficient since it 

needs less operations to calculate Cholesky multipliers of covariance matrices. 

Let us compare the efficiency of the Bierman method with that of the QR factorization 

method used in the Kalman filtering problems with factorization of a priori and a posteriori 

covariance matrices of state variables in inertial-satellite navigation system. In the first case, we 
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will consider the Kalman filter with QR factorization and calculate the amount of necessary 

mathematical operations. And then we will consider the Kalman filter with factorization by the 

Bierman method and perform a similar procedure. 

The Kalman filter equations for the first variant are presented above by (3.6)–(3.8). 

Modeling the Kalman filtration algorithm with QR factorization and using flops function to 

calculate the amount of mathematical operations result in 292,267 operations. 

Similarly, modeling the Kalman filtration algorithm with factorization by the Bierman 

method in Matlab software environment and using flops function to find the amount of 

mathematical operations, we obtain 22,799 operations. 

To assess the factorization quality and find error accumulation in calculating the Cholesky 

multipliers, we will find the conditional numbers of a posteriori covariance matrix of state 

variables. To this end, let us model the algorithm of operation of an integrated navigation system 

in Matlab software environment and calculate conditional numbers using "cond" function. 

Modeling both algorithms of operation of the integrated navigation system yields the following 

results (Tunik and Valdenmayer, 2011): 

 maximum value of the conditional number: 959,790 by the Bierman method and 

959,820 by the QR factorization method;  

 mean value of the conditional number: 209,320 by the Bierman method and 

209,310 by the QR factorization method. 

As we can see from the obtained results, the conditional numbers of Cholesky multipliers 

obtained by both methods are almost identical. This means that the values of factorization quality 

of both methods are proportional (Tunik and Valdenmayer, 2011).  

However, using the QR factorization method has some advantages since this algorithm 

does not have a procedure of calculation of covariance matrices in renewal of Cholesky 

multipliers. This circumstance reduces error accumulation probability and improves the 

convergence of Kalman filtrations algorithm.  

Example 3.1 

Example of Finding the Attitude in INS and GPS Joint Operation  

To illustrate the efficiency of the mechanization algorithms presented in Sec. §2 and 

correction algorithms described in the current subsection, we can use an elementary example of 

finding object’s attitude in case of joint operation of INS and GPS. To this end, we will consider 

the following navigation problem. Choose a frame Oxyz  fixed to the Earth surface, with the 

axes being oriented to the north, east, and downwards (North, East, Down (NED) tangent plane 

navigation frame (Bronkhorst, 1978), (Schmidt, 1978)). In this frame, the object circles in the 
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plane xy with period Т = 300 sec and velocity 60 m/sec. During the motion, its attitude is defined 

by the following time dependence of Euler angles:   

T

t


2
 ,            

2


  ,        )10sin(3,0    

Projections of the angular velocity of the object to axes of the body frame (without angular 

velocity of the Earth) are defined by Eqs. (2.8). These data are used to model readouts of rate 

gyros (RGs) mounted at the object. Namely, random numbers uniformly distributed with zero 

expectation and preset value of variance   are added to the values obtained according to (2.8). 

In integrating the kinematic equations (2.10), according to algorithm (2.15), quaternion 
3

m  

(2.27) was chosen as "elementary" one. Vectors of quasicoordinates i , necessary to find 
3

m , 

were calculated with the use of quadratic spline (Simpson's formula). In other words, time 

dependence of the angular velocity vector was approximated on the time interval  ii tt ,2  by a 

second-degree polynomial whose coefficients were calculated using “RG readouts” at times 

iii ttt ,, 12  . 

 Readouts of accelerometers, including measurement errors, which were assumed to be 

uniformly distributed random numbers with zero expectation and variance a , were modeled 

similarly.    

 As the equation that describes variation in object’s coordinates in the NED system, we 

took Eq. (31) from (Bronkhorst, 1978), which reflects the theorem about addition of 

accelerations in a complicated motion of a point (the Coriolis theorem):   

Vga
V

 2m
dt

d ,                                                   (3.26) 

    ,~ gaa  m
       Rgg  ,  

In (3.26), which is duplication of (2.14), a  - specific force, m
a  - accelerometers readouts, 

transformed to navigation frame, g  is the gravity  acceleration, g  is the result of subtraction of 

centripetal Earth’s acceleration from gravity acceleration, V  - ground speed,    is angular 

velocity of the Earth rotation, and R is position vector of a point in geocentric coordinate system.  

Integration of (3.26) involved quadratic spline approximation of the variation of 

acceleration on the time interval  2 1i it ,t  . It was considered earlier that the Coriolis’ 

acceleration was neglected. However it is possible to include the estimate of this acceleration 

V2  considering it as a small correction like it was done in (Bronkhorst, 1978) evaluating it at 
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the ith step by value of velocity V  at the (i – 1)th step. This has allowed us to simplify 

integration procedure of Eq. (3.26) using calculations in quadratures.  

In the example, we assumed INS operation frequency to be 20 Hz, i.e., 2105 t  sec in 

equation (3.2). The graphs in Figs. 3.2 – 3.4 give an idea about the accuracy characteristics of the 

described INS algorithm and show the results of modeling of INS operation in the absence of 

measurement noises ( 0 , 0a ). In these figures, solid line corresponds to axis x (attitude 

error (small turn  ) with respect to axis х (Fig. 3.2), velocity errors ( V ) and coordinate 

errors ( r ) in the direction of axis x (Figs. 3.3, 3.4)), dashed line corresponds to axis y, and dot-

and-dash line corresponds to axis z. Modeling was made with the use of MATLAB package. 

Noteworthy is the high accuracy of integration of the kinematic equations (2.10) when the 

quaternion 
3

m   (2.27) was used (according to Fig. 3.2, the attitude error is of order 310 angular 

second).   

Then we modeled the situation where sensor readouts were accompanied by noise 

( 1  ang. min/sec, 210a  
m/sec

2
) and corrected (according to the algorithms described 

above) the results of INS operation in 2 seconds. In (3.4) and (3.5) we assumed that Ik    and 

IDk  . According to (Lachapelle, 1996), GPS system ensures the following errors of velocities 

and object coordinates: 0.1 m/sec, 50 m. Using these data and accepted values of   and a , we 

have chosen the following values of Cholesky multipliers kq  and kr  (3.9):    

 IIIdiagqk     , ,10 3
,        IIdiagrk  50 ,1.0 . 

0073.0 ,      25.0 ,     0063.0 . 

The dimensions of identity matrices I in kq  and kr  are 3х3.  

At the initial instant of time (t=0), we assumed errors of coordinates and velocities to be 

absent and attitude errors to be of order 2000 ang. sec along each axis (the (non-normalized) 

quaternion that defines the error of initial attitude has the form 

 T333 1051051051   ). In this regard, the following matrix was taken as the 

Cholesky multiplier 0m :  

 ,0 ,0 ,102 2

0 Idiagm    

where the identity matrix I
 
and zero matrices 0

 
are 3х3. 

To demonstrate the effect of correction of INS by GPS signals, correction was not 

performed on the time interval [300 sec, 600 sec]. Figures 3.5 – 3.8 show the results of 
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modeling. The symbols in these figures are similar to those in Figs. 3.2 – 3.4. Figure 3.8 shows 

the variances ( ) of attitude errors calculated as square roots of the first three diagonal elements 

of matrix kM  (3.9).  
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Figure 3.2 – Attitude error in the absence of measurement noise  
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Figure 3.3 – Velocity error in the absence of measurement noise 
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Figure 3.4 – Position error in the absence of measurement noise 
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Figure 3.5 – Attitude error with measurement noises  
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Figure 3.6 – Velocity error with measurement noises 
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Figure 3.7 – Position error with measurement noises  
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Figure 3.8 – The variances of attitude errors 
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3.2. Algorithms of Strapped Down Inertial Navigation Systems Correction 

based on Global Navigation Satellite System, Magnetometer, and Altimeter 

Signals 

Subsection 3.1 describes the process of correction (relations (3.1) – (3.8)) of INS operation 

according to the information obtained from GPS. We will generalize the problem statement, 

assuming that along with GPS signals, readouts of magnetometer and altimeter can be used to 

adjust INS operation. Thus, along with statistical parameters of signals and measurement noise, 

the initial information for the correction algorithm is residual vector ( k ), which can be 

calculated as the difference between GPS signals (vector kz ) and estimate of current values of 

coordinates and velocities of the object (vector kxH  ): 

kkk xHz  .                                                   (3.27) 

 It is natural that generalization of the problem statement under study should be related to 

generalization of computation of the corresponding residual vector. For example, if measurement 

channels are supplemented by altimeter readouts, this generalization reduces to the 

corresponding expansion of vector kz  and matrix H  in (3.27).   

However, taking into account the readouts of magnetometer requires additional reasoning. 

To simplify the computations, in what follows we will consider (model) the information channel 

related to the magnetometer as follows. Assume that on the object, we measure a vector )(m  that 

in the local topocentric frame is a unit vector directed along the axis ox   )001(
T

m  . 

Thus, given the values of )(m  and estimate of the direction cosine matrix A , we will find the 

estimate   of the vector of small turn angle, which defines the object attitude error. To this end, 

we can use the following relation (see, for example (1.8) in (Larin and Naumenko, 1987)):  

 mmmA .                                                             (3.28) 

Relation (3.28) can be interpreted as formalization of the fact that the small turn vector   

turns vector m  until it coincidences with vector mA .  Multiplying both sides of relation (3.28) 

by m  yields the following expression for  :  

)( mmAm  .                                                         (3.29) 

As follows from the assumption about orthogonality of vectors m  and  , the first element 

of vector   is zero and we can eliminate it from the consideration. The other components of 
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vector   can be interpreted as a result of measurement of two respective components of vector 

  appearing in equation (3.1).  

Thus, taking into account the remarks, in the case where information about readouts of 

magnetometer and altimeter is available along with GPS signals, the measurement process is as 

follows: 

 







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



10

0
;ξ

81

8818 I
kkk HHxz     (3.30) 

where  TGPSGPSk hrv~z  is measurement vector, where 
~

 is a 12  vector that 

consists of the two last components of vector   obtained from magnetometer measurement, 

using relation (3.29), 
GPSv  is 13  velocity estimate obtained from GNSS, 

GPSr  is 13  

coordinate estimate obtained from GNSS; h  is height estimate obtained from barometric 

altimeter; H  is measurement matrix, kx  is state vector, kξ  is measurement error vector; and 
ixj0  

and 
ixjI  are zero and unity matrices of respective dimensions.  

Let us continue considering the problem of INS correction based on magnetometer signals. 

When we deal with real magnetometer readouts, we actually obtain not the basis vector of Х axis 

but some other vector dependent on the place and time of the measurement. The Earth’s 

magnetic field at some arbitrary point is characterized by the magnetic field intensity vector, 

T

e x y hH [ H ,H ,H ] and two angles definig the attitude of this vector with respect to the 

geographic frame, namely: magnetic declination   and inclination   (Fig. 3.9).  

 

Figure 3.9 – Elements of Earth magnetic field intensity 
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There are geomagnetic maps of Earth, developed by specialized institutions such as the 

National Geophysical Data Center (NGDC, Boulder CO, USA) (now the National Centers for 

Environmental Information (NCEI)) and the British Geological Survey (BGS, Edinburgh, 

Scotland). In our study, we propose to use the World Magnetic Model (WMM), which is a joint 

product of the United States’ National Geospatial-Intelligence Agency (NGA) and the United 

Kingdom’s Defence Geographic Centre (DGC) and is the standard navigation model for the U.S. 

and U.K. Departments of Defense and NATO (Ngdc.noaa.gov, 2018), (Woods, 2018). There is 

also International Geomagnetic Reference Field (IGRF) model, which is the international 

research reference model (Thebault, 2014). Both of them allow calculating the geomagnetic field 

in the specified coordinates, taking into account sources inside the Earth, without regard for 

external currents.    

This means that given the latitude, longitude, height, and date of the experiment with the 

use of the model, we obtain characteristics of the geomagnetic field. For example, for 30 April, 

2018, for the point Latitude 50 º N, and Longitude – 30 º E, and zero elevation, magnetic 

declination is 7 º 26', inclination is 66 º 55', and the vector of magnetic field intensity was be the 

following:     nTHHH
TT

zyxe 9.462772.25545.19546H


. Thus, the normalized 

vector of magnetic field intensity at this point has the following form:    

   TT

zyx

e

e mmmm 9200.00508.03886.0,, 
H

H





               (3.31) 

Based on the aforesaid, we will now remove the assumption that the magnetic field vector 

in the original frame is defined by the unit vector of axis ox, i.e.,  1 0 0
T

m  . Let us show 

that under respective modification in this general case we can also use the algorithm presented 

above in this subsection.  

 Thus, let m  be a unit vector that defines the magnetic field intensity but does not 

coincide with the basis vector of axis ox. Let orthogonal matrix   be such that   

 1 0 0
T

m m   
.                                           (3.32) 

Here, the turn matrix   is defined on the basis of the normalized vector of magnetic field 

intensity (3.31) as follows:   
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Let us substitute now the numerical values from (3.31) and check the validity of equation 

(3.32).  
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Magnetic inclination is derived from the vector of magnetic field intensity eH


 in the 

following way (Chulliat et.al., 2015), relation (19):  
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It is necessary to take in account that the Magnetic North doesn’t coinside with the 

Geographic (or True) North, and the magnetic declination   varies according to different 

locations. Therefore we should compensate it accordingly, when using magnetometer 

measurements for navigation. The National Geospatial-Intelligence Agency (NGA) 

(Ngdc.noaa.gov, 2018) provides the source code written in C that is based on the World 

Magnetic Model (WMM) and provides the Earth magnetic field intensity, together with 

inclination and declination angles. This correction could be easily performed, that is why we 

don’t consider it for the sake of simplicity.   

In this case, it is expedient to consider the first three components of vector 

 Tk rvx 
, which define the small turn vector  , in the frame defined by matrix τ  that 

appears in (3.32). In other words, it is necessary to introduce a small turn vector   , which is 

related to vector   as follows: 

.                                                     (3.34) 

Thereupon, it is necessary to subject matrix k  appearing in (3.2) to the following linear 

transformation: 

T

kk   ,       IIdiag ,,  .                                        (3.35) 
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Matrix k  thus obtained should be used in the relations (3.2, 3.4, 3.5 and 3.7) in 

Subsection 3.1.  

Let us consider modifications that should be introduced in the procedure described above 

in this subsection. An analog of relation (3.28) in the case under study is  

  mmmA .                                                      (3.36) 

In (3.36), m  is the result of measurement of magnetic field vector in the moving frame 

and   is the corresponding vector of small turn. Multiplying (3.36) by   yields  

   ,mmmA .                                             (3.37) 

From (3.37), an analog of relation (3.28) follows: 

 mAm  .                                                      (3.38) 

Since vector   is orthogonal to vector m , the first component of vector   is zero. 

Thereupon, vector ~  appearing in (3.30) will only have two components, which coincide with 

the last two components of vector  . Thus, in the general case under study, vector kz  in 

equation (3.30) is defined.  

Then, estimate of vector kx  obtained according to (3.4) should be multiplied by matrix 

T . This is because the first three components of vector kx  correspond to vector   related to 

the small turn vector   by relation (3.34) in the original frame. 

Example 3.2 

Example of INS Correction by Means of GPS, Magnetometer, and Altimeter 

Let us illustrate the described algorithm of INS correction by means of GPS, 

magnetometer, and altimeter. In this connection, let us consider an example similar to that in 

Sec. 10 (Larin, 2001). Assume that xyz  frame represented in in Fig. 2.2 (Chapter 2) is oriented 

as follows: axis x to South, axis y to East, and axis z to Zenith. The origin of coordinates of this 

frame (point O) is located on the Earth surface at 45
0
 north latitude. In this frame, the object 

circles in xy plane with period sT 300  and velocity smV /60 . During the motion, its 

attitude is described by the following time dependence of Euler angles: 
T

t


2
 , 0 , 

)10sin(3,0   . Projections of the angular velocity of the object onto the axes of body frame 

 (without regard for the angular velocity of the Earth) are defined by Eqs. (5). These 

data are used to model readouts of RGs mounted at the object. Namely, random numbers, which 

are uniformly distributed with zero expectation and variance  , are added to the values 
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obtained according to (2.8). In integrating the kinematic equations (2.10), according to algorithm 

(2.15), quaternion (2.18) is chosen as "elementary" one. The necessary vectors of 

quasicoordinates i  were calculated according to (2.19). 

Errors of accelerometers were assumed to be uniformly distributed random numbers with 

zero expectation and variance a . 

In integrating Eq. (2.14), relations (2.20) and (2.21) were used (Coriolis acceleration was 

not taken into account).   

Errors of magnetometer and altimeter readouts were modeled similarly. For magnetometer, 

errors were assumed to have identical variance m
 for each of the coordinates. Readouts of 

altimeter are accompanied by errors with variance v . 

Like in (Larin, 2001), INS is supposed to operate with frequency of 20 Hz, i.e., time 

interval is sec105 2t . Readouts of RGs and accelerometers are accompanied by noise 

( 3  ang. min/sec, 22 sec/10 ma

 ), INS is corrected every 2 sec. Since we only consider 

the navigation problem, it is assumed that matrices k  and kD  in (3.4) and (3.5) are zero. As 

well as in (Larin, 2001), GPS is supposed to ensure the following errors of velocity and 

coordinates of the object: 0.1 m/sec, 50 m. The variance of magnetometer (finding the 

coordinates of vector m ) and altimeter errors are assumed as follows: mvm 1,0524.0   . 

Based on these data, the following values for Cholesky multipliers kkq ,  were accepted:  

 ,,,10 3 IIIdiagq qqqk   
     

 1,,,2 IIIdiagk   
          (3.39) 

,0063.0,25.0,0218.0  qqq   .50,1.0,0524.0     In these expressions, 

matrix I  is a 3x3, matrix 2I  is 2x2. We suppose that 
2sec/81.9 mg   and at the initial instant 

of time )0( t  the object is located on axis y , at distance 
2

VT
, i.e., the initial position of the 

object is described by vector 

T
VT

r 







 0

2
00


. The velocity vector of the object has the form 

 TVv 000  . The initial INS set up is accompanied by the following errors. The error of 

initial attitude is determined by the (non-normalized) quaternion: 

 T05.005,005,01)0(  , the error of set up of initial values is determined by the 

relative errors 01.0r  and 01.0 , i.e., the following values of initial coordinates )(r  and 

velocity )(v  are assigned:  
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)1(0 rrr  ,    )1(0 vvv  . 

In this connection, the following matrix is taken as the Cholesky multiplier 0m :  

 ,,,0 IIIdiagm mmm   

.3.57,2.1,02.0  mmm   

 As well as in (3.39), matrices I  are 3x3. Noteworthy is that the observation vector kz  

and measurement matrix H  are formed according to equation (3.30).   

For such initial data, INS operation during 500 sec was modeled. On the time interval  

 sec60,0 , INS operated in autonomous mode, i.e., no correction of its operation was made. On 

the interval  sec180,60 , INS operation was corrected using signals of GPS, magnetometer, and 

altimeter. Further, on the interval  sec420,180 , information from magnetometer and altimeter 

was only used for correction of INS operation. At the final stage,  sec500,420t , INS 

operation was corrected using signals of GPS, magnetometer, and altimeter. The results of 

modeling (time dependence of the components of vector x  appearing in equation (3.1)) are 

presented in Figs. 3.10 – 3.15. 

 

     
Figure 3.10 – Attitude error   Figure 3.11 – Scaled attitude error 
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Figure 3.12 – Velocity error    Figure 3.13 – Scaled velocity error 

 

     
Figure 3.14 – Position error   Figure 3.15 – Scaled position error 

 

Figure 3.10 shows time dependence of components of vector  ,  
zyx  ,,  ,  degrees 

dimension). Figures 3.12 and 3.14 show components of vectors rv  ,  (dimensions m/sec and m, 

respectively). To estimate the accuracy characteristics of the integrated system under steady 

operation, Figs. 3.11, 3.13, 3.15 present (with rescaling along the vertical axis) fragments of 

Figs. 3.10, 3.12, 3.14, respectively. In these figures, the notation is as follows for coordinates of 

vectors rv  ,, : the solid line corresponds to axis x , dashed line to axis y , and dot-and-dash 

line to axis z . 

As follows from these figures, the algorithm proposed for INS correction is rather efficient, 

in particular, it successfully operates under considerable perturbations. Errors at the steady mode 

(as follows from Figs. 3.11, 3.13, 3.15) have the following order: the error of attitude estimate is 

of shares of degree, velocity error is  ~ 0.2 m/sec, and coordinate error is less than one meter.  

We have considered a simple algorithm of integration of inertial navigation system, 

satellite navigation system, magnetometer, and barometric altimeter. A number of simplifying 

assumptions is introduced. This is because, on the one hand, gauges in the system under study 

are not high-precision, and on the other hand, such systems are supposed to be used for objects 

that move with low speed and at rather small distances. In particular, these can be cheap 

unmanned aerial vehicles. To illustrate the capabilities of such system, an example is considered. 

3.3. Strapped Down Inertial Navigation Systems Correction Algorithm 

Taking into Account Systematic Errors of Rate Gyros 

Let us supplement the Kalman filtration algorithm described in the previous subsection 

(3.2) by including calculation of systematic errors of rate gyros (RGs). Input data of the 

correction block are the same data about position, velocity, and attitude from SINS, data about 
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position and velocity from GNSS, covariance SINS error matrix, covariance GNSS error matrix, 

and measurements sensitivity matrix. Output data are optimal estimates of UAV position, 

velocity, and attitude and systematic errors.  

Let us write the corresponding equations of the Kalman filter. Denote by v,  and r  

vectors of INS errors in the same frame where Eq. (2.14) is written (   is the vector of small turn 

of attitude error and v  and r  are vectors of the errors of object’s velocity and coordinates). 

Let c  be vector of systematic RG error,  Taaaa 321
~,~,~~ 

 
be vector of full acceleration, and 

cosine matrix  be defined by (2.5). We accept the equation of INS errors propagation in the form 

similar to (7.149) in (Grewal and Andrews, 1993), i.e.,   

,nFxx                                                     (3.40) 
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n  is the vector of white noise. Hereinafter, 0 is zero matrix of respective size and  is identity 

matrix of respective dimension. 

As a discrete analog of (3.40) (i.e., relation that expresses variation of errors on a small 

time interval t ), we take the following equation: 
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kn  is the vector of random errors of INS operation. The subscript k  corresponds to the instant of 

time tk  . We may suppose that t  is a time step of INS operation, and the initial equation of 

errors is (3.41).  

Assume that at the k th step of INS operation, GPS provides information about the estimate 

of coordinates and velocity of the object, i.e., the following observation process takes place : 











33333333

33333333

000

000
;ξ

xxxx

xxxx

kkk
I

I
HHxz ;                                     (3.42) 

kξ  is measurement error. It might be seen that equation (3.42) is an extended version of the 

equation (3.3). 
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If information about the readouts of magnetometer and altimeter is available along with 

GPS signals, the measurement process is as follows:  

8 1 8 8 8 3

1 8 1 3

0 0
z Hx ξ H

0 1 0
k k k

I
;

  

 

 
    

 
   (3.43) 

where   TGPSGPSk hrv~z  is measurement vector, where 
~

 is a 12  vector that consist 

of the two last components of vector   obtained from the magnetometer, GPSv  is 13  velocity 

estimate obtained from GNSS, GPSr  is 13  coordinate estimate obtained from GNSS; h  is 

height estimate obtained from barometric altimeter; H  is measurement matrix, kx  is state 

vector, kξ  is measurement error vector;  and  and  are zero and unity matrices of 

respective sizes. It might be seen as well that the equation (3.43) is an extended version of the 

equation (3.30). 

Thus, using relations (3.3), (3.30), (3.42) or (3.43), we can formulate the problem of INS 

correction as an optimal filtration problem.  

It is generally known (see, for example, item 12.4 in (Bryson, and Ho-Yu-Chi, 1969)) that 

the solution of this problem has the form   

  .ˆΦ,ˆ
1 kkkkkkkk xxxHzKxx                                    (3.44) 

The filter gain matrix ( kK ) that generates optimal estimate vector kx  is defined in the 

same way as in Sec. 3.1, where filter equations are described by (3.6)–(3.8). Note that INS error 

correction usually takes place in  steps. In this case, on the intervals between the 

corrections, INS errors are modified according to Eq. (3.2), and their correlation matrix is 

modified according to (3.6) (we may suppose that at these steps H = 0). At the step at which 

correction takes place, modifications of correlation matrix are described by Eq. (3.7).  

Thus, the first nine components of vector kx  in (3.44) determine estimates of error vectors 

kkk rv  ,,μ , and hence estimates of attitude, velocity and coordinates of the object at instant of 

time kt . As to the last three components of vector kx  (vector kc ), noteworthy is that these 

components determine estimates of systematic error of RG readouts. It is expedient to use this 

estimate for correction of RG readouts. For example, if vector )( kt  is the output signal of RGs 

at time kt , then it is necessary to use the following value of angular velocity vector in relations 

(2.19): 

 kkk ctt   )()(                        (3.45) 
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Let us emphasize that correction kc  in (3.45) varies only at the instant of time of INS 

correction by GPS data, i.e., when 0H . 

Example 3.3 

Example of INS Correction by Means of GPS, Magnetometer, and Altimeter 

Let us illustrate the algorithm of INS correction by means of GPS, magnetometer, and 

altimeter described above. To illustrate the influence of systematic RG error, we will use the 

example from (Larin and Tunik, 2010 b) to compare the results of modeling of GPS/INS 

operation in case of the algorithm described above and of the algorithm from (Larin and Tunik, 

2010 b) where systematic RG errors are not taken into account. The value of systematic RG error 

is assumed the same as in the example from (Ahn et.al, 2003). Thus, let us consider an example 

similar to the example from (Larin and Tunik, 2010 b). Assume that the frame Oxyz  

represented in Fig. 2.2 (Chapter 2) is oriented as follows: axis x  is south, axis y  is east, and axis 

z  is zenith. The origin of coordinates (point O ) is located at the Earth surface at 45  northern 

latitude. In this frame, the object circles in the plane xy  with period sT 300  and velocity 

smV /60 . During the motion, its attitude is described by the following time dependence of 

Euler angles: 
T

t


2
 , 0 , )10sin(3,0   . Projections of the angular velocity of the object 

to the axes of the body frame  ''' zyx  (without regard for the angular velocity of the Earth) are 

defined by Eqs.  (2.8). These data are used to model the observations of RGs mounted at the 

object. Namely, the vector of systematic error  Tcn 321   and the 3 1  vector 
n  that 

models random errors are added at time kt  
to the angular velocity vector  Tn 321    

obtained according to (2.8). Elements of vector n  are random numbers uniformly distributed 

with zero expectation and variance  . When integrating the kinematic equations (2.10), 

according to algorithm (2.15), quaternion (2.18) was taken as "elementary" one. The necessary 

vectors of quasicoordinates i  were calculated according to (2.19). Accelerometer errors were 

assumed to be uniformly distributed random numbers with zero expectation and variance a .  

In the integration of Eq. (2.14), relations (2.20) and (2.21) were used (the Coriolis 

acceleration was not taken into account). 

Magnetometer and altimeter errors are modeled similarly. For magnetometer, we supposed 

that errors have identical variance m  for each of the coordinates. Altimeter readouts are 

accompanied by errors with variance v .  
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Like in (Larin and Tunik, 2010 b), we assume that INS operates with frequency 20 Hz, i.e., 

time interval is sec105 2t . Readouts of RGs and accelerometers are accompanied by noise 

( 3  ang. min/sec, 22 sec/10 ma

 ). Like in (Ahn et.al, 2003), the values of components of 

vector 
cn  are as follows: 941  ang.sec/sec, 562  ang.sec/sec, and 223  ang.sec/sec. 

Note that the accepted values of systematic error are less than  . INS operation is corrected 

every 2 sec. Like in (Larin and Tunik, 2010 b), we assume that GPS will ensure the following 

errors of object’s velocity and coordinates: 0.1 m/sec and 50 m. The variance of the errors of 

magnetometer (determining the coordinates of vector m ) and of altimeter are taken as follows: 

mvm 1,0524.0   . Guided by these data, we accepted the following values for the Cholesky 

multipliers kkq , :  

 ,,,,10 3 IIIIdiagq qqqqk   
     

 1,,,2 IIIdiagk     ,     (3.46)
 

,105,0063.0,25.0,0218.0 5 qqqq   .50,1.0,0524.0   
 

In these 

expressions, matrix dimensions are 3 3  for I  and 2 2  for 2I . We assume that 
2sec/81.9 mg   

and at the initial instant of time )0( t  the object is located on axis y , at distance 
2

VT
, i.e., the 

initial position of the object is described by vector 

T
VT

r 







 0

2
00


. The velocity vector of the 

object has the form  TVv 000  . The initial INS set up is accompanied by the following 

errors. The error of initial attitude is determined by the (non-normalized) quaternion: 

 T05.005,005,01)0(  , the error of set up of initial values is determined by the 

relative errors 01.0r  and 01.0 , i.e., the following values of initial coordinates )(r  and 

velocity )(v  are assigned:  )1(0 rrr  ,    )1(0 vvv  . 

Thereupon, the following matrix is taken as the Cholesky multiplier 0m :  

 ;,,,0 IIIIdiagm mmmm  
 

.4.0,65.28,6.0,04.0  mmmm   

Here matrix I  has size [ 3 3 ]. The observation vector kz  and [ 9 12 ] measurement matrix 

 has the structure as in eq. (3.43).  

Under such initial data, we modeled INS operation during 250 sec. The results of modeling 

(time dependence of the first nine components of vector x  that appears in (3.1)) are presented in 

Figs. 3.16, 3.18, 3.20. 
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Figure 3.16 – Attitude error. Algorithm 

compensating systematic errors of RG 

 

Figure 3.17 – Attitude error. Algorithm 

disregarding systematic errors of RG 

 

Figure 3.18 – Velocity error. Algorithm 

compensating systematic errors of RG 

 

Figure 3.19 – Velocity error. Algorithm 

disregarding systematic errors of RG 

 

Figure 3.20 – Position error. Algorithm 

compensating systematic errors of RG 

 

Figure 3.21 – Position error. Algorithm 

disregarding systematic errors of RG 

 

Figure 3.16 shows the time dependence of components of vector  
zyx  ,, , degrees 

dimension), and Figs. 3.18, 3.20 show components of vectors rv  ,  (dimensions m/sec and m, 

respectively).  

To estimate the influence of systematic RG error in Figs. 3.17, 3.19, 3.21, similar modeling 

results are presented when the algorithm (Larin and Tunik, 2010 b) is used that disregards the 
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systematic error. The following notation is introduced in Figs. 3.16 – 3.21 for coordinates of 

vectors rv  ,, : the solid line corresponds to axis x , dashed line to axis y , and dash-and-dot 

line to axis z .  

We can assess the efficiency of compensation for the systematic RG error in Fig. 3.22, 

where the time dependence  cc ncn   log   is shown, c  is current value of the estimate 

of systematic RG error, and   denotes the norm of a vector. 

 

Figure 3.22 – Characteristics of the compensation efficiency  

As follows from the results in Figs. 3.16, 3.18, 3.20 the proposed algorithm of INS 

correction is rather efficient in case of systematic RG errors compensation as well. For example, 

after rather short (2–3 steps of GPS correction) transient caused by robust estimation of 

systematic RG errors by the system, which ensures rather high accuracy of the estimate of 

attitude, velocity, and coordinate parameters of the object.  

Comparing the data in Figs. 3.16, 3.18, 3.20 and Figs. 3.17, 3.19, 3.21, we may state that it 

is expedient to use the algorithm that ensures compensation of the systematic RG error. 

We have considered a simple algorithm of integration of inertial navigation system, 

satellite navigation system, magnetometer, and a barometric altimeter. The algorithm allows 

compensating systematic errors of rate gyros. A number of simplifying assumptions have been 

introduced. This is because, on the one hand, gyros in the system under study are not highly 

accurate, and on the other hand, such systems are supposed to be used on objects that move with 

low velocity and on rather small distances. In particular, these can be cheap unmanned aerial 

vehicles. An example has demonstrated the expediency of compensating the systematic error of 

rate gyros.  
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3.4. Summary for Chapter 3 

3.4.1. In the 3rd chapter the problem of SINS correction from external sources of information is 

considered. Primarily this problem is considered from the point of view of usage of GPS only as 

the external source of information. In this case traditional Kalman filter can be applied for GPS 

and SINS fusion. However, it was shown that the covariance matrix of the state estimation errors 

is ill conditioned and the state vector estimation includes one unobservable mode. In order to 

overcome these difficulties the Cholesky factorization of this covariance matrix was considered 

and several method of finding generalized Cholesky factors were analyzed from the point of 

view of their computational expenses and possibilities of application for solution problem of 

improvement of Kalman filtering convergence.  

3.4.2. Further application of integrated SINS and GPS correction includes application of other 

external sensors likewise the magnetometer and barometric altimeter. Some practical algorithms 

were proposed for solution of this problem.  

3.4.3. Correction methods mentioned above didn’t take in account the systematic errors of 

inertial sensors. However the compensation of gyros biases is inevitable for sustainable  

operation of navigation system. Corresponding correction algorithms were proposed also for 

solution of this problem. 

3.4.4. The efficiency of proposed algorithms was proved by results of mathematical modeling, 

which are given in this chapter, as well as by results of laboratory, ground and flight 

experiments, which are considered in the 6th chapter. 
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CHAPTER 4 – METHODS OF INITIAL ALIGNMENT AND 

CALIBRATION OF THE COMPONENTS OF SENSORS OF THE 

INERTIAL NAVIGATION SYSTEM 

4.1 Initial Alignment of Strap-Down Inertial Navigation Systems 

Preliminary initial alignment of SINS, i.e., finding initial values of attitude, position, and 

velocity parameters is known to be one of the necessary conditions when solving navigation 

equations. 

We assume that linear coordinates (position and velocity) are known. Therefore, 

researchers mostly pay attention to procedures of finding the initial attitude parameters by using 

measurements of available onboard sensors and well-known information about magnetic and 

gravitational fields of the Earth. Initial alignment usually means finding initial attitude 

parameters in one form of representation of another. 

The essence of this procedure is to find angles (or the quaternion or direction cosine 

matrix) that describe spatial attitude of UAV (and SINS mounted on it, respectively) in the 

chosen navigation frame. Navigation frame is the system that is used for numerical integration of 

differential navigation equations; this can be Earth centered inertial frame, Earth centred Earth 

fixed frame or local-level topocentric frame, where the axes are directed North East Down 

(NED) or East North Up (ENU) (Lurie, 2002), (Siouris, 2007). 

As the practice of UAV construction and operation in various application fields shows, the 

procedure of initial alignment of SINS is important since the correctness of determining object’s 

spatial position during flight depends on its accuracy. That is why efforts of many researchers all 

over the world are currently aimed at the development of the initial alignment procedure that 

would satisfy two principal conditions. On the one hand, such procedure should be executed in 

minimum time and be implemented with minimum complexity on onboard computers; and on 

the other hand, it should ensure the maximum accuracy of determining the spatial position of the 

UAV. 

To derive attitude parameters, it is necessary to execute the procedure of initial alignment, 

possibly in two stages. Rough alignment is possible when MEMS-type rate gyros are used, 

which do not allow measurement of the angular velocity of the Earth. If more precise and 
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expensive sensors (for instance, fiber-optics gyros) are used, it is possible to use the second stage 

of precise alignment. Since applying MEMS-type rate gyros is most typical for small UAV, we 

will first consider the variants of rough alignment. 

4.1.1 Rough Alignment with the Use of Accelerometers and Rate Gyros 

As to rough alignment, the literature proposes an approach to determining the attitude that 

consists of two basic components: accelerometer levelling (i.e., determining roll and pitch 

angles) and yaw/azimuth angle with the use of magnetometer (Titterton and Weston, 2004), 

(Petovello, 2003), (Shin, 2005), Ilnytska S. (2010). 

The following relations are used in SINS to find roll and pitch angles from available 

measurements by accelerometers of the projections of acceleration 
b

xa  and 
b

ya  onto axes y,x  of 

the body frame (Shin, 2005): 
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where   and   are the errors of roll   and pitch   angles, respectively, 
axb  and ayb  are 

accelerometer’s biases, and g  is the gravity acceleration. 

If the accuracy of RG is enough to measure the components of Earth angular rate, then it is 

possible to determine yaw angle after the end of the previous stage, using RG measurements 
b

y  

and 
b

x  from the following expressions (Shin, 2005): 
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where   is yaw angle error, b
y

b


 is RG bias, 
e  is the Earth angular rate, 

b

x ,
b

y  are 

components of Earth angular rate measured in a body frame and   is current latitude. 

Noteworthy is that for low-cost inertial sensors, measurement errors often considerably exceed 

the Earth rotation velocity. Because of rather low accuracy and resolution of MEMS-type RGs, 

they cannot precisely measure components of the Earth angular velocity. In turn, this means that 

to find the yaw angle, it is also necessary to involve some external information sources, for 

example, a magnetometer. 
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A shortcoming of the above method of rough orientation is close dependence of the 

accuracy on measurement errors of accelerometers and impossibility to find yaw angle by means 

of MEMS-type RGs. 

To eliminate this issue, data from accelerometers and magnetometers are proposed to be 

used for the initial alignment procedure. 

4.1.2  Refined Alignment with the Use of Magnetometer and Accelerometer Readouts 

This method assumes that along with onboard measurements of accelerometers and 

magnetometers, there is also information about vectors of gravitational and magnetic fields of 

the Earth in the initial frame. 

Let us now consider the problem of determining the matrix of transition from the fixed 

frame to UAV frame. Denote the values of measurement vectors of onboard accelerometers and 

magnetometer (in the fixed frame) by a  and m  respectively. Let us construct the third vector, 

which is equal to the vector product of vectors a and m, i.e., vector mad  . Thus, we have 

three vectors: d,m,a  with their positions known in the fixed frame. It is important that that it is 

possible to measure the values of vectors a and m in the UAV frame (denote them by 11 m,a ) and 

to calculate vector 111 mad  . Thus, we have two matrices,  dmaZ   and 

 1111 dmaZ  . 

 If we denote by A  the matrix of transition from the fixed frame to the UAV frame, we 

can write 

AZZ1  .                                                                       (4.3) 

Assuming that matrix Z  is invertible allows us to obtain the following relation that defines 

matrix A : 

1

1
A Z Z

 .                                                                    (4.4) 

This matrix defines the UAV attitude.   

Accounting for Measurement Errors. 

Relation (4.4) defines the transition matrix A  regardless of the measurement errors of 

vectors that define matrix 1Z . It is important that matrix A  is orthogonal, i.e., 1AA  . With 

regard for measurement errors, the orthogonality property of matrix A  defined by (4.4) can be 

violated. However, this property can be used to estimate matrix A . 

 Thus, let matrix 1Z  have the following structure as a result of measurements of vectors 

1a  and 1m : 

111 ZZ
~

Z  ,                                                             (4.5) 



80 

 

where 1Z  is the matrix of measurement errors and 
1Z

~
 is the matrix of true measurements. In this 

case, taking into account (4.5), we can represent relation (4.4) as 

             
1

1

1

1

1

111 ZZZZ
~

Z)ZZ
~

(A   .                                  (4.6) 

The first and second terms in (4.6) define the exact value of the transition matrix and 

determination errors of this matrix. To derive estimate A
~

 of matrix A , by the measurement 

results from (4.6), we can use the property of orthogonality of the transition matrix, namely, the 

condition A
~

A
~ 1  . 

 To obtain such estimate, let us construct singular value decomposition of matrix 1A : 

                       VUSA1
 ,                                                                   (4.7) 

where U and V are orthogonal matrices and S is a diagonal matrix. In case of precise 

measurements, matrix 1A  will be orthogonal; hence matrix S will be an identity matrix. Based 

on this reasoning, we can take matrix 

                              VUA
~  ,                                                                   (4.8) 

 (where matrices U and V are defined by (4.7) and S is assumed to be identity matrix) as 

estimate A
~

 of matrix A . 

Example 4.1 

Let vectors a and m be as follows: 

  100a ,     111m . 

Respectively, vector   011mad . 

To find matrix A , we will specify the following values of Euler angles: 

4


 . 

The following matrix corresponds to these values of Euler angles (see, for example, 

Chapters 2, 3 (Lurie, 2002)): 





















7071.05000.05000.0

5000.01464.08536.0

5000.08536.01464.0

A . 

As matrix 1Z , we take a matrix whose elements are random numbers with zero 

expectation and variance 210 (this matrix is generated by rand.m procedure from MATLAB 

package (Mathworks.com, 2018)). As a result of modeling, we obtained the following value of 

matrix S  that appears in (4.7):  
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

















9753.000

09889.00

000102.1

S . 

Using relation (4.8), we found the following estimate A
~

 of matrix A : 





















7066.05015.04992.0

4959.01523.08549.0

5048.08516.01410.0

A
~

. 

Note that the norm of the difference of A  and A
~

 is of order 310 : 

0075.0A
~

A  . 

The corresponding initial quaternion is calculated from the obtained DCM by formulas 

(2.5) and is used as the initial condition for integration of the kinematic rotation equations 

presented in Chapter 2. 

Similar methods of determining the attitude of a rigid body as applied to spacecraft were 

considered in (Avraamenko, Larin and Bordug, 1983).  

To increase the accuracy of determining the initial attitude, it is obviously necessary to 

possess additional information sources. In this book, we consider navigation systems based 

rather rough RGs of MEMS type. These gyros are known to have rather low sensitivity, which 

does not allow measuring the angular velocity of the Earth. If more precise sensors can be 

applied (for example, fiber-optics gyros (FOG)) whose sensitivity allows measuring the angular 

velocity of the Earth at the start point, more precise methods of initial alignment are available.  

4.2 Calibration Methods and Mathematical Models of Measurements of 

Components of Sensors of Inertial Navigation System 

Strap-down inertial navigation system (SINS) is constructed so that integrating the 

measured angular velocities and linear accelerations yields the navigational solution. SINS 

accuracy depends on many factors such as presence of systematic errors, computing errors, and 

errors of raw information sensors. The last component contributes the most to degradation of 

INS accuracy since the integration process is very sensitive to regular sensor errors. For 

example, accelerometer bias causes a velocity error proportional to time t and a position error 

proportional to t
2
. RG sensor bias leads to a velocity error proportional to t

2
 and position error 

proportional to t
3
 (Artese and Trecroci, 2008), (Kharchenko, Larin and Ilnytska, 2012). In 

particular, the study (Artese and Trecroci, 2008) proposes the following approximate formula to 

estimate the degradation of position accuracy found with the use of errors of RGs and 

accelerometers:   
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  (4.9) 

where 

0p  is position error at time 0t ; 

0v  is velocity error at time 0t ; 

0ttt   is the time passed; 

ab0   is accelerometer’s bias at time 0t  

gb0   is RG bias at time 0t  

0   is horizontal misalignment at time 0t  

zH0  is yaw misalignment multiplied by approximate distance; 

aSF0 , 
gSF0

 are the errors of scale coefficients of accelerometers and RGs; 

F  is measured acceleration and g  is acceleration of gravity (
2/81.9 sm ). 

The above equation demonstrates the importance of determining biases, errors of scale 

factor, and non-orthogonality (misalignment) for adequate SINS operation. Determinig of these 

parameters is the ultimate goal of the calibration procedure. 

Calibration is usually performed by comparing certain reference values with sensor 

measurements if respective sensor model is available. Depending on model’s complexity and the 

number of unknown parameters, experimental measurements are formulated so that the number 

of obtained independent equations exceeds the number of unknown error parameters. 

Earth gravity and its projections are used as reference signals for accelerometers whose 

measurement range is not much wider than ±1 g (Meleshko and Nesterenko, 2011). For rate 

gyros, reference signals are the Earth rotation velocity or only the prescribed rotation velocity of 

a rotating motion table in case of "rough" sensors that cannot detect the Earth rotation.  

To perform the calibration procedure, it is necessary to have a sensor measurement model 

that includes all information about it. Such model can be absolutely simple, for example, include 

only scale factor. A simple model can be applied to a big class of sensors while a complicated 

model is based on more specific information about the sensor. The measurement accuracy of a 

calibrated sensor increases as the model of its measurements is complicated; hence, it is 

necessary to reach a compromise between model’s complexity and accuracy. 
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Inertial sensors and systems are developed for various applications, which include 

providing precise autonomous long-time navigation in planes, ships, and submarines as well as 

operating as a part of integrated inertial-satellite navigation system for small UAV. The 

performances of sensors’ components will obviously substantially differ from each other in these 

cases. In the first case, these will be expensive, larger, and precise sensor. In the second case, 

most likely, these will be small-size, rather inexpensive MEMS-type sensors. 

It is natural that different classes of sensors should have their own calibration methods. For 

more expensive and precise systems, it is expedient to use big calilbration motion tables and 

corresponding calibration techniques as it was considered in (Lee, Tunik and Kim, 1999). And 

small-size, rather inexpensive MEMS-type sensors demand somewhat simplified calibration 

techniques with the use of available tools. Below, we will consider calibration methods intended 

for inexpensive accelerometers and MEMS-type RGs with representation of experimental 

results.  

4.2.1 Calibration Method and Mathematical Model of Measurements of Accelerometers 

We propose to base the accelerometer error model on the model presented in (Lee, Tunik 

and Kim, 1999), (IEEE Std 1293-1998, R2008, 2011), (Choi, Jang and Kim, 2010) but without 

regard for nonlinearity error. It was shown in (Kharchenko, Larin and Ilnytska, 2012) that its 

contribution is insignificant (at the level of sensitivity of the last bit); however, it makes 

calculations much more complicated:    

,)a )(1(

;) ()1(

;)a )(1(

azazyzxxzyzaz
m
z

ayayxyzzyxyay
m
y

axaxzxyyxzxax
m
x

baasa

baaasa

baasa













   (4.10) 

where  Tm
z

m
y

m
x

m aaaa ,,  are measured acceleration values;  
T

a ax ay azs [ s ,s ,s ]  are  

scale factors of accelerometers;  Tzyx aaaa ,,  are true  acceleration values; ij  are 

misalignment errors of sensitivity axes;  Tazayaxa bbbb ,,  are biases; and   is noise 

components of measurement errors.  

In the matrix form, (4.10) becomes 

,baAam       (4.11) 
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where SAA  ;
aSbb  ;  azayax s1,s1,s1diagS   is the diagonal error matrix of scale 

factors; 
























1

1

1

A

zxzy

yzyx

xyxz







  is matrix of the misalignments of accelerometer’s sensitivity 

axes. 

The vector of unknown parameters is  T321321 bbbAAAX 


112]Xdim[ 


, where 



















3

2

1

A

A

A

A , 31]Adim[]Adim[]Adim[ 321  . Thus, there are 12 unknown parameters: nine 

for A  and three forb . To find 12 unknown parameters, it is necessary to have 12ne   

independent equations. 

To collect the necessary data, the following measurements are performed. Rotation about 

axes X and Y with 45  intervals and about 2 min fixation at each position is carried out to obtain 

full turn as a result. Fig. 4.1 schematically represents the calilbration motion table with inertial 

measuring module (IMU) mounted so that rotation is carried out around axis X. As we see from 

the figure, to perform rotation around axis Y, it is necessary to make a 90 ° turn of IMU around 

axis Z of the body frame. 

 

Figure 4.1. Schematic diagram of the calilbration motion table 

 

Thus, we obtain eight positions for each of the axes: 





45i)i(

45i)i(

2

1




, 8:1i   

Rotation around both axes yields 48 equations. In the matrix form, they are as follows: 

X 
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  XAB


,     (4.12) 

where 































m
y

m
y

m
x

m
x

a

a

a

a

B

8

1

8

1





 and 





























y

y

x

x

A

A

A

A

A

8

1

8

1





 are the measurement vector and the matrix of reference 

signals, respectively;   is noise component; 

m
yixa ,  are the measured accelerations with respect 

to three axes, obtained from the i-th position (i = 1: 8) as a result of rotation around axes Х and 

Y, respectively; yixA ,  is [3x12] matrix of reference signals for the i-th position (i = 1: 8) as a 

result of rotation around axes Х and Y, respectively. Matrix ixA  takes the following form: 

























100a00

0100a0

00100a

A

T

ix3131

31

T

ix31

3131

T

ix

ix , 

 

where 
refixix gСa  ,   Tref 81,900g  ,       

    



















icosisin0

isinicos0

001

Сix



 . 

Here, i  denotes position number,  45i)i( , 8:1i  . Rotation around axis Y yields 

similar results: 



























100a00

0100a0

00100a

A

T

iy3131

31

T

iy31

3131

T

iy

iy , 

 

where refiyiy gСa  , 

    

    





















icos0isin

010

isin0icos

Сiy





. 

Obviously, using the reference value refg  makes it possible to calculate all the elements of 

A
. Considering the redundant number of measurements, we apply the least squares method to 

find vector X


 from the system of equations (4.12): 

  



  BAAAX
T1T


.    (4.13) 
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We select abAS ,,   from vector X


 as follows: 

 

 332211 ,, aaadiagS  ;  ijaA  . 

bSba  1
; ASA  1

 . 

To increase the calculation accuracy of vector X


, we propose to use QR-factorization. 

Matrix 


A  can be decomposed into two matrices: RQA Tqr
 , where IQQT  , 











0

0R
R , and 0R  is a square matrix, i.e., nnRsize )( 0 .  Let us represent the product of 

two matrices 


BQ  as two column vectors: 









 

2

1

z

z
BQ ,                                                  (4.14) 

 

where 1n)z(size
1

 . Then we will calculate the vector of unknown parameters as 

1

1

0
zRX  


 (4.15) 

Noteworthy is that the condition numbers of matrix 
0

R  obtained by means of QR-

factorization of the overall measurement matrix 


A  are related as follows: 

  AAcond)R(cond T

0  (4.16) 

To carry out an experiment according to the technique described above, we used a not too 

much precise rotating motion table in a vertical plane and an inertial measurement unit 

ADIS16362 by Analog Device Company, which includes three orthogonally arranged 

accelerometers and three rate gyros. 

ADIS16362 is a functionally complete inertial measurement unit, which outputs 14-digit 

data corresponding to projections of angular velocity and linear acceleration with respect to three 

axes (Analog.com, 2018).  

The accelerometer calibration procedure described above repeated two times. To estimate 

the adequacy of the measured data, we will use vectors from Eq. (4.14) and calculate so-called 

data "deviation":   

2

1

100%
z

dev
z

  , (4.17) 
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where   is vector norm. It is obvious that ideal deviation dev  should be 0%; however, the first 

time we obtained 3% and the second time 4%. This can be explained by low accuracy of the 

motion table, rotation axes backlashes (Figs. 4.2 – 4.3), and certain errors in angle alignments, 

for example, not exactly 45º but 45.4º. 

Since the results of the two experiments were similar, in what follows we will describe 

data processing and results of only the first experiment. During rotation around axis Х, 

component xg  should be equal to zero; however, Fig. 4.2 shows that this is not the case in 

practice, and certain deviations are observed, which can be explained by rotation axes 

backlashes, which contribute to data deviation. Similar results were obtained during rotation 

around axis Y (see Fig. 4.3). 

 

Fig. 4.2. Measurements of accelerometers during rotation around axis Х 
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Fig. 4.3. Measurements of accelerometers during rotation around axis Y 

 

Having processed the measurement data according to the formulas above, we obtained the 

following estimates of the accelerometer sensitivity matrix and bias: 























0026,10239,00194,0

0085,09922,00513,0

0229,00830,09917,0

A

;  


















3372,0

1177,0

0538,0

ab

. 

Note that matrix A  is very close to the identity matrix I ; therefore, it is expedient to 

represent it as 

BIA  ,      (4.18) 

where B , in turn, can be represented as the sum of a symmetric and a skew-symmetric 

matrices: 

skewsym BBB   ,     (4.19) 













 














 


2

BB
B;

2

BB
B

T

skew

T

sym

 

With regard for the small order of magnitudes in matrices skewsym BB  , , we can consider 

the following relation to be true (to within 2 ): 

     symskewskewsym BIBIBIBIBI 
.   (4.20) 

The first product characterises actual errors of sensor’s axes misalignment and of scale 

factors as themselves: 
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 


















1,00380,0083-0,0033-

0,0083-0,99050,0249

0,0033-0,02490,9850

BI sym

, 

which can be considered as an estimate of the sensitivity matrix of the accelerometer unut. 

The second product characterises the error of misalignment of sensor’s sensitivity axes 

with respect to calibration plane: 

 


















10,0140-0,0161

0,014010,1032

0,0161-0,1032-1

BI skew

. 

Thus,  skewBI   is a turn matrix, which connects the trihedron of sensors’ sensitivity axes 

and the trihedron of calibration plane. Since the rotation values are small, we can use the 

following form for this matrix (Wittenburg, 1977): 

 
























1

1

1

BI

12

13

23

skew

,    (4.21) 

where 321 ,,  are small angles of rotation of the trihedron Oxyz of sensors’ sensitivity axes 

around axes zyx ,, , respectively.   

The technique described in this study was approved by the data of two experiments. 

Similar data were obtained both times, which shows that accelerometer error estimates are 

repeated and calibration technique is adequate. However, these experiments were carried out 

more likely for the previous “rouhgh” estimate of sensors’ errors. To make it possible to talk 

about more exact results and to compensate these errors in handling algorithms, it is necessary to 

repeat the experiment at one of the special calibration motion tables, for example three- or bi-

axial motion tables, like (Acutronic.com, 2018), (Ixblue.com, 2018), (Actidyn.com, 2018) for 

example.  

Considering rather small value of nonlinearity error estimate, it makes no sense to take it 

into account under the described calibration conditions. This will probably be expedient in 

calibration at precision motion tables. 

4.2.2. Calibration Method and Mathematical Model of RG Measurements 

We propose to be based on the model of RG errors like in (Lee, Tunik and Kim, 1999) but 

to simplify it like in (Kharchenko et.al., 2012 a) and neglect the nonlinearity error since its 

contribution to MEMS-type sensors is rather insignificant:  
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   (4.22) 

where  Tm
z

m
y

m
x

m  ,,  is measured angular velocity signal;  T

x y zs [ s ,s ,s ]     is 

vector of RG scale factors;   Tzyx  ,, are reference values of angular velocity; ij  

are the errors of misalignment of sensitivity axes;  Tzyx bbbb  ,,  is bias vector; and   is 

noise components of measurement errors. 

The problem where nonlinear component of sensor’s errors should be taken into account is 

considered in (Avraamenko, Larin and Bordug, 1983).  

We can write the above system of equations in the matrix form as 

  bAm
,     (4.23) 

where


 ASA ;


 bSb ;   
zyx

s1,s1,s1diagS


  is the diagonal matrix of 

errors of scale factor; 

























1

1

1

zxzy

yzyx

xyxz

A







  is the matrix of misalignment errors of RG 

sensitivity axes. 

The vector of unknown parameters is  T
321321

bbbAAAX 


, 112]Xdim[ 


, 

where 



















3

2

1

A

A

A

A 31]Adim[]Adim[]Adim[
321

 . Thus, there are 12 unknown 

parameters: nine for A  and three for b . To find 12 unknown parameters, we should have 

12eN   independent equations. 

To accumulate the necessary amount of data, a series of measurements is carried out at a 

motion table (its kinematic scheme is presented in Fig. 4.4). The platform of the motion table 

rotates around the vertical axis with constant angular velocity 
ref

.
 The calilbration motion table 

is alternately inclined by chosen angles with respect to axes X and Y (Table 4.1) and rotates 

around vertical axis (Fig. 4.4) about 1 to 2 minutes clockwise and counterclockwise. Thus, there 

are seven positions of the motion table. At each of them we measure positive and negative 

angular velocities of motion.   
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Figure 4.4. Schematic representation of the motion table for calilbration 

 

 

 

 

 

 

Table 4.1 - Parameters of the experiment 

No. 

Inclination 

with respect to 

axis X, 

 rad1
 

Inclination 

with respect to 

axis Y 

 rad2
 

Reference values  

of angular velocities 

 Tzyx 
 

1 0 0  Tref 100
 

2 0 -π/4  Tref 101
2

2


 

3 0 π /4  Tref 101
2

2


 

4 0 π /2  Tref 001
 

5 - π /4 0  Tref 110
2

2


 

6 π /4 0  Tref 110
2

2


 

7 π /2 0  Tref 010
 

 

In the table, 2,1   are inclination angles (in radians) with respect to axes X and Y, 

respectively; 
ref  is the given velocity of motion table’s rotation. 

Carrying out all the measurements yields 42 linearly independent equations: the number of 

experiments is 1427 N , the number of equations is 42314 eN . 

motion table rotation 
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In the matrix form, they can be written like expression (4.12), where 



















m

m

B

14

1





   and 



















14

1

~

~

A

A

A   are the vector of measurements and the matrix of reference signals, respectively,   

is the noise component of measurement error. Here, 
m
i  represents the angular velocities 

measured with respect to three axes, obtained from the i th experiment ( 14:1i  ), 
i

A
~

 is the 

[3x12] matrix of reference signals for the i th experiment  ( 14:1i  ): 



























10000

01000

00100

~

3131

3131

3131

T
j

T
j

T
j

jA







, 

where 
T
j  are reference values of angular velocities with respect to the three axes for the i th 

experiment and 310   is zero vector of corresponding dimension. 

Vector X


 can be found from the system of equations (4.12) similarly to (4.13). From 

vector X


 we separate out  bAS ,,  similarly to how it has been done for accelerometers. To 

increase the calculation accuracy of vector X


, we propose to use QR-factorization similarly to 

how it has been done for accelerometers. 

To carry out the experiment according to the technique described above, we used one axis 

rotating UPG-48 motion table for checking and testing of gyroscopic devices, miniature attitude 

and heading reference system IG-500N by SBG Systems (Sbg-systems.com, 2018) as a signal 

reference, and inertial measuring module ADIS16362 by Analog Device (Analog.com, 2018).   

According to the technique described above, we carried out a series of measurements at 

two different angular rates in the beginning of the measurement range (± 3.9 deg/s) and then we 

generated the system of equations (4.12) in accordance with conditions indicated in the Table 

3.2, which consisted of 84 (42 for each angular rate) linearly independent equations. We have 

calculated the condition number of the obtained experimental matrix. In addition, to assess the 

adequacy of the measured data, we have calculated so-called data “deviation” according to 

(4.17). It is clear that ideally it should be 0%; however, we have obtained 0.82%. This can be 

explained by some rotation axis backlashes (Fig. 4.5 – 4.6) and certain angle misalignment 
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errors, for example, not exactly 45º but 45.3º since the UPG-48 motion table was not precise 

enough.  

  

Fig. 4.5. RG measurements for the given 

rotation velocity of 3 deg/sec 

Fig. 4.6. RG measurements for the given 

rotation velocity of 9 deg/sec 

 

Having processed the measurement data according to the above formulas, we obtained 

estimates of the RG misalignment matrix, errors of scale factor and bias (Table 4.2). 

 

Table 4.2. Calibration results 

Rotation 

velocities 

[°/s] 

       Misalignment matrix,  

                  A
 

Scale factor 

S
 

Bias, 

 s/b   

3 

9 

1.0000 -0.0062 0.0160 1.0015 

1.0007 

1.0003 

0.0006 

-0.0012 

-0.0003 
0.0063 1.0000 0.0118 

-0.0171 -0.0071 1.0000 

 

Let us consider in more detail matrix A , which is obtained directly from vector X


, Eq. 

(4.15). Since the matrix is very close to the identity matrix I , it is expedient to represent it in the 

form (4.20), where the first product characterises actually the errors of misalignment and scale 

factors of sensors and the second product characterizes the error of sensor’s sensitivity axes 

misalignment with respect to the calibration plane:  

 


















1,0003    0,0023    0,0005-

0,0023    1,0007    0,0010

0,0005-   0,0001    1,0015

BI sym

 

 


















1,0000    0,0095-   0,0165-

0,0095    1,0000    0,0063

0,0165    0,0063-   1,0000

BI skew

 

We consider matrix  symBI   as an estimate of the sensitivity matrix of RG unit and 

 skewBI   as a turn matrix, which relates the trihedron of sensors’ sensitivity axes and trihedron 
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of calibration plane. Taking into account that turn values are small, we can write this matrix in 

the same form as in (4.21). 

Let us also investigate the stationarity of the RG bias error, which can be done without use 

of special equipment. The bias error adds fixed errors to initial sensors’ measurements. It looks 

as if RG rotates while it is fixed. This results in permanent accumulation of angle error obtained 

from the multiplication of RG bias error by time (Looneys, 2010): 

1

1

0

t

BIAS b dt b t     .     (4.24) 

One of the techniques to estimate RG bias errors is averaging of sensors’ measurements while 

the device is at rest. When determining the length of measurement’s sampling to obtain the 

maximum accuracy, it is possible to use the Allan variance plot, which relates bias estimate with 

integration time (Looneys, 2010), (Allan, 1966).  

The Allan variance (AVAR), which is also known as two-sample variance, is a measure of 

frequency stability in clocks, oscillators, and amplifiers and is expressed mathematically as 

)(2

y   (Allan, 1966), (Allan and Barnes, 1981), (El-Sheimy, Hou and Niu, 2008).  

Many manufacturers of inertial sensors present Allan variance plots in technical 

specifications of sensors, in particular for RG in ADIS16362, we have such  plot (Fig. 4.7) from 

which we can see that optimal (with respect to obtaining the least bias error) integration time is 

100 to 200 sec. 

Taking this information into account, we will analyze how stable RG bias errors are in 

time. To this end, we will analyse data from RG that were motionless during 15 hours. In the 

beginning of each 30 min, we take a data file with interval of 120 sec and integrate angular 

velocities. The results of the analysis are presented in Fig. 4.8. 

 

Fig. 4.7 Allan variance plot for rate gyros (Analog.com, 2018) 
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Fig. 4.8. Drift of RG bias in time 

 

Here, ],,[ zyx bbbb   is values of RG bias in % with respect to axes zyx ,,  (solid line 

with circles, dashed line with quadrates, and dot-and-dash line with triangles, respectively). As is 

seen from Fig. 4.8, errors of RG bias vary in time slowly and rather insignificantly under steady 

states (time interval from 5 to 15 hours). The data in Fig. 4.8 and in Table 3.3 are of similar 

order; however, there are some differences, which can be due to nonstationary RG bias, 

temperature drifts, etc., as is seen from Fig. 4.8. 

As a result of this observation, we may assume that having defined bias errors, we can 

compensate for them rather efficiently for some time, without involving additional means (like 

extension of the state vector of Kalman filter to estimate RG bias, etc.) since they stay within the 

limits of certain established value for a long time. 

The technique of calibration at a rotating motion table described above was tested for two 

different rotation velocities. To estimate the compatibility of the obtained system of equations, 

we calculated the condition number of the cumulative experimental matrix as well as data 

variation percent; the obtained values were within admissible norms. We also analyzed finding 

RG bias errors with the use of static measurements on a long time interval. The order of the 

errors found by two techniques coincided and corresponded to specifications of the sensors 

(Analog.com, 2018). However, such experiments were rather carried out for the previous 

“rough” estimate of sensors’ errors. To make it possible to talk about more accurate results and 

further compensation of these errors in handling algorithms, it is necessary to repeat the 

experiment at a more precise calilbration motion table, for example, at one of three- or bi-axial 

motion tables, like (Acutronic.com, 2018), (Ixblue.com, 2018), (Actidyn.com, 2018) for 

example.    
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To more accurately assess the contribution of sensors’ calibration into the improvement of 

calculation of the navigation solution of integrated SINS/GNSS system, it is necessary to 

perform simultaneous calibration of all the components of inertial measuring module and to 

carry out a number of experiments with usage a certain reference trajectory. 
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4.3. Summary for Chapter 4 

4.3.1. We have analyzed different variants of initial SINS alignment: rough alignment with the 

use of accelerometers and RGs in the form of the Euler angles; alignment by means of vector 

multiplication of measurement vectors of magnetometers and accelerometers, which allows 

finding the direction cosine matrix and initial angular attitude of the body frame with respect to 

the navigation system. 

4.3.2. We have analysed and improved calibration methods for accelerometers, rate gyros, and 

MEMS-type magnetometers. They differ from the available methods since we proposed 

simplified sensor measurement models, used QR-factorization to increase the computing 

accuracy, and in addition introduced calculation of measurement deviation to assess the 

calibration adequacy. The calibration methods for RGs and accelerometers were tested against 

real data, and the corresponding results are presented. Determing the components of sensor 

errors as a result of calibration increases the computing accuracy of SINS navigation parameters 

by accounting for these errors. 
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CHAPTER 5 – DETECTING SENSOR FAILURES  

Problems of detecting malfunction (failures, damageability, etc.) of system elements have 

been continuously attracting researchers’ attention (Chow and Willsky, 1984), (Desai, Deckert 

and Deyst, 1979), (Deyst et.al., 1981), (Johnson, 1989), (Kreinovich et.al, 2012), (Kuznetsov and 

Shumskaya, 2013), (Larin, 1994), (Larin and Tunik, 2015), (Lebedev, 1992), (Mhaskar, Liu and 

Christofides, 2013), (Tanaka and Muller, 1990), (Tao, 2014). These issues are very important in 

navigation problems (Ahn et.al, 2003), Grip et.al, 2012), (Larin, 1999), (Larin and Tunik, 2012, 

2013, 2015), (Lebedev, 1992), in particular, in identifying failed rate gyros (RG) and 

accelerometers in navigaton system (Deyst et.al., 1981), (Lebedev, 1992). In what follows, we 

will use the results from (Chow and Willsky, 1984), (Desai, Deckert and Deyst, 1979), (Deyst 

et.al., 1981), (Lebedev, 1992) to show how it is possible to identify a failed RG using 

computational procedures based both on analytical redundancy methods and on procedures 

similar to Kalman filter (Lee, 1964). Below we will detail the case where five RGs are used to 

measure the angular velocity of an object (Lebedev, 1992) and will show that it is possible to 

simplify the computing procedures in this case (to use only procedures of calculating the 

determinant of some matrix or its condition number).   

5.1 Solving the Sensor Failure Identification Problem by Means of the 

Traditional Approach 

First of all, we should mention that the sensor failure identification problem can only be 

solved in case of sensor redundancy. This is the traditional approach to the solution of the 

problem of identification of a failed sensor. Simple hardware redundancy, where n  identical 

sensors are used instead of one sensor, is the best known. A failed sensor is determined by 

pairwise comparison of readings of individual sensors, and various procedures of detecting it 

(Johnson, 1989) are applied in case of a mismatch. Note that scalar values are compared in these 

procedures. And the cost, dimensions, mass, and power consumption of the navigation system 

sharply increase.  

To avoid this, the studies (Chow and Willsky, 1984), (Desai, Deckert and Deyst, 1979), 

(Deyst et.al., 1981), (Potter and Suman, 1977) propose the analytical redundancy principle, 

which uses the fact that vector values (rather than scalar ones) are subject to measurement in 

navigation systems. This principle is based on using the readings of a system of sensors with 

minimum possible redundancy to calculate a parity vector such that the difference between 

components of the measured vector y  with redundant number of components and parity vector 
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p  is zero in the absence of measurement noise. If one of the redundant sensors fails, this 

difference will be nonzero, which is indicative of an error. Noteworthy is that in case of 

analytical redundancy, sensors are oriented on the object not orthogonally according to the 

trihedron of gyro instrument, but at some angles with respect to the body frame (the angles can 

be found by a special technique (Desai, Deckert and Deyst, 1979), (Potter and Suman, 1977), not 

considered in this monograph). Let output 
ny R  of the measurement module be related to the 

measurand mnR    and error vector 
ne R  by the following linear stationary relation: 

eAωy  ,                                               (5.1) 

where m  is the number of redundant sensors and constant matrix 
mnRA   is defined by the 

spatial arrangement of sensors on the mobile object (Chow and Willsky, 1984), (Deyst et.al., 

1981), (Johnson, 1989), (Potter and Suman, 1977). In case of failure of the i th sensor, error 
ie  

is assumed to have the form  

]0000[   iie  .                                                   (5.2) 

Hereinafter, prime denotes transposition. Let p  be the set of parity vectors with respect 

to y , which are described by the relation (Deyst et.al., 1981): 

                          p Vy ,                        (5.3) 

where matrix 
m nV R   satisfies the condition 

0m mVA  .                                                                (5.4)        

Substituting (5.1) into (5.2) and taking into account (5.3), we obtain  

          p Ve ,       (5.5) 

i.e., in case of operational sensors, vector p  will be equal to zero vector; and in case of failure 

(5.2), the corresponding component of vector p  will be nonzero, which will be indicative of a 

failed sensor. The algorithm of finding matrix 
m nV R   that satisfies relation (5.3) is proposed in 

(Potter and Suman, 1977).   

In (Lebedev, 1992), another approach to detect a failed sensor is proposed. Following 

(Lebedev, 1992), we will construct an orthogonal projector G  that maps error vector 
e  (5.2) 

into the corresponding minimum-norm vector 0e , i.e.,  

Gee0 .                                                               (5.6) 
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Assuming that the error vector has the structure (5.2), we propose the following algorithm 

to find the i th number of failed sensor. Denote columns of matrix G  by nk ,,1 , i.e, 

 nggG 1 . Find the minimum value of the functional:  

2
)( kqkJ  ,   0egq kkk   ;                                  (5.7) 

2

0

k

k

k

g

eg 
 .                                                                (5.8) 

Hereinafter,   is vector norm, i.e., xxx 
2

. The value of 
 kk  for which 

)(minarg kJk 
 corresponds to the number of failed sensor whose error 

k  is defined by 

relation (5.8). Algorithm implementation assumes finding one of possible variants of the error 

vector 
e  (5.2), which can be found using the value of vector (5.5). In (Lebedev, 1992), this 

problem is proposed to be reduced to a linear programming problem.  

5.2 An Algorithm Using Singular Value Decomposition 

As an alternative to the above approaches, we will consider an algorithm that uses singular 

value decomposition of the matrix A  appearing in (5.1). 

Let singular value decomposition (Voyevodin and Kuznetsov, 1984) of the matrix A  

appearing in (5.1) have the form  

WUA 









0
,                                                                   (5.9) 

where WU ,  are nn  and );()( mnmn   orthogonal matrices, respectively;   is an 

)()( mnmn   diagonal matrix with diagonal elements greater than zero. Let us divide matrix 

U  into blocks  21UUU  , with the size of block 
2U  being equal to mn . Since matrix U  is 

orthogonal, i.e.,  

  


















I

I
UU

U

U
UU T

T

T

T

0

0
21

2

1 ,                                                     (5.10) 

after premultiplying matrix A  in (5.1) by TU 2 , we will find an analog of (5.4) 

02 AU T
.                                                                         (5.11) 

In (5.10) and in what follows, I  and 0  are an identity and a zero matrix, respectively, of 

the corresponding dimensions. Multiplying the left- and right-hand sides of Eq. (1.1) by 
2U  and 

taking into account (5.11), we obtain an analog of (5.7):  

eUyUp TT

22  .                                                                    (5.12) 
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Vector 0e
 
having the minimum norm and satisfying (5.12) can be expressed in terms of 

vectors ey,  as follows:  

eUUyUUe TT

22220  .                                                          (5.13) 

According to (5.13), projector G  that appears in (5.6) has the form  

TUUG 22 .                                                                   (5.14) 

If we denote by nkU T

k ,1,2  , the columns of matrix TU 2
, i.e. ,  T

n

TTT UUUU 222212  , then 

the columns of projector G  in (5.14) can be written as  

T

kk UUg 22 .                                                                 (5.15) 

Hence, T

kk

T

k

T

kk UUUUUUg 222222

2
  and in what follows  

2 2 2 2 2 2

2 2 2 2

k k
k

k k k k

U U U U y U U y

U U U U


  
 

 
.                                                              (5.16) 

Thus, substituting expressions (5.13), (5.15), and (5.16) into (5.5) yields  

2 2 1

2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ,k k k k k k k k k kJ k g y U U U E U y y U E U U U y U U               .       (5.17) 

Using the singular value decomposition (5.9) allows, according to relations (5.16) and 

(5.17), explicit expression (in terms of the results of observation y ) of functional (5.5) and 

sensor’s error estimate (5.6). Thus, using singular value decomposition of a matrix substantially 

simplifies the computing procedure of failure identification. 

Note that to find the orthogonal matrix U , it is possible to use not only singular value 

decomposition (5.9) but also a simpler computing procedure, namely, QR decomposition 

(Grewal and Andrews, 1993).  

Example 5.1 

 Let us illustrate the efficiency of using relation (5.17) in the sensor failure detection 

procedure. To illustrate the above algorithm, we will use data from example (Deyst et.al., 1981), 

which considers the case of an antisymmetric arrangement of five RGs on the surface of a cone 

with the cone angle half of which is equal to 54.7o . In this case, matrix A  in (5.1) is defined as 

follows (Deyst et.al., 1981): 

























18997.087731.087731.001899723482.0

77653.047992.047992.077653.00

60075.00060075.097204.0
TA . 
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Assume that   in (5.1) is   321 . The quantity appearing in (5.2) 1i  for 

5.1i , i.e., all possible failure cases are considered. Block 2U  of matrix U  (see (5.9) and 

(5.10)) has the form  








 


5523.02656.01225.04638.06280.0

3082.05740.06205.04300.00752.0
2

TU . 

Table 1 presents the results of computation with the use of relation (5.17), which envelopes 

all five variants of sensor failure. In Table 5.1, jk  denotes the number of failed sensor and ( )jJ k  

are calculated by formula (5.17). As seen, the minimum (zero) values of )(kJ  are only on the 

diagonal of this table.  

Table 5.1 

k  

)(kJ  

 

1 

 

2 

 

3 

 

4 

 

5 

1( )J k  0.0000 0.1382 0.3618 0.3618 0.1382 

2( )J k  0.1382 0.0000 0.1382 0.3618 0.3618 

3( )J k  0.3618 0.1382 0.0000 0.1382 0.3618 

4( )J k  0.3618 0.3618 0.1382 0.0000 0.1382 

2( )J k  0.1382 0.3618 0.3618 0.1382 0.0000 

 

 Thus, we may state that the failed sensor detection procedure described by relation (5.17) 

is efficient. 

5.3 Algorithm of Sensor Failure Identification under Measurement Noise  

Let us return to system (5.1); however, like in (Deyst et.al., 1981), (Larin, 2015) we will 

consider that measurement of angular velocity is accompanied with random noise w , namely: 

weAy   ,                                                                         (5.18) 

where w  is a vector of random quantities with the characteristics  

Iwww 2,0  . 

Hereinafter,   denotes expectation. 

Thus, we can consider vector y  as an available vector of actual measurements that contain 

errors. 

The solution of overdetermined system  

 bAx                                                                              (5.19) 

by means of the least squares method is known to be written as  
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bAAAx TT 1)(  .                                                                (5.20) 

Consider the recurrent solution scheme (5.20) for system (5.19). Let the first k  equations 

of system (5.19) yield the solution estimate 
kx : 

k

T

kk

T

kk bAAAx 1)(  , 

where matrices 
kA  and vector 

kb are defined by the first k  equations (5.19). 

k

T

kk

T

kk bAAAx 1)(  . 

In this case, to obtain the sequence of solutions 
kx , it is possible to use the recurrent 

procedure (Deyst et.al., 1981). 

Let us consider the problem of deriving 1k  estimate of vector x , following Sec. 3 (Lee, 

1964). Assume that a new  1k  measurement of signal is available, i.e., the system will be 

supplemented with one more equation: 

,11   kk bxA    













k

k

A
A 1 ,  














1

1

k

k

k
z

b
b . 

According to (3.45), (3.46), and (3.48) in (Lee, 1964) the optimal estimate 
1kx  of vector x  

obtained as a result of the 1k  measurement of signal is related to the optimal estimate 
kx  

obtained as a result of using k  measurements as follows: 

 )()
~

(
~

1

12

1 k

T

kk

T

kkk xzPPxx   



 ,  (5.21) 
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T

kk

T

kk bAAAx 1)(  .
1)(  k

T

kk AAP 2~
kk PP   

As a matter of fact, relations (5.21) describe the Kalman filter algorithm. 

As is mentioned in Sec. 8.3.1.2 (Grewal and Andrews, 1993), the Kalman filter considered 

above allows calculating also the parameters that make it possible to detect a failure. Denote  

12 )
~

(   k

T

k PY , 

k

T

kk xz   1
, 

(the notation coincides with that in (5.21)). 

In this case, the likelihood function has the form (relation (8.25) (Grewal, Weill and 

Andrews, 2001)): 

1

2
k k k kS( ) exp Y  

 
  

 
. 

This function is associated with the statistics (relation (8.27) (Grewal, Weill and Andrews, 

2001))  
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k k k

s

Y
k

 
 .                                                                   (5.22) 

In (3.5),   is the dimension of vector 
k . In (Grewal and Andrews, 1993), (Grewal, Weill 

and Andrews, 2001) it is mentioned that if the models are chosen correctly in the filtration 

algorithm, noise is centered normal random processes, then sk has 
2 -distribution. 

As these assumptions are not always true in practice, the following procedure is proposed 

in (Grewal and Andrews, 1993), (Grewal, Weill and Andrews, 2001) for failure detection. Pick 

some value maxsk  that determines the variation interval of sk corresponding to system’s normal 

operation. If maxss kk  , the system is considered to have a failure. 

Let us show how relation (5.22) can be used in the problem of determining the number of 

failed RG, i.e., when 3mn  in (1.1). Let us supplement procedure (5.21) with the calculation 

of sk
 
defined in (5.22).  Thus, we will obtain the sequence of values 3,21 ,,, nsss kkk  . This 

sequence allows finding the values 
1

2
1

s

s

k

k
 ,

2

3
2

s

s

k

k
 . To demonstrate the essence of the 

approach, we assume that ni   in (5.2), i.e., the equation corresponding to the failed RG is the 

last in system (5.18). It is obvious that for a sufficiently small noise level w  in (5.18), the last 

value in the sequence j
 
will be the maximum in this case. In turn, this will indicate that the 

failed RG has the number n . When the number of failed RG is )( nii  , it is possible to 

generalize the procedure described above by including the following steps in it. At each step, 

cyclic transposition of the equations in system (5.18) is carried out: the last equation becomes the 

first, the first one becomes the second, etc. After this transposition, the corresponding value of 

sequence j  is calculated at the same step (with the number )10(  nrr ). Denote the last 

value in this sequence by


r . The number r  of step at which the maximum value 


r  is obtained 

is related to the number of failed RG as follows: 

i n r  .                                          (5.23) 

Let us illustrate this procedure by an example. 
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Example 5.2  

As well as in the previous example, matrix A  in (5.18) is as follows (Deyst et.al., 1981):  

0,97204 0,60075 0 0 0,60075

0 0,77653 0,47992 0,47992 0,77653

0,23482 0,18997 0,87731 0,87731 0,18997

TA

  
   
 
    

 

The angular velocity   321  and the value of 
i  in (5.2) is accepted to be equal to 1. 

To generate vector w  in (5.18), procedure rand.m from MATLAB package is used, 1.0 . The 

results of modeling are presented in Table 2. As well as in the previous example, all the cases of 

sensor failure are considered. As follows from Table 5.2, the results of the experiment confirm 

relations (5.23), i.e., the algorithm considered above, which is based on the computing 

procedures of Kalman filter, allows specifying the number of failed RG. This number 

corresponds to the maximum value of parameter j


 in the corresponding row.  

Table 5.2 

i  

0  

1  


2  


3  

4  

1 0.2849 0.0303 0.3440 1.4821 367.6578 

2 0.0091 0.2664 1.1265 24.3626 0.6189 

3 0.6098 3.5288 5.7698 0.0232 0.1194 

4 2.8948 10.2930 0.0438 0.0988 0.5483 

5 58.3723 0.1144 0.0634 0.4445 2.0705 

 

For example, in case of failure of the first RG )1i(  , the maximum number from the first 

row of Table 5.2 corresponds to column 


4 . Hence, the obtained value 4r  and according to 

(5.23) 1i . 

 

5.4 Algorithm of Sensor Failure Identification by Estimating the Systematic 

Error of the Sensor. 

Simple inertial navigation systems (INS) (Barbour et.al, 2008), (Barbour, 2011), (Schmidt, 

2011) are used, in particular, in cheap unmanned aerial vehicles (UAV) (see, for example (Ahn 

et.al., 2003)). However, such INS, under considerable time of independent operation, may not 

provide sufficient accuracy of navigation parameters. Therefore, it is expedient to integrate these 

INS with satellite global positioning system (GPS) (Grewal and Andrews, 1993), (Schmidt, 

2011), (Schmidt and Phillips, 2011 b), i.e., to consider them as an element of a GPS/INS 
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navigation complex (Phillips and Schmidt, 1996), (Schmidt, 2008, 2011), (Schmidt and Phillips, 

2011 a, 2011 b). It is important that additional channels of navigation information 

(magnetometers, pressure altimeters, etc. (Coopmans, 2009), (Coopmans, Chao and Chen, 2009), 

(Kortunov et.al, 2008), (Kharchenko et.al., 2013, 2014)) are often used in UAV along with GPS 

signals to correct the results of INS operation.  

 As well as in (Larin and Tunik, 2012), below we will consider a simple algorithm of 

integration of GPS, INS, magnetometer, and pressure transducer. We will also introduce a 

number of simplifying assumptions (disregard the Coriolis acceleration and consider the motion 

in a rectangular frame). This is because, on the one hand, sensors in the considered INS are not 

high-precision and on the other hand, such systems are supposed to be used at objects that move 

slow at rather small distances. 

It is important that unlike (Larin and Tunik, 2012), along with the problem of 

compensating for the systematic RG error, below we will consider the possibility to increase the 

reliability of system operation by increasing the number of RGs. In this case, the problem is to 

detect a failed RG, which in turn allows eliminating its readings from the consideration. 

We have considered an example that shows the efficiency of the proposed algorithms. 

Detecting a Failed RG 

We have assumed above that the INS contains three RGs, i.e., does not contain redundant 

RGs. However, it may appear expedient (in order to enhance system’s reliability) to increase the 

number of RGs (see, for example (Deyst et.al., 1981)) to make it possible to exclude the readings 

of failed RG. Thereupon, we will consider the problem of identification of failed RG. Thus, let 

the output of measurement module of the RGs be related to the measured angular velocity   by 

the following relation (an analog of relation (5.1)): 

eAy   ,                                                                         (5.24) 

where vectors 
nRey , mnR  , constant matrix 

)( mnnRA  , i.e., m  is the number of 

redundant RGs. In case of failure of the i th sensor, error e  appearing in (5.24) is supposed to 

have the form  

 0, , ,0, ,0
T

i ie a  .                                                           (5.25) 

The nonzero element 
ia  in vector 

ie  defined in (5.25) is at the i th place. To identify 

failed RG, it is necessary to find the value of subscript i  and find 
ia  if necessary. 

Let according to (5.24) the value of   be defined by the following relation: 

( )Z y e   , 
1( )T TZ A A A .                                                     (5.26) 

If vector e  is defined by (5.25), then  
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i iZe a z ,                                                                    (5.27) 

where 
iz  is the i th column of matrix Z  defined by (5.27). 

Noteworthy is that the algorithm of compensating for RG systematic error described in 

Sec. 3 allows deriving estimate c


  of vector c . Given this estimate, it is possible to determine 

vector 
ie , i.e., the value of subscript i , and estimate ia


 of ia . 

Let vector c  be caused by the systematic error of the i th RG defined  by (5.25), i.e., 

i ic a z   according to (5.27). 

Assuming that estimate c


  is known, we consider the problem of finding the values of 
ia


 

and of subscript i . 

Let estimate c


  be given. The problem is to choose vector 
iz  (find subscript i ) and select 

ia


 that would approximate c


  in the best way. In other words, it is necessary to find iz
 and ia  

that minimize the value of the following residual (discrepancy): 

.2

)()(

2

2

ccczazza

zaczaczacdis

TT

iii

T

ii

ii

T

iiii








                                       (5.28) 

According to (5.28), the value of ia  that minimizes dis  is defined by the following 

relation: 

i

T

i

T

ii zzcza /  .                                                              (5.29) 

Thus, the problem of choosing subscript i  reduces to selecting vector ),,1( nizi   that 

minimizes (5.28) provided that 
ia  is defined by (5.29), i.e.,  

argmin i i
i

i c a z  .                                                        (5.30) 

Example 5.3 

 Assume that frame xyz  is oriented as follows: axis x  to the South, axis y  to the East, 

and axis z  to the Zenith. The beginning of coordinates of this system (point O ) is located on the 

Earth surface at 45
0
 north latitude. In this frame, the object circles in the plane xy  with period 

cT 300  sec and velocity 60V  m/sec. During the motion, its orientation is described by the 

following time dependence of the Euler angles: 
2 t

T


  , 0  , 0 3 10, sin( )  . Projections 

of the angular velocity of the object onto the axes of body frame )( zyx 
 (without regard for the 

angular velocity of the Earth) are described by Eqs. (2.8). This data is used to model the readings 
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of RGs installed at the object. As well as in (Deyst et.al., 1981), it is supposed that five RGs are 

mounted at the object. The form of matrix A  in (5.24) is the same as in the previous examples: 

0 97204 0 60075
T

, , 0 0 -0,60075

A 0 -0,77653 0,47992 -0,47992 0,77653 

-0,23482 -0,18997  0,87731 0,87731 -0,18997

 
 
 
  

 

Matrix Z corresponding to it in (5.26) has the form 

0,5832 -0,3605  0,0000  0,0000  -0,3605

Z -0,0000 -0,4659  0,2880 -0,2880 0,4659

-0,1409 -0,1140 0,5264 0,5264  -0,1140

 
 
 
  

. 

The angular velocity vector  T321    obtained at time 
kt  is supplemented with 

the vector of systematic error  Tc 321    defined by (5.27) and with 13  vector n , 

which models random errors. Elements of vector n
 
are random numbers uniformly distributed 

with zero expectation and variance  . The kinematic equations are integrated according to the 

algorithms described in Sec. 2 (see also (Larin, 1999, 2001), (Larin and Tunik, 2012)). (The 

Coriolis acceleration is disregarded). The errors of accelerometers’ readings are assumed to be 

uniformly distributed random numbers with zero expectation and variance a .  

The errors of magnetometer and altimeter were modeled similarly. For the magnetometer 

we supposed that errors have the same variance 
m  for each coordinate. Altimeter’s readings are 

accompanied by errors with variance v . 

As well as in [26], we suppose that INS operates with frequency 20 Hz , i.e., time interval 

ct 2105  . Readings of RGs and accelerometers are accompanied by noise 

0 05( . deg/ sec,  2 210 /sec )a m  . The systematic error of RGs 1 1c a z  , i.e., according 

to (5.25) it is caused by the systematic error of the first RG, which we will consider as a failed 

one. We assume that 
1 0 1a , .  

INS operation is corrected every 2 sec. Like in (Larin and Tunik, 2012), we suppose that 

GPS will provide the following errors of object’s velocity and coordinates: 0.1 m/sec and 50 m, 

respectively. The variances of errors of magnetometer (determining the coordinates of vector 

m ) and of altimeter are assumed the following: 0 0524 1m h, rad , m   . Based on this 

data, we accepted the following values for the Cholesky multipliers
kk ,q  : 

 310k q q q qq diag I , I , I , I    ,   2 1k diag I , I , I ,      ,                                (5.31) 
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0218.0q , 25.0k , 0063.0q , 5

q 105  , 0524.0 , 1.0 , and 50 . In 

these expressions, matrices I  are 33 , matrix 
2I  is 22 . We suppose that 2m/s81.9g , 

initially (at )0( t ) the object is located on axis y  at the distance 
2

VT
, i.e., the initial position of 

the object is described by the vector 
0 0 0

2

T
VT

r


 
   

. The vector of object’s velocity is 

 TVv 000  . The INS initial setting is accompanied by the following errors. The error of 

initial orientation is defined by the (non-normalized) quaternion 

 T005.0005.0005.01)0(  , the error of setting of initial values is defined by relative 

errors 01.0r  and
 

01.0v , i.e., the following values of initial coordinates )(r  and velocity 

)(v  are set: 

)1(0 rrr  ,    )1(0 vvv  . 

Thereupon, the following matrix is accepted as the Cholesky multiplier 0m : 

 IIIIdiagm mmmm  ,,,0  , 

4.0,65.28,6.0,04.0  mmmm  . 

 As well as in (8.1), matrices I  are 33 . The observation vector 
kz  is generated 

according to (5.4) and the 129  matrix H  has the following structure: 

 1 3H H O , 

where 









1TO

IO
H , 3O

 
is a 39  zero matrix, O  is an 18  zero matrix, and I is an 88  

identity matrix.  

Under such initial data, the INS operation was modeled during 20 sec. The results of the 

modeling (time dependence of the first nine component of the vector x  appearing in (5.18)) are 

presented in Figs. 5.1–5.3.  

Figure 5.1 shows the time dependence of the components of vector zyx  ,,( , degrees 

dimension). Figures 5.2 and 5.3 show components of vectors vr  ,  (dimensions m and m/s, 

respectively). In Figs. 5.1–5.3, we accept the following notation for the coordinates of vectors 

rv  ,, : the solid line corresponds to axis x , dashed line to axis y , and dash-and-dot line to 

axis z . 
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Figure 5.4. allows us to judge about the efficiency of compensation of the systematic error 

of RGs. It shows the time dependence of  cccf 
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Fig. 5.5 

Figure 5.5 presents the values i  of the number of failed sensor (solid line) and current 

estimate a  (dashed line), which are defined by relations (5.29) and (5.30). As we can see from 

Fig. 5.5 (the solid line), after the completion of the transient in the failure identification system, 

the steady state value of the failure indicator (5.30) is equal to 1, which corresponds to the 

assumption about failure of the first sensor.  

5.5  A Simplified Procedure of Sensor Failure Identification  

 Let us consider in more detail the case where five RGs are used to measure angular 

velocity, i.e., where 5 2n , m   in system (5.1). In case of such a redundant measurement 

system )2( m , we can substantially simplify the procedure of detecting a failed sensor. Let us 

consider the 45  matrix corresponding to system (5.1):  

 A y A .                                                                (5.32) 

If we delete one row in matrix A
~

, then the rank of the resultant matrix will be equal to 4 if 

the number of the deleted row is not equal to i  and it will be equal to 3 if we deleted the row 

number i , i.e., the one containing 


i , according to (5.2). Taking this into account, we will 

consider the corresponding procedure. Deleting the rows of matrix A
~

 one by one, we obtain s  

44  matrices 5,,2,
~

jAj
. Denote the determinants of these matrices by j jD det( A ) . It 

is obvious that if ij  , then 0jD ; otherwise 0jD . If we consider not system (5.1) but 

system (5.18), then in case of rather small   we may state that the value of jd
 
in sequence 

jj Dd 
 
will be minimum for ij  . Thus, in the five-sensor case under consideration, the 

procedure of determining the number of failed sensor reduces to generating the sequence 

5,,1, jd j , and determining the minimum term of this sequence 

jd . The values of the 

subscript of this term correspond to the number of failed sensor. 

In general, it is possible to construct a similar algorithm in which the number of failed 

sensor can be found by using the sequence of not matrix determinants but the conditional 

numbers of matrices 
jA  (to find them, singular value decomposition (5.9) can be used (Larin, 

1994), (Onishchenko, 1983)). However, such a procedure related to calculating the singular 

value decomposition for each of the matrices 
jA

~

 
seems to be more labor consuming than the 

procedure described above, which involves computing the determinants.  

Let us illustrate the described procedure on the example. 
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Example 5.4 

 The initial data coincides with those accepted in the previous example. The results of 

numerical modeling of the procedure described above are shown in Table 5.3. 

Table 5.3. 

j 1 2 3 4 5 

1 0.0814  0.6730 1.0075 0.9572  0.5413 

2 0.4245 0.1671 0.6949 0.9572 0.8539 

3 0.7371 0.3388 0.1890 0.6446   0.8539 

4 0.8999 0.9857    0.6949 0.1387 0.4705 

5 0.5873 0.9857 1.0075 0.6446   0.0354 

 

This table presents the absolute values of determinants jd
 
in the i й  th row and the 

minimum value of jd
 
corresponds to the number of failed sensor. The numbers of columns ( j )  

correspond to the number of the deleted row in matrix A  defined by (5.32). As we can see, the 

minimum (in each row) value of elements of this table are located on the diagonal, i.e., where 

j i . In other words, the minimum value of jd
 
takes place for i j . Thus, the algorithm 

described above allows us to determine the number of failed sensor. 

Note that in this example the results of measurement of useful signal are accompanied by 

random errors (vector 0w   in (5.18)). 

We have presented the algorithms to identify a failed sensor and have shown that 

computing procedures similar to Kalman filter procedures can be used for this purpose. We have 

considered the case where five sensors are used to measure the angular velocity of the object and 

have shown that the computing procedures of identification of the failed sensor can be simplified 

in this case. The efficiency of the proposed algorithms has been illustrated by the examples. 
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5.6 Summary for Chapter 5 

5.6.1. In this chapter several algorithms for identification of the faulty inertial sensors are 

proposed. They are based on the principle of analytic redundancy. It is necessary to note that the 

ultimate goal of this chapter is faulty sensor detecting only; meanwhile the problems of system 

reconfiguration after solving this problem are beyond the content of this chapter. 

5.6.2. Two very simple algorithms and two more sophisticated algorithms are proposed in this 

chapter. The 1
st
 simple algorithm is based on the singular value decomposition; meanwhile the 

2
nd

 one uses very simple calculations of certain matrices determinants. They could be applied 

directly to the redundant sensors, providing the “raw” measurements. 

5.6.3. Two other algorithms have to be applied for data processing of the “refined” 

measurements, i.e. the output data of the integrated SINS. They are based on the sensor bias 

estimation in presence of sensor noise. The choice of this or that algorithms depends on the 

preferences of the SINS designer. 

5.6.4. The efficiency of these algorithms was proved by mathematical modeling results, which 

are shown in examples presented in this chapter. 
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CHAPTER 6 – EXPERIMENTAL STUDIES OF THE INTEGRATED 

INERTIAL-SATELLITE NAVIGATION SYSTEM  

In this chapter, we will describe the results of comprehensive analysis of the integrated 

inertial-satellite navigation system (IISNS) are described. In the beginning, we will present the 

results of static laboratory studies using only inertial and satellite navigation signals (Sec 6.1). In 

the subsequent sections, we will additionally use the readings of magnetometers and altimeter. 

Sections 6.2, 6.3-6.4, and 6.5 represent the results of IISNS trials by means of a manual rotating 

motion table, ground tests, and flight trials, respectively To assess the possibilities of practical 

application of the developed IISNS, the latter was tested under the same conditions and in 

parallel with standard IISNS IG-500N by SBG-Systems (Sbg-systems.com, 2018), in order to 

compare their accuracy characteristics. 

 

6.1. Analysis of the Proposed Integrated System under Laboratory Conditions 

The initial stage of testing of the integrated inertial-satellite navigation system is executed 

in laboratory with the use of actual data under steady-state conditions by performing the 

corresponding experiment whose results are published in (Kharchenko and Ilnytska, 2010). 

The following equipment was used during the experiment: inertial measurement unit 

(IMU) ADIS16362 by Analog Device (Analog.com, 2018 a) and GPS board of OEM-V1 

receiver by Novatel (Novatel.com, 2018 a). GPS/IMU data were divided into messages of two 

types: (i) measurement data from the inertial measurement unit with 100 Hz information output 

frequency and (ii) measurement data from the GPS receiver with 1 Hz information output 

frequency. 

Figure 6.1 represents the scheme of reading and post-processing of data from IMU and 

GPS receiver. As is seen from the figure, sensor signals arrive at a personal computer (PC) in 

binary format *.dat, where C++ software is used to read out messages from IMU and GPS 

receiver and then data are converted into text formats *.txt. The inner time clock of the device is 

synchronized with global time by means of GPS receiver signals. The GPS receiver data file 

contains the following: GPS time (seconds of week), XYZ coordinates in ECEF (Earth Centered 

Earth Fixed) frame, RMS error of coordinates (m), linear velocities with respect to the three axes 

in ECEF frame, RMS error of the velocity (m/sec), solution status, and solution type of the 

navigation problem according to (Novatel.com, 2018). The IMU data file contains: time (seconds 
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of week), angular velocities (rad/sec), and acceleration (m/sec
2
) with respect to three 

measurement axes. In such form, they arrive at the Matlab software environment for further 

processing. 

                                

Fig. 6.1. Block diagram of experimental data acquisition and processing. 

 

All the calculations were performed according to the algorithms presented in Secs. 2–3 of 

this monography in the NED frame with the origin point at the National Aviation University: 

50.4391181288º north latitude, 30.4301208368º east longitude and 215.909 m elevation WGS-

84. During the experiment, the object was fixed, i.e., its position and attitude did not vary. 

Measurements of accelerometers and RGs contained errors with nearly zero expectations and 

with the RMSD no greater than 0.1 º/sec for RGs and no greater than 0.5 m./sec2 for 

accelerometers. The errors of determining object’s coordinates and velocity by the GPS receiver 

were as follows: expectation ≈ 0.3 m and 10-3 m/sec, RMS no greater than 0.1 m and 

0.03 m/sec.  

Data with the total time of 300 sec were processed as follows: the first 60 sec the SINS 

operated independently, the next 120 sec it was corrected every second by the GPS receiver 

(integrated mode), and the last 120 sec it operated independently again. The results of data 

processing in the NED frame are presented in Figs. 6.2-6.4. 

Figure 6.2 shows time dependence of Euler angles in the NED frame. The solid, dot-and-

dash, and dashed lines denote roll, pitch, and heading angles, respectively. The data in Fig. 6.2a 

are full-scale and in Fig. 6.2b are with vertical axis zoom during integrated ISNS operation. 

Figure 6.3 shows time dependence of linear velocities in the NED frame. The solid, dot-and-

dash, and dashed lines denote the linear velocities along the longitudinal, transverse, and vertical 

axes, respectively. The data in Fig. 6.2a are full-scale and in Fig. 6.2b are with vertical axis zoom 

during integrated ISNS operation. Figure 6.4 shows time dependence of object’s position. The 

solid, dot-and-dash, and dashed lines denote the position with respect to axes X, Y, and Z, 

respectively. The data in Fig. 6.4a are full-scale. Figure 6.4b presents a fragment with 2.5 times 

vertical axis zoom for a more convenient perception of experimental data, and only the time of 

integrated operating mode of the ISNS (from 60 to 180 sec) is shown.  
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a 
b 

Fig. 6.2. Errors of Euler angles in NED frame: (a) without zoom, (b) with 2.5 times vertical axis 

zoom  

а b 

Fig. 6.3. Velocity errors in NED frame: (a) without zoom, (b) with 2.5 times vertical axis zoom 

а b 

Fig. 6.4. Coordinate errors in NED frame: (a) without zoom, (b) with 2.5 times vertical axis 

zoom 

 

As is seen from Figs. 6.2-6.4, the proposed algorithm of INS correction is rather efficient 

and is successful even in case of significant noise of inertial sensors. 
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The errors in steady state mode are of the following order: attitude error - no greater than 

0.1º for roll and pitch angles, velocity error - less than 0.05 m/sec in the horizontal plane and 

about 0.15 m/sec on the vertical axis, coordinate error - basically no greater than 0.25 m. 

No considerable improvement is observed for the heading angle during the time of SINS 

correction based on GPS signals. This may be due to the fact that RGs sensitivity is rather low 

and their drift exceeds the Earth rotation velocity. Therefore, to determine the heading angle 

more accurately, correction should be done based on signals of not only GPS but magnetometer 

as well. 

 

6.2. Investigating the integrated navigation system by means of a rotating 

motion table 

The purpose of testing the integrated inertial-satellite navigation system (IISNS) by means 

of an elementary monoaxial manually operated rotating motion table is estimating the errors of 

coordinates and velocities of the developed system. To assess the possibilities of practical 

application of the developed IISNS, we compared its accuracy with the accuracy of the 

commercial-off-the-shelf (COTS) French system IG-500N by SBG-Systems (Sbg-systems.com, 

2018).  

To estimate the accuracy of coordinates of the developed IISNS, we used a standard 

trajectory obtained from raw measurements of GPS receiver OEM-V1 that rotates at the stand. 

These measurements were processed by means of NovAtel GrafNav/GrafNet software by 

Waypoint Products Group (Novatel.com, 2018 b). It is a powerful software package with a set of 

adjustable configurations of data processing, which allows obtaining the maximum accuracy 

with the use of all possible GNSS data. The program uses all-around quality control, which 

makes solution reliability undoubted. An embedded utility allows public data, as well as files of 

exact values of satellite ephemeris and values of drift of on-board clocks, to be downloaded from 

thousands of continuously operating base stations. Data from the mobile receiver and base 

stations (1 to 8 stations) allow calculating the coordinates with centimeter accuracy.  

Reference coordinates can be found by the relative navigation method. To specify certain 

coordinates, this method uses data of the navigation receiver of base station with a priori known 

coordinates. In this case, we used the receiver being a part of the experimental facility of 

monitoring of global navigation satellite systems at the National Aviation University (NAU) 

(Fig. 6.5). NovAtel GrafNav/GrafNet software (Novatel.com, 2018 b) not only determines 

coordinates but also allows estimating their accuracy as well as performing visual quality control 

based on a wide choice of graphic records (number of satellites, their visibility, geometric factors 
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of accuracy aggravation, signal/noise ratio, etc.). The accuracy of finding the coordinates by 

means of the experimental monitoring facility for global navigation satellite systems at the NAU 

and NovAtel GrafNav/GrafNet software was within 12 cm
 

depending on experimental 

conditions (quantity of visible satellites, etc.). This considerably exceeds the accuracy of 

coordinates found by both satellite and inertial systems. Therefore, the trajectory determined by 

means of the described relative navigation method can be considered as a reference one to find 

errors of the IISNSs being compared.  

Coordinates of the reference trajectory were obtained as a text file. It contains time in GPS 

seconds of week, XYZ coordinates in meters, and linear velocities in m/sec with respect to three 

axes in the ECEF frame. Each point of both reference trajectory and the spatial trajectory being 

estimated is related to the corresponding timestamp, which makes it possible to estimate the error 

of instantaneous values of linear velocities and positions when rotating the rotary stand 

manually. 

a)          b) 

Fig. 6.5. Experimental facility for monitoring of navigation satellite systems on the NAU 

grounds: (a) GNSS antennas; (b) base station 

 

The results of the experiment are also published in (Kharchenko et.al., 2012 b). The one-

axis rotating table with a 2.35 m shoulder (Fig. 6.6) was fixed at a point located on the NAU 

grounds (coordinates +50.438874248 º north latitude, +30.428294371 º east longitude, and 

195.943 m elevation WGS-84). 

Figure 6.6 shows the arrangement of the probationary equipment at the rotating motion 

table, 1 denotes inertial sensors and GPS receiver of both the breadboard model of the proposed 

ISSN and IG-500N system, 2 denotes laptops and accumulators, and 3 denotes the axis or 

rotation of the motion table in horizontal plane. Figure 6.7 shows the equipment connection 

scheme. The following notation is used: 1 is antenna GPS-703-GGG by Novatel; 2 is splitter of 
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GNSS signal (distributor of signal from GPS antenna) 4G12155-XS4-X by Antcom; 3 is 

breadboard model of the probationary IISNS; 4 and 6 are laptops for data recording; and 5 is 

French IISNS available in (Sbg-systems.com, 2018). 

R=2.35 м 
1

2 3

 

2

15

3

6

4
 

Fig. 6.6. The motion table scheme (top view) 
 

Fig. 6.7. Equipment connection scheme 
 

In the experiment, at first, static measurements of navigation parameters (with fixed 

motion table) were carried out for about 5 min, then the device was rotated clockwise (top view), 

i.e., the direction of turn around Z axis of the body frame was positive, the height of the device 

remaining unchanged. Signals from the navigation satellites received by the antenna through a 

splitter arrived at navigation receivers of the probationary breadboard model and French IISNS 

(Sbg-systems.com, 2018). 

Data from sensors of the breadboard model of the navigation system were recorded to flash 

memory of the device, data from the French analog of IISNS were recorded to the laptop by 

means of the sbgCenterApplication software (Sbg-systems.com, 2018) provided by the 

manufacturer. Raw GPS measurements of OEM-V1 receiver for deriving a reference trajectory 

were also saved to the laptop. After the end of the experiment, data post-processing was carried 

out according to the algorithms presented in Chapters 2 and 3 of the present monograph. 

System IG-500N (Sbg-systems.com, 2018) used for comparison provides data about 

angular orientation of the object, as well as its rate, position, and attitude with data renewal 

frequency up to 50 Hz. IG-500N includes three-axis RGs, accelerometers, magnetometers, GPS 

receiver, and a barometric altimeter. According to its engineering specifications (Sbg-

systems.com, 2018), attitude RMS of the in statics is 0.5º for roll and pitch angles, and 1º for 

heading, in dynamics it is 1 º if a GPS signal is present. The accuracy of horizontal positioning is 

2.5 m, of vertical is 5.0 m. In case of loss of GPS signals, the accuracy of positioning is 

aggravated almost the next second. Data are transmitted to the microcontroller through serial 

interface RS-232. 

In what follows, by nominal IISNS mode we will understand teamwork of GNSS and INS. 

The mode where GNSS signal disappears and INS operates independently is called abnormal 

mode. 
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The results of data processing in NED frame are presented in Figs. 6.8-6.11. Relative time 

of the experiment in seconds is laid along the oh axis. Note that time was initially presented in 

seconds of week, as is customary in GPS. In Fig. 6.8, grey color marks the run time dependence 

of roll, pitch, and heading angles, calculated by the developed integrated navigation system, and 

black color marks those calculated by the French system IG-500N. 
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Fig. 6.8. Roll, pitch, and heading angles of the integrated navigation system 

 

Figure 6.9 shows the run time dependence of linear velocities with respect to three axes in 

the NED frame. The black dots connected by solid line denote the linear velocity obtained from 

the GPS receiver, and thick grey line denotes linear velocities calculated by the developed 

integrated navigation system. Figure 6.10 shows the run time dependence of the coordinates of 

the objects with respect to three axes in NED frame. The notation is the same as in Fig. 6.9. 
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Fig. 6.9. Linear velocity of the integrated navigation system in NED frame 
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Fig. 6.10. Coordinates of the integrated navigation system in NED frame 

 

From Figs. 6.9–6.10 it can be seen that in the nominal mode the velocities and coordinates 

virtually coincide. Note also that short loss of GPS signal (during the following intervals: 49-51 
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sec, 73-75 sec, 96-98 sec, 119-122 sec, 142-145 sec, 165-168 sec, 189-192 sec) did not render a 

significant influence on the quality of the obtained navigation solution.  
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Fig. 6.11. Trajectories of the devices in horizontal plane 

 

Figure 6.11 shows the trajectory in the North-East plane. All the results are presented in 

meters. The thick black solid line denotes reference trajectory calculated with the use of 

GrafNav/GrafNet software (Novatel.com, 2018 b), the triangles denote GPS measurements of 

the receiver, the dash-and-dot line represents the trajectory calculated by the developed IISNS 

breadboard model, and thin solid line represents the trajectory calculated by the French 

commercial system (Sbg-systems.com, 2018).  

As is seen from Fig. 6.11, the developed integrated navigation system quite accurately 

traces signals of the GPS receiver. We can also see that GPS signals disappeared for several 

seconds during which small shift was observed in determining the coordinates in the integrated 

navigation system with respect to the reference trajectory. When GPS signals appeared, the 

navigation system corrected the coordinates according to current GPS measurements of the 

receiver, which testifies to the efficiency of the SINS correction algorithms. 

Figure 6.12 shows the errors of coordinates of the integrated navigation system (grey) and 

separately GPS (black) with respect to the reference trajectory calculated by means Novatel 

GrafNav/GrafNet software according to the technique described above. As is seen from the 

figure, solution of the integrated navigation system is more smoothed, without height spikes. 
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Fig. 6.12. Errors of coordinates of the integrated navigation system and separately GPS with 

respect to the reference trajectory 

 

Average values of x , root-mean-square deviations of s , and maximum values max  of the 

relative errors of coordinates of the integrated navigation system (
err _ INS GPSx 

, GPSINSerrs _ , 

GPSINSerrm _
) and separately GPS (

err _GPSx , 
err _GPSs , 

err _GPSmax ) were also calculated by means 

of the corresponding MATLAB commands (mean, std, and max, respectively):  

 TGPSerrx 1.2968-   0.6909    1.1481_ 

  

 TGPSerrs 0.4627    0.1849    0.2084 _ 
 

   TGPSerrGPSerr x 2.7938    1.1432    1.7463 maxmax __ 

 

 TGPSINSerrx 1.0793-   0.5694    1.1038 _ 

 
 TGPSINSerrs 0.1778    0.1736    0.2446 _   

   TGPSINSerrGPSINSerr xm 1.5620    0.9804    1.7344 max __  

 
Both Fig. 6.12 and the calculations above used the array of rarefied data from the 

integrated navigation system since the information output frequency of the integrated system was 

50 Hz, and that of the GPS receiver was only 1 Hz. The time interval in Fig. 6.12 is from 479 

158 to 479 557  sec of GPS week. Note also that for comparison we took the maximum 

deviations in order to derive guaranteed estimates and minimize the risk of UAV collision with 

the surface or another flying object. 
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As is seen from the results in Figs. 6.8-6.12 and calculations, the proposed methods of 

complex data processing in the integrated navigation system are generally quite efficient and 

successful even in case of significant noise and some regular shifts of inertial sensors, but under 

permanent presence of GPS signal.   

6.3. Ground Studies of the Integrated Navigation System 

The facility connection scheme is similar to that described for the experiment from the 

previous section 6.2. The only difference is that instead of two laptops, one laptop was used to 

record all the specified data. The equipment is shown in Fig. 6.13. 

 

Fig. 6.13. Equipment used in the experimental study 

 

In the experiment, at first, static measurements of navigation parameters were performed 

during 2 min, then the device was carried in hands with average velocity of 2-3 km/hour. Figure 

6.14 shows the reference trajectory of the device, calculated by means of Novatel 

GrafNav/GrafNet software (Novatel.com, 2018 b).   
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Fig. 6.14. Reference trajectory in Google Earth 

 

During the experiment, nominal mode of the integrated navigation system was analyzed, 

i.e., a mode where INS was permanently corrected by GPS, and there were no long failures of 

satellite navigation signals. 

The results of data processing in NED frame are presented in Fig. 6.15-6.18. In Fig. 6.15, 

light grey color denotes the run time dependence of roll, pitch, and heading angles, calculated by 

the designed breadboard model of IISNS, and black color denotes those for the French IISNS 

((Sbg-systems.com, 2018). Figure 6.16 shows the run time dependence of linear velocities with 

respect to three axes in NED frame. Black dots connected by solid line denote linear velocity 

obtained from the GPS receiver, and grey thick line denotes linear velocities calculated by the 

integrated navigation system. As is seen from the figure, these rated velocities almost coincide in 

steady state mode. So-called data spikes (anomalous measurements) of the GPS receiver took 

place, which aggravated the accuracy of speed and hence of coordinates (Fig. 6.17). 

Figure 6.18 shows the trajectory in the North-East plane. All the results are presented in 

meters. The thick light-grey line denotes calculation of the trajectory by the developed IISNS 

breadboard model, the thick black line shows measurements of the GPS receiver. 
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Fig. 6.15. Roll, pitch, and heading angles of the integrated navigation system 
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Fig. 6.16. Linear velocity of the integrated navigation system in NED frame 
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Fig. 6.17. Coordinates of the integrated navigation system in NED frame 
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Fig. 6.18. Trajectory of the device in horizontal plane 
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6.4. Ground Studies of the Integrated Navigation System with the Use of a 

Car. 

 

This section presents the results of ground tests, with the use of a car, of the following 

version of the IISNS breadboard model developed at the Scientific and Education Center 

"Aerospace Center" of the National Aviation University (Fig. 6.19). The component sensors and 

systems are as follows: single-frequency GNSS receiver and inertial measurement unit 

ADIS16488 (Analog.com, 2018 b) containing three-axial accelerometer, angular velocity sensor, 

magnetometer, internal temperature meter, and barometric altimeter. Software for calculation of 

the navigation solution in the integrated navigation system was implemented in a microcontroller 

Freescale Kinetis K-60 family (Nxp.com, 2013).   

 

Fig. 6.19 Breadboard model of the integrated inertial-satellite navigation system 

 

In the experiment, the GNSS antenna was placed on a car roof (Fig. 6.20), the device was 

mounted inside, and the oh axis coincided with the longitudinal axis of the car. To make it 

possible to calculate reference trajectory, an additional GNSS receiver was placed in the car and 

provided raw measurements. In Fig. 6.20, 1 is GNSS antenna, 2 is splitter (GNSS antenna signal 

distributor), 3 is IISNS breadboard model, and 4 is GNSS receiver. The equipment connection 

scheme in this experiment is similar to that presented in Fig. 6.7. The only difference is that 

internal flash memory cards were also used along with the laptop to save data from the devices. 
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Fig. 6.20. Schematic arrangement of the equipment during the experiment 

 

Noteworthy is that all the navigation calculations were carried out in real time in the 

device. In the experiment, at first, static measurements of navigation parameters were carried out 

during several minutes, then the device was moved in a car with average velocity of 6-15 

km/hour. Figure 6.21 presents the following: (a) reference trajectory of the car in Google Earth 

(in latitude of longitude parameters), obtained from raw GNSS measurements by means of 

GrafNav/GrafNet (Novatel.com, 2018 b) together with the photo of the probationary ISNS 

sample, (b) calculated trajectory in the North-East plane, obtained from the device (presented in 

the NED frame). The experiment run time was about 16 minutes, the length of the trajectory was 

about 4 km. 
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Fig. 6.21. Reference trajectory in Google Earth and photo of the probationary ISNS 
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The dots in Fig. 6.21 denote the beginning and the end of four sections of the trajectory, 

which are of interest since they contain turns and respectively contain variations in the velocity 

and attitude parameters. 

The results of the experiment are presented in Figs. 6.22-6.24, where dots mark the same 

sections of the trajectory as in Fig. 6.21. Figure 6.22 shows the run time dependence of roll, 

pitch, and heading angles, calculated by the developed IISNS breadboard modelWe can see from 

the figure how heading angle varied during turns. Figure  6.23 shows the run time dependence of 

linear velocities with respect to three axes in NED frame. The thick grey line denotes the linear 

velocity obtained from the GPS receiver, and thin black line denotes linear velocities calculated 

by the integrated navigation system. We can see from the figure that the velocities almost 

coincide in the nominal mode, only the vertical component of the velocity in the IISNS was 

smoother. Figure  6.24 shows the run time dependence of the coordinates of the object in the 

NED frame. The notation is the same as in Fig. 6.23. In the nominal mode, the coordinates 

almost coincide here as well, with an insignificant difference in the vertical component. 
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Fig. 6.22. Roll, pitch, and heading angles of the integrated navigation system 

 



131 

 

0 100 200 300 400 500 600 700 800 900 1000
-20

-10

0

10

V
N
, 

[m
]

0 100 200 300 400 500 600 700 800 900 1000
-20

-10

0

10

V
E
, 

[m
]

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

V
D
, 

[m
]

Time, [s]
 

Fig. 6.23. Linear velocity of the integrated navigation system in NED frame 
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Fig. 6.24. Coordinates of the integrated navigation system in NED frame 
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6.5. Flight Test of the Integrated Navigation System 

 

In this section, we will discuss two flight experiments, both carried out at the Borodyanka 

airdrome, which is a class "D" airdrome and is certificated according to the Air Code of Ukraine. 

The geographical and administrative data of the airdrome are presented in Table  6.1. 

 

Table 6.1 – Borodyanka airdrome  

 

Reference point and coordinates at the AD 503957.19N  295600.83E 

Direction and distance from populated areas 30 km North West from Kyiv, 2 km North 

from Borodyanka 

Airdrome altitude/ designed temperature 149.2 m/490 ft/ 23.6 °С 

Magnetic declination 4° E 

Threshold altitude 102° – 149.2 m/490 ft; 

282° – 145.6 m/478 ft 

Type of authorized flights VFR 

 

Experiment 1 

The results of this experiment are also published in (Kharchenko and Ilnytska, 2013) and 

partially in (Kharchenko et.al, 2013). A breadboard model of the integrated navigation system 

and GPS antenna (Fig. 6.26) were placed on a small-size UAV (Fig. 6.25). During the 

experiment, at first, static measurements of navigation parameters were carried out during 1-2 

min to perform initial setting, then the UAV flied under manual control. Futaba panel was used 

for UAV control.  

Data from sensors of the breadboard model of the integrated navigation system were saved 

to flash memory card of the device. After the end of the experiment, data post-processing 

according to the algorithms presented in Chapters 2 and 3 of the present monograph was carried 

out. The flight trajectory is shown in Fig. 6.27. 
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Fig. 6.25. The UAV used for flight tests 
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Fig. 6.26. Equipment located at the UAV 
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Fig. 6.27. The flight trajectory in Google Earth 

 

The results of data processing in the NED frame are presented in Figs. 6.28 - 6.32. Figure 

6.28 shows the run time dependence of roll, pitch, and heading angles, calculated by the 

breadboard model of the integrated navigation system. 
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Fig. 6.28. Roll, pitch, and heading angles of the integrated navigation system 
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Figure 6.29 shows the run time dependence of linear velocities with respect to three axes in 

the NED frame. The black points connected by solid line designate the linear velocity obtained 

from the GPS receiver, and thick grey line denotes the linear velocities calculated by the 

developed integrated navigation system. As is seen from the figure, the velocities almost 

coincide in the nominal mode. The thick red line in Fig. 6.29 marks the section where data from 

the GPS receiver were not taken into account in the complex data processing of the integrated 

navigation system in order to simulate GPS signal loss. 

It can be seen that during autonomous SINS operation, velocity directions remained the 

same; however, insignificant amplitude deviations were observed, which can be explained by the 

specifications of MEMS-type inertial sensors. Note also that when signal GPS appeared again, 

the integrated navigation system immediately corrected the solution according to it and then 

continued operating in nominal mode. 
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Fig. 6.29. Linear velocity of the integrated navigation system in NED frame 
 

Figure 6.30 shows the run time dependence of coordinates of the object with respect to 

three axes in the NED frame. The notation is the same as in the previous figure. We can see that 

some time after GPS signal loss the integrated navigation system continued comprehensible 

tracing of the coordinates, and then, after signal from GPS receiver appeared, it continued 

operating in nominal mode. 
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Fig. 6.30. Coordinates of the integrated navigation system in NED frame 

 

 

Figures 6.31 and 6.32 show the UAV trajectory (in meters) in the North-East plane and in 

space, respectively. The green asterisks denote measurements by GPS receiver that were taken 

into account in the complex data processing; the solid thick dark blue line denotes the trajectory 

calculated by small-size integrated navigation system; red asterisks mark the section where data 

from the GPS receiver were disregarded in the complex integrated navigation system data 

processing in order to simulate GPS signal loss. As is seen from Figs. 6.31-6.32, in the nominal 

mode the small-size integrated navigation system rather accurately traces signals from the GPS 

receiver, and in abnormal mode it keeps turn direction but forecasted (expected) aggravation of 

coordinate accuracy is observed. We can also see that after GPS signals appeared, the integrated 

navigation system corrected its coordinates according to current measurements of the GPS 

receiver, which testifies the efficiency of the SINS correction algorithms. 
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Fig. 6.31. UAV trajectory in horizontal plane 
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Fig. 6.32. UAV spatial trajectory 

 

During 20 sec of simulation of GPS receiver signal loss, the largest deviations from the 

stationary mode flight trajectory had the following values: 

   mPositerr 9.8646    131.8389  61.3043_max  , 
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    smVelocityerr /3.7761    16.2613   10.3377_max  , 

which agree well with the modeled values presented in Sec. 3. Here   denotes the absolute value 

of a vector. 

Errors of the components of IISNS velocity and coordinates with respect to GNSS for 

nominal mode are presented in Figs. 6.33-6.34. As a result of data processing in static mode, the 

following estimates of RMS errors of the velocity and coordinates were obtained: 

smstaticerrVeloc /]0.0432   0.0064   0.0074 []V V V [ DEN_  , 

mstaticerr ]0.2530   0.1187   0.1511 []D  E N [_Posit  . 

The same estimates for flight conditions had the following values: 

                          smdynamicerrVeloc /]1.1242   0.3949   0.3938 [_  , 

                          mdynamicerr ]0.8075   0.4877   0.5466 [_Posit  , 
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Fig. 6.33. Relative errors of IISNS velocity in NED frame during nominal mode 
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Fig. 6.34. Relative errors of IISNS coordinates in NED frame during nominal mode  

 

As is seen from the results presented in Figs. 6.28-6.34, the proposed methods of complex 

data processing of the integrated navigation system are generally rather efficient and successful 

even in case of significant noise and some systematic shifts of inertial sensors; however, this is 

only ensured under permanent presence of GPS signal. Noteworthy is also that it is necessary to 

pay special attention to vibration insulation of the navigation equipment used on the UAV to 

enhance the computing accuracy. 

 

Experiment 2 

In this experiment, the developed IISNS breadboard model (Fig. 6.35) was tested together 

with the French commercial system (Sbg-systems.com, 2018) by means of the same small-size 

UAV as in the previous experiment (Fig. 6.25).  

In the experiment, at first, static measurements of navigation parameters were carried out 

during 3 min to perform initial setting, then the UAV flied under manual control by means of 

Futaba panel. In this experiment, nominal mode of the IISNS was investigated. 

All the calculations of navigation data were performed in real time immediately in the 

designed IISNS breadboard model, which is detailed in Sec. 6.4. 



140 

 

 

Fig. 6.35. The probationary IISNS breadboard model together with the commercial French 

sample 

 

The results of the experiment are presented in Figs. 6.36-6.38. Figure 6.36 shows the run 

time dependence of roll, pitch, and heading angles, calculated by the breadboard model of the 

integrated navigation system (black solid line) and the commercial French sample (Sbg-

systems.com, 2018) (dark blue solid line). 

Figure 6.37 shows the run time dependence of coordinates of the plant with respect to three 

axes in the ENU frame. The black solid line denotes the coordinates obtained by the designed 

IISNS breadboard model and green (grey) thick line denotes the coordinates calculated by the 

commercial French sample. As is seen from the figure, coordinates obtained by both samples 

almost coincide. 

Figure 6.38 shows the UAV trajectory in the East-North plane (in meters). The green 

(grey) asterisks denote measurements of the GPS receiver, solid thick black line is the trajectory 

calculated by the developed IISNS breadboard model. We omit here the trajectory obtained by 

the commercial French sample since (as can be seen from Fig. 6.37) it almost repeats the 

trajectory of the developed IISNS breadboard model. 
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Fig. 6.36. Roll, pitch, and heading angles of the integrated navigation system 
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Fig. 6.37. Coordinates of the integrated navigation system in ENU frame 
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Fig. 6.38. UAV trajectory in horizontal plane 

 

As we can see from the above results, in the nominal mode, which was tested in the 

experiment, the developed IISNS breadboard model operated well, no worse than the French 

commercial system.  

Similar practical results of integrated navigation system flight validations together with 

some recommendations have been published in (Kharchenko et.al, 2014).  
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6.6. Summary for Chapter 6 

6.6.1. We have presented the results of laboratory, ground, and flight tests of the developed 

IISNS.  

6.6.2. The laboratory tests were carried out at an elementary rotating motion table with the use of 

GrafNav / GrafNet high-precision equipment manufactured by Waypoint (Novatel.com, 2018 b) 

and its software, which allows constructing a reference trajectory with respect to which system 

errors were calculated.  

6.6.3. Ground tests were carried out under slow motion of the IISNS in GrafNav / GrafNet 

operating zone, which allowed calculating accuracy characteristics of the system by means of the 

reference trajectory. 

6.6.4.  Flight trials were performed by means of arranging the IISNS experimental model on a 

small UAV with postprocessing of data obtained in flights on a stationary PC. 

 6.6.5.  The results of these trials allow us to make a conclusion that accuracy characteristics of 

the proposed IISNS meet the requirements for navigation equipment of small-size UAV. 

 6.6.6.  To assess the competitive capacity of the proposed IISNS in all above types of trials, its 

accuracy characteristics were compared with respective characteristics of the commercial 

(COTS) IISNS of the French system IG-500N. This comparison testifies that the proposed IISNS 

is at least no worse than available inertial-satellite navigation systems. 
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APPENDIX A  

Here we derive the relations (3.10)-(3.15) presented in Sec. 3.1.2. 

Let us derive the algorithm with the use of QR factorization (Sec. 3.1.2) for the case where 

kR  is an invertible matrix (Larin and Tunik, 2010 b). First, we will make some transformations 

of Eq. (3.6). To this end, we ill use the following information. For some block matrix Z  of the 

form   








 


BA

MP
Z

, 

according to the Frobenius formula, there are two equivalent (to each other) inverse matrices 

1Z  that can be written as (Gantmacher, 1959), (Aliev, Larin, Naumenko and Suntsev, 1978): 
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For matrix Z , let us introduce the notation: THMHA  , , 
11)(
  kk PPP  (to 

simplify the notation, we have omitted the "minus" sign in the brackets), . We will 

rearrange matrices 1Z  in (3.47)–(3.48) taking into account the introduced notation:  
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Comparing the upper right blocks of matrices 1Z  in (3.49)–(3.50) yields  

1111 )(   k

TT

kk RHHRHPK .                                       (3.51) 

By analogy, we will also transform Eq. (3.8). First, we will substitute (3.6) into (3.8) and 

make respective simplifications. Hereinafter, by kP  we mean )(kP :  
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In the transformations, we have used the following properties of transposition of matrices  

  AA
TT  ,   TTT

ABAB  , CCT   if matrix C  is symmetric. Comparing the upper left blocks 

of matrices 1Z  in (3.49)–(3.50) yields  

111 )()(   HRHPP k

T

kk
    (3.53) 

We can rearrange Eq. (3.51) with regard for (3.53) as  

1)(  k

T

kk RHPK .                                                (3.54) 

Now, denote by kkkk qpm ,,,  the Cholesky multipliers of the corresponding matrices 
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kkk qqppmmP   Taking into account the chosen 

notation, we will rearrange relation (3.52) as follows: 
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To simplify the relation, we will use matrices 1Z  (3.47) – (3.48) and introduce the 

following notation: IP 1 , TT

k HmM  , kRB  , kHmA  . Comparing the corresponding 

elements of the matrices yields  
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It is obvious that elements   T

kk mm   were not taken into account in the comparison. Now, 

let us present the bracketed expression as a product of two rectangular matrices: 
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By means of orthogonal matrix U and QR factorization algorithm, we will rearrange matrix 

TN as follows: 
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where k  is an invertible matrix. Now we will rearrange Eq. (3.56) taking into account (3.57) as  
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From here it is obvious that  

.1 kkk mp                                                  (3.58) 
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Similarly, we will represent the right-hand side of Eq. (3.56) as a product of two 

rectangular matrices and will use QR factorization of these matrices, performed by the 

orthogonal matrix kZ . 

;11
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kk TTmm 
  ;kkkk qpT                                (3.59) 
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                                                    (3.60) 
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kk XXTZZTmm  11 . 

So, 

   .1 kk Xm                                 (3.61) 

Thus, according to the given kkm ,
 
and Eqs. (3.57 – 3.58), we calculate the multiplier kp  

and then we can find the multiplier 1km  according to (3.59 – 3.61). 
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