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Preface to the Corrected Reprint

In the preparation of this corrected and updated reprint
of the 5th edition, Prof. Wolfgang J. Duschl once more
provided active help with many contributions and ex-
citing discussions. My dearest thanks to him. I would
also like to thank Prof. W. Beiglbick and Claus-Dieter
Bachem from Springer most sincerely for their con-
structive collaboration in the preparation of this reprint.

Preface to the 5th Edition

Albrecht Unsold’s Der Neue Kosmos, in which he gave
an overview of the whole field of astronomy that was
intended to be accessible to all students and practition-
ers of the natural sciences, first appeared in 1967. The
title was deliberately chosen with reference to Alexan-
der von Humboldt’s Kosmos and expressed the author’s
intention of “making our new understanding of the Uni-
verse clear” to a wide group of readers and of “allowing
the basic ideas of the various areas of astronomical
research with their factual and historical-humanistic
connections to come into the foreground”. After the
third edition, new editions of the book were prepared
with the collaboration of B. Baschek, who gradually
took over responsibility for it. Prof. Dr. Dr. h.c. mult. Al-
brecht Unsold died in 1995 at the age of 90; he was
a pioneer and an Old Master of astrophysics. Although
he announced his retirement from active research “of-
ficially” in 1988 in the Foreword to the 4th German
edition of this book, he remained keenly interested in
the further development of this introduction to astron-
omy and astrophysics and continued to contribute to its
revisions through discussions and observations.

Now, ten years after the appearance of the 4th edi-
tion, a completely revised and updated version of the
New Cosmos, translated from the 7th German edition,
has been completed; it takes into account the wealth
of new results from astronomical research which have
appeared in recent years, ranging from our Solar Sys-

I take this opportunity to note that, to my great plea-
sure, Wolfgang J. Duschl is prepared to work together
with me as author of all further, new editions of “The
New Cosmos”.

Heidelberg, December 2004 Bodo Baschek

tem to the most distant galaxies. In this new edition, the
organization of the material has been made clearer by
introducing some changes in the order of presentation
as well as by a finer subdivision of the topics covered.

Within our Solar System, space probes have inves-
tigated the Moon and Mars, the Jupiter system, some
of the asteroids, and the solar wind from close up. New
satellites have brought an enormous increase in observa-
tion power ranging from the gamma-ray region down to
the radiofrequency spectral range; especially notewor-
thy is the Hubble Space Telescope with its incomparable
angular resolution in the optical and near-ultraviolet,
as well as the two large X-ray satellites, Chandra and
XMM Newton. Furthermore, in the past decade, a new
generation of large earthbound telescopes based on
active and adaptive optics has come into use.

Among the discoveries and events of this period we
mention the following: the numerous planetoids found
outside the orbit of Neptune, the impact of a comet onto
Jupiter, and the appearance of the bright comets Hyaku-
take and Hale-Bopp; advances in solar seismology, the
resolution of very detailed structures in the regions of
star formation and in planetary nebulae, the evidence
for black holes in the centers of our Milky Way and of
other galaxies; the observation of very distant supernova
explosions, and the precise determination of the fluctu-
ations in the 3 K cosmic background radiation, giving
indications of a flat Universe with a nonzero cosmo-
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logical constant; the view of most distant galaxies in
the Hubble Deep Field, obtained with the Hubble Space
Telescope; the new evidence for neutrino oscillations,
the explanation of the origin of the gamma-ray bursts
which had remained a riddle for decades; and finally the
discoveries of numerous planets orbiting nearby stars.
My thanks go to all those readers of the earlier
editions who have contributed to the improvement of
this book through their suggestions, criticisms and
detection of errors. Furthermore, I wish to thank my col-
leagues W.J. Duschl, D. Fiebig, B. Fuchs, H. Holweger,
G. Klare, M. Scholz, A. Schwope, P. Ulmschneider,
C. van de Bruck, R. Wehrse, and G. Weigelt for criti-
cal readings of various sections and for their comments

and suggestions on numerous topics. In particular, [ owe
sincere thanks to Prof. Wolfgang J. Duschl for his aid in
the choice of new illustrations and for their acquisition
and electronic image processing.

It was a great asset for the preparation of this book
that Prof. William D. Brewer was once again willing to
undertake the translation. I wish to express my heartfelt
thanks for his excellent job as well as for very agree-
able and constructive collaboration. Prof. W. Beiglbock,
Dr. H. Lotsch, and Mr. C.-D. Bachem of Springer-
Verlag are due my sincere gratitude for their excellent
cooperation, as always, in the completion of this edition.

Heidelberg, June 2001 Bodo Baschek
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1. Introduction

Astronomy, the study of the stars and other celestial
objects, is one of the exact sciences. It deals with the
quantitative investigation of the cosmos and the physical
laws which govern it: with the motions, the structures,
the formation, and the evolution of the various celestial
bodies.

Astronomy is among the oldest of the sciences. The
earliest human cultures made use of their knowledge of
celestial phenomena and collected astronomical data in
order to establish a calendar, measure time, and as an aid
to navigation. This early astronomy was often closely
interwoven with magical, mythological, religious, and
philosophical ideas.

The study of the cosmos in the modern sense,
however, dates back only to the ancient Greeks: the
determination of distances on the Earth and of positions
of the celestial bodies in the sky, together with know-
ledge of geometry, led to the first realistic estimates of
the sizes and distances of the objects in outer space. The
complex orbits of the Sun, the Moon, and the planets
were described in a mathematical, kinematical picture,
which allowed the calculation of the positions of the
planets in advance. Greek astronomy attained its zenith,
and experienced its swan song, in the impressive work
of Ptolemy, about 150 a.D. The name of the science, as-
tronomy, is quite appropriately derived from the Greek
word “aotnp” = star or “aotpov”’ = constellation or
heavenly body.

At the beginning of the modern period, in the 16th
and 17th centuries, the Copernican view of the universe
became generally accepted. Celestial mechanics re-
ceived its foundation in Newton’s Theory of Gravitation
in the 17th century and was completed mathematically
in the period immediately following. Major progress in
astronomical research was made in this period, on the
one hand through the introduction of new concepts and
theoretical approaches, and on the other through ob-
servations of new celestial phenomena. The latter were
made possible by the development of new instruments.
The invention of the telescope at the beginning of the
17th century led to a nearly unimaginable increase in
the scope of astronomical knowledge. Later, new eras
in astronomical research were opened up by the devel-
opment of photography, of the spectrograph, the radio

telescope, and of space travel, allowing observations to
be made over the entire range of the electromagnetic
spectrum.

In the 19th and particularly in the 20th centuries,
physics assumed the decisive role in the elucidation
of astronomical phenomena; astrophysics has steadily
increased in importance over “classical astronomy”.
There is an extremely fruitful interaction between as-
trophysics/astronomy and physics: on the one hand,
astronomy can be considered to be the physics of the
cosmos, and there is hardly a discipline in physics which
does not find application in modern astronomy; on the
other hand, the cosmos with its often extreme states of
matter offers the opportunity to study physical processes
under conditions which are unattainable in the labora-
tory. Along with physics, and of course mathematics,
applications of chemistry and the Earth and biological
sciences are also of importance in astronomy.

Among the sciences, astronomy is unique in that no
experiments can be carried out on the distant celes-
tial objects; astronomers must content themselves with
observations. “Diagnosis from a distance”, and in par-
ticular the quantitative analysis of radiation from the
cosmos over the widest possible spectral range, thus
play a central role in astronomical research.

The rapid development of many branches of astron-
omy has continued up to the present time. With this
revised edition of The New Cosmos, we have tried to
keep pace with the rapid expansion of astronomical
knowledge while maintaining our goal of providing
a comprehensive — and comprehensible — introduc-
tory survey of the whole field of astronomy. We have
placed emphasis on observations of the manifold ob-
jects and phenomena in the cosmos, as well as on the
basic ideas which provide the foundation for the var-
ious fields within the discipline. We have combined
description of the observations as directly as possible
with the theoretical approaches to their elucidation. Par-
ticular results, as well as information from physics and
the other natural sciences which are required for the
understanding of astronomical phenomena, are, how-
ever, often simply stated without detailed explanations.
The complete bibliography, together with a list of im-
portant reference works, journals, etc., is intended to
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help the reader to gain access to the more detailed and
specialized literature.

We begin our study of the cosmos, its structure and
its laws, “at home” by considering our Solar System in
Part I, along with classical astronomy. This part, like the
three following parts, starts with a historical summary
which is intended to give the reader an overview of the
subject. We first become acquainted with observations
of the heavens and with the motions of the Earth, the
Sun, and the Moon, and introduce celestial coordinates
and sidereal time. The apparent motions of the planets
and other objects are then explained in the framework of
the Newtonian Theory of Gravitation. Before consider-
ing the planets and other objects in the Solar System in
detail, we give a summary of the development of space
research, which has contributed enormously to know-
ledge of our planetary system. Part I ends with a discus-
sion of the individual planets, their moons, and other
smaller bodies such as asteroids, comets and meteors.

Prior to taking up the topic of the Sun and other
stars, it is appropriate to describe the basic principles
of astronomical observation methods, and we do this in
Part II. An impressive arsenal of telescopes and detec-
tors is available to today’s astronomer; with them, from
the Earth or from space vehicles, he or she can inves-
tigate the radiation emitted by celestial bodies over the
entire range of the electromagnetic spectrum, from the
radio and microwave regions through the infrared, the
visible, and the ultraviolet to the realm of highly ener-
getic radiations, the X-rays and gamma rays. The use
of computers provides an essential tool for the modern
astronomer in these observations.

Part I11 is devoted to stars, which we first treat as in-
dividual objects. We give an overview of the different
types of stars such as those of the main sequence, gi-
ants and supergiants, brown dwarfs, white dwarfs and
neutron stars, as well as the great variety of variable
stars (Cepheids, magnetic stars, novas, supernovas, pul-
sars, gamma sources ...) and of stellar activity, and
become acquainted with their distances, magnitudes,
colors, temperatures, luminosities, and masses. In this
part, the Sun plays a particularly important role: on the
one hand, as the nearest star, it offers us the possibility of
making incomparably more detailed observations than
of any other star; on the other, its properties are those of
an “average” star, and their study thus yields important
information about the physical state of stars in general.

The treatment of the physics of individual stars occupies
an important place in Part ITI. Along with the theory of
radiation, atomic spectroscopy in particular forms the
basis for quantitative investigation of the radiation and
the spectra of the Sun and other stars, and for the un-
derstanding of the physical-chemical structure of their
outer layers, the stellar atmospheres. Understanding of
the mechanism of energy release by thermonuclear reac-
tions and by gravitation is of decisive importance for the
study of stellar interiors, their structures and evolution.

We then discuss the development of the stars of the
main sequence, which includes the phase of intensive
stellar hydrogen burning, continuing to their final stages
(white dwarf, neutron star or black hole). The forma-
tion of stars and their earliest development are treated
in the following sections in connection with the inter-
stellar material in our galaxy. At the end of Part III, we
deal with strong gravitational fields, which we describe
in the framework of Einstein’s General Relativity the-
ory; here, we concentrate in particular on black holes,
gravitational lenses, and gravitational waves.

In Part IV, we take up stellar systems and the macro-
scopic structure of the universe. Making use of our
knowledge of individual stars and their distances from
the Earth, we first develop a picture of stellar clusters
and stellar associations. We then discuss the interstellar
matter which consists of tenuous gas and dust clouds,
and treat star formation. Finally, we develop a picture
of our own Milky Way galaxy, to which the Sun be-
longs together with about 100 million other stars. We
treat the distribution and the motions of the stars and
star clusters and of the interstellar matter. After mak-
ing the acquaintance of methods for the determination
of the enormous distances in intergalactic space, we
turn to other galaxies, among which we find a variety
of types: spiral and elliptical galaxies, infrared and star-
burst galaxies, radio galaxies, and the distant quasars. In
the centers of many galaxies, we observe an “activity”
involving the appearance of extremely large amounts of
energy, whose origins are still a mystery.

Galaxies, as a rule, belong to larger systems, called
galactic clusters. These are in turn ordered in clusters of
galactic clusters, the superclusters, which finally form
a “lattice” enclosing large areas of empty intergalac-
tic space and defining the macroscopic structure of
the Universe. Like individual stars, the galaxies and
galactic clusters evolve with the passage of time. The
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mutual gravitational influence of the galaxies plays an
important role in their development.

At the conclusion of Part IV, we consider the Uni-
verse as a whole, its content of matter, radiation, and
energy, and its structure and evolution throughout the
expansion which has taken place over the approximately
13.5-10° years from the “big bang” to the present time.

Finally, after pressing out to the far reaches of the
cosmos, we return at the end of Part IV to our Solar
System and take up the problems of the formation and
evolution of the Sun and the planets as well as the ex-
istence of planetary systems around other stars. In this
section, we give particular attention to the development
of the Earth and of life on Earth.
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Humanity and the Stars: Observing and Thinking

Historical Introduction to Classical Astronomy

Unaffected by the evolution and the activities of
mankind, the objects in the heavens have moved along
their paths for millenia. The starry skies have thus al-
ways been a symbol of the “Other” — of Nature, of
deities — the antithesis of the “Self” with its world of
inner experience, striving and activity. The history of
astronomy is at the same time one of the most excit-
ing chapters in the history of human thought. Again
and again, there has been an interplay between the ap-
pearance of new concepts and ways of thinking on the
one hand and the discovery of new phenomena on the
other, the latter often with the aid of newly-developed
observational instruments.

We cannot treat here the great achievements of the
ancient Middle Eastern peoples, the Sumerians, Babylo-
nians, Assyrians, and the Egyptians; nor do we have the
space to describe the astronomy of the the Far Eastern
cultures in China, Japan, and India, which was highly
developed by the standards of the time.

The concept of the Universe and its investigation in
the modern sense dates back to the ancient Greeks, who
were the first to dare to shake off the fetters of black
magic and mythology and, aided by their enormously
flexible language, to adopt forms of thinking which al-
lowed them, bit by bit, to “comprehend” the phenomena
of the cosmos.

How bold were the ideas of the pre-Socratic Greeks!
Thales of Milet, about 600 B.C., had already clearly
understood that the Earth is round, and that the Moon
is illuminated by the Sun, and he predicted the Solar
eclipse of the year 585 B.C. But is it not just as important
that he attempted to reduce understanding of the entire
universe to a single principle, that of “water”?

The little that we know of Pythagoras (in the middle
of the 6th century B.C.) and of his school seems sur-
prisingly modern. The spherical shapes of the Earth, the
Sun, and the Moon, the Earth’s rotation, and the revo-
lution of at least the inner planets, Venus and Mercury,
were already known to the Pythagorans.

After the collapse of the Greek states, Alexandria
became the center of ancient science; there, the quanti-
tative investigation of the heavens made rapid progress

with the aid of systematic measurements. The numerical
results are less important for us today than the happy re-
alization that the great Greek astronomers made the bold
leap of applying the laws of geometry to the cosmos!
Aristarchus of Samos, who lived in the first half of the
3rd century B.C., attempted to compare the distances of
the Earth to the Sun and the Earth to the Moon with the
diameters of the three bodies by making the assumption
that when the Moon is in its first and third quarter, the tri-
angle Sun-Moon-Earth makes a right angle at the Moon.
In addition to carrying out these first quantitative esti-
mates of dimensions in space, Aristarchus was the first
to teach the heliocentric system and to recognize its im-
portant consequence that the distances to the fixed stars
must be incomparably greater than that from the Earth to
the Sun. How far he was ahead of his time with these dis-
coveries can be seen from the fact that by the following
generation, they had already been forgotten. Soon af-
ter Aristarchus’ important achievements, Eratosthenes
carried out the first measurement of a degree of arc on
the Earth’s surface, between Alexandria and Syene: he
compared the difference in latitude between the two
places with their distance along a much-traveled car-
avan route, and thereby determined the circumference
and diameter of the Earth fairly precisely. However,
the greatest observer of ancient times was Hipparchus
(about 150 B.C.), whose stellar catalog was still nearly
unsurpassed in accuracy in the 16th century A.D. Even
though the means at his disposal naturally did not al-
low him to make significantly better determinations of
the basic dimensions of the Solar System, he was able
to make the important discovery of precession, i.e. the
yearly shift of the equinoxes and thus the difference
between the tropical and the sidereal years.

The theory of planetary motion, which we shall treat
next, was necessarily limited in Greek astronomy to
a problem in geometry and kinematics. Gradual im-
provements and extensions of observations on the one
hand, and new mathematical approaches on the other,
formed the basis for the attempts of Philolaus, Eudoxus,
Heracleides, Appollonius, and others to describe the ob-
served motions of the planets; their attempts employed
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the superposition of ever more complicated circular mo-
tions. Ancient astronomy and planetary theory attained
its final development much later, in the work of Claudius
Ptolemy, who wrote his 13-volume Handbook of As-
tronomy (Mathematics), Mafnuatixns Luvviaéewc,
in Alexandria about 150 B.C. His “Syntax” later ac-
quired the adjective pueyiotn, “greatest”, from which
the arabic title Almagest is derived. The Almagest is
based to a large extent on the observations and research
of Hipparchus, but Ptolemy also added much new ma-
terial, particularly in the theory of planetary motion. At
this point, we need only sketch the outlines of Ptole-
my’s geocentric system: the Earth rests at the midpoint
of the Universe. The motions of the Sun and the Moon
in the sky may be represented fairly simply by circular
orbits. The planetary motions are described by Ptolemy
using the theory of epicycles: each planet moves on a
circle, the so-called epicycle, whose nonmaterial center
moves around the Earth on a second circle, the defer-
ent. We shall not delve further into the refinements of
this system involving additional, in some cases eccen-
tric circular orbits, etc. The intellectual posture of the
Almagest clearly shows the influence of Aristotelian
philosophy, or rather of Aristotelianism. Its modes of
thought, originally the tools of vital research, had long
since hardened into the dogmas of a rigid school; this
was the principal reason for the remarkable historical
durability of the Ptolemaic world-system.

We cannot go into detail here about how, following
the decline of the academy in Alexandria, first the Nesto-
rian Christians in Syria and later the Arabs in Bhagdad
took over and continued the work of Ptolemy.

Translations and commentaries on the Almagest
were the basic sources of the first Western textbook
on astronomy, the Tractatus de Sphaera of loannes de
Sacrobosco, a native of England who taught at the Uni-
versity of Paris until his death in the year 1256. The
Sphaera was issued again and again and often com-
mentated; it was still “the” text for teaching astronomy
in Galileo’s time, three centuries later.

The intellectual basis of the new thinking was pro-
vided in part by the conquest of Constantinople by the
Turks in 1453: thereafter, numerous scientific works
from antiquity were made accessible to the West by
Byzantine scholars. For example, some very fragmen-
tary texts concerning the heliocentric system of the
ancients clearly made a strong impression on Coper-

nicus. The result was a turning-away from the rigid
doctrine of the Aristotelians in favor of the much more
lively and flexible thinking of the schools of Pythago-
ras and Plato. The “Platonic” idea that the process of
understanding the Universe consists of a progressive
adaptation of our inner world of concepts and ways
of thinking to the more and more precisely-studied
outer world of phenomena has become the hallmark
of modern research from Cusanus through Kepler to
Niels Bohr. Finally, with the blossoming of a practical
approach to life exemplified by the rise of crafts and
trades, the question was no longer “What did Aristotle
say?”, but rather “How can you do this ... 7”.

In the 15th century, a completely new spirit in science
and in life arose, at first in Italy and soon thereafter in
the North as well. The sententious meditations of Car-
dinal Nicholas Cusanus (1401-1464) have only today
begun to be properly appreciated. It is fascinating to
see how his ideas about the infinity of the Universe and
about quantitative scientific research arose from reli-
gious or theological considerations. Near the end of the
century (1492), the discovery of America by Christo-
pher Columbus added the classic expression “il mondo
e poco” to the new spirit. A few years later, Nico-
las Copernicus (1473-1543) founded the heliocentric
system.

About 1510, Copernicus sent a letter to several noted
astronomers of his time; it was rediscovered only in
1877, and was entitled “De Hypothesibus Motuum
Caelestium A Se Constitutis Commentariolus”. It fore-
shadowed the major part of the results which were later
published in his major work, “De Revolutionibus Or-
bium Coelestium”, which appeared in Nuremberg in
1543, the year of his death.

Copernicus held fast to the idea of the “perfection of
circular motion” which had formed the basis for astro-
nomical thought throughout antiquity and the Middle
Ages; he never considered the possibility of another
form of motion.

It was Johannes Kepler (1571-1630) who, starting
from the phythagorian-platonic traditions, was able to
break through to a more general point of view. Making
use of the observations of Tycho Brahe (1546-1601),
which were vastly more precise than any that had pre-
ceded them, he discovered his three Laws of Planetary
Motion. Kepler derived his first two laws from an enor-
mously tedious trigonometric calculation of the motions
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of Mars reported by Tycho in his “Astronomia Nova”
(Prague, 1609). The third law is reported in his “Har-
monices Mundi” (1619). We can only briefly mention
Kepler’s ground-breaking works on optics, his Kep-
lerian telescope, his Rudolphinian Tables (1627), and
numerous other achievements.

About the same time, the Italian Galileo Galilei
(1564-1642) directed the telescope which he had built
in 1609 to the heavens and discovered, in rapid suc-
cession: the “maria”, the craters, and other mountain
formations on the Moon; the numerous stars of the Plei-
des and the Hyads; the four largest moons of Jupiter and
their free orbits around the planet; the first indication of
the rings of Saturn; and sunspots. His “Galileis Sidereus
Nuncius” (1610), in which he describes the discoveries
with his telescope, the “Dialogo Delli Due Massimi Sis-
temi Del Mondo, Tolemaico, e Copernico” (1632), and
the “Discorsi e Dimonstrazioni Matematiche Intorno a
Due Nuove Scienze” (1638), which was written after
his condemnation by the Inquisition and contained the
beginnings of theoretical mechanics, are masterworks
not only in the scientific sense but also as works of art.
The observations with the telescope, Tycho Brahe’s ob-
servation of the supernova of 1572 and that of 1604
by Kepler and Galileo, and finally the appearance of
several comets required what was perhaps the most es-
sential scientific insight of the time: that, in contrast
to the opinion of the Aristotelians, there is ro funda-
mental difference between cosmic and earthly matter
and that the same natural laws hold in the realms of
astronomy and of terrestial physics (this had already
been recognized by the ancient Greeks in the case of
the laws of geometry). This leap of thought, whose dif-
ficulty only becomes clear to us when we look back at
Copernicus, gave impetus to the enormous upswing of
scientific research at the beginning of the 17th century.
W. Gilbert’s investigations into electricity and mag-
netism, Otto v. Guericke’s experiments with vacuum
pumps and electrification machines, and much more,
were stimulated by the revolution in the astronomical
worldview.

We have no space here to pay tribute to the many
observers and theoreticians who developed the new
astronomy, among whom such important thinkers as
J. Hevelius, C. Huygens, and E. Halley are particularly
prominent.

An entirely new era of natural science be-
gan with Isaac Newton (1642-1727). His major
work, “Philosophiae Naturalis Principia Mathemat-
ica” (1687), begins by placing theoretical mechanics
on a firm basis using the calculus of infinitesimals
(“fluxions”), which he developed for the purpose. Its
connection with the Law of Gravitation explains Ke-
pler’s Laws and in one stroke provides the justification
for the whole of terrestrial and celestial mechanics. In
the area of optics, he invented the reflecting telescope
and investigated the interference phenomena known
as “Newton’s Rings”. Almost casually, he developed
the basic approaches leading to numerous branches of
theoretical physics.

Only the “Princeps Mathematicorum”, Carl
Friedrich Gauss (1777-1855), is of comparable im-
portance; to him, astronomy owes the theory of orbit
calculation, important contributions to celestial mech-
anics and advanced geodesics as well as the method of
Least Squares. Never again has a mathematician shown
such a combination of intuition in the choice of new
areas of research and of facility in solving particular
problems.

Again, this is not the place to pay tribute to the great
theoreticians of celestial mechanics, from L. Euler to
J.L. Lagrange and P.-S. Laplace to H. Poincaré; how-
ever, to finish this historical overview, we describe
briefly the discovery of those planets which were not
known in ancient times.

The planet Uranus was discovered quite unexpect-
edly in 1781 by W. Herschel. Kepler had already
supposed that there should be a celestial body in the
gap between Mars and Jupiter (Fig. 2.15); the first plan-
etoid or asteroid, Ceres, was discovered in this region on
1.1.1801 by G. Piazzi, but in mid-February, it was “lost”
when it passed near the Sun. By October of the same
year, the 24-year-old C.F. Gauss had already calculated
its orbit and ephemerides, so that F. Zach could find it
again. Following this mathematical achievement, Gauss
solved the general problem of determining the orbit of a
planet or asteroid based on three complete observations.
Today, several thousand asteroids are known, most of
them between Mars and Jupiter (Sect. 3.3).

From perturbations of the orbit of Uranus,
J.C. Adams and J.J. Leverrier concluded that there must
be a planet with a still longer orbital period, and calcu-
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lated its orbit and ephemerides. J.G. Galle then found
Neptune near the predicted position in 1846.
Perturbations of the orbits of Uranus and Neptune led
to the postulate that there was a transneptunian planet.
The long search for it, in which P. Lowell (d. 1916)
played adecisive role, was finally crowned with success:
C. Tombaugh discovered Pluto in 1930 at the Lowell
Observatory as a “faint star” of 15th magnitude.

Lengthy search programs for a “planet X beyond
the orbit of Pluto have remained unsuccessful; there are
no indications for the existence of a further large planet.
However, in 1992, D. Jewitt and J. Luu succeeded in
discovering a small object outside Pluto’s orbit, whose
size i1s comparable with that of many of the asteroids.
Soon thereafter, many “planets” were observed outside
the orbits of Neptune and Pluto.

9
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2. Classical Astronomy

2.1 Spatial Coordinates and Time;
the Motions of the Sun, the Earth,
and the Moon

As a beginning of our study of astronomy, in Sect. 2.1.1
we describe apparent motions on the celestial sphere and
the coordinate system used to specify the positions of
celestial objects. In Sect. 2.1.2, we treat the motions of
the Earth, its rotation and its revolution around the Sun,
which are reflected as apparent motions on the celes-
tial sphere. Section 2.1.3 is devoted to the astronomical
measurement of time. Following these preparatory top-
ics, we gradually become familiar with the objects in
our Solar System, beginning this process in Sect. 2.1.4
with our Moon, its motions and its phases. We then treat
lunar and solar eclipses in Sect. 2.1.5.

2.1.1 The Celestial Sphere
and Astronomical Coordinate Systems

Since antiquity, human imagination has combined the
easily-recognized groups of stars into constellations
(Fig.2.1). In the northern sky, the Great Bear (or the
Big Dipper) is readily seen. We can find the Pole Star
(Polaris) by extending the line joining the two brightest
stars of the Big Dipper until it is about five times longer.
Continuing about the same distance past Polaris (which
is the brightest star in the Little Dipper or Small Bear),
we see the “W” of Cassiopeia. Using a sky globe or
a star map, we can readily find the other constellations.
In his “Uranometria Nova” (1603), J. Bayer named the
stars in each constellation «, 8, ¢ ..., as a rule in the

order of decreasing brightness. Besides these Greek let-
ters, we also use the numbering system of the “Historia
Coelestis Britannica” (1725), compiled by the first As-
tronomer Royal, J. Flamsteed. The Latin names of the
constellations are usually abbreviated to 3 letters (see
Appendix A.2).

Fig.2.1. Circumpolar stars from a location having a geo-
graphic latitude of ¢ = +50° (about that of Frankfurt or
Prague). The coordinate lines indicate the right ascension RA
and the declination (+40° to +90°). Precession: the celes-
tial pole circles about the pole of the ecliptic ENP once
every 25700 years. The location of the celestial north pole
is indicated for several past and future dates
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Celestial Sphere. On the celestial sphere (in mathe-
matical terms, the infinitely distant sphere on which the
stars seem to be projected), we in addition define the
following quantities (Fig.2.2):

1. the horizon with the directions North, West, South,
and East,

2. vertically above our position the zenith, directly un-
der us the nadir,

3. the curve which passes through the zenith, the nadir,
the celestial pole, and the north and south points is
the meridian, and

4. the curve which is perpendicular to the meridian and
the horizon, passing through the zenith and the east
and west points, is the principal vertical.

In the coordinate system defined by these features,
we denote the momentary position of a star by giving
two angles (Fig. 2.2): (a) the azimuth is measured along
the horizon in the direction SWNE, starting sometimes
from the S- and sometimes from the N-point; (b) the
altitude is 90° — the angle to the zenith.

The celestial sphere apears to rotate once each day
around the celestial axis (which passes through the ce-
lestial North and South Poles). The celestial equator
is perpendicular to this axis. The position of a star

Fig.2.2. The celestial sphere. The horizon with north, east,
south, and west points. The (celestial) meridian passes through
the north point, the (celestial) pole, zenith, south point, and
the nadir. Coordinates: altitude and azimuth

Fig. 2.3. Celestial coordinates: right ascension RA and dec-
lination 8. The hour angle ¢ = sidereal time minus the right
ascension RA. C; =lower culmination, C, = upper culmina-
tion. Lower right: the Earth (polar flattening exaggerated).
Polar altitude = geographic latitude

(Fig. 2.3) at a given time on the celestial sphere, imag-
ined to be infinitely distant, is also described by the
declination 8, which is positive from the equator to the
North Pole and negative from the equator to the South
Pole, and by the hour angle t, which is measured from
the meridian in the direction of the diurnal motion, i.e.
towards W.

In the course of a day, a star therefore traces out
a circle on the sphere; its plane is parallel to the plane
of the celestial equator. On the meridian, the greatest
height reached by a star is its upper culmination, and
the least height is its lower culmination.

11
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Sidereal Time. We also mark the Aries Point V on the
celestial equator; we shall deal with it in the following
section. It marks the point reached by the sun on the
vernal equinox (March 21), on which the day and the
night are equally long. The hour angle of the Aries point
defines the sidereal time t.

Astronomical Coordinates. We are now in a position
to determine the coordinates of a celestial object on the
sphere independently of the time of day: we call the arc
of the equator from the Aries point to the hour-circle of
a star the right ascension RA of that star. It is quoted in
hours, minutes, and seconds. 24 h (hora) correspond to
360°, or

1h=15°,
1° =4 min,

1 min =15, 1s=15",

'=4s.
From Fig. 2.3, one can readily read off the relation:

Hour angle ¢ = sidereal time 2.1

—right ascension RA .

The declination 8, our second stellar coordinate, has
already been defined.

If we now wish to train a telescope on a particu-
lar star, planet, etc., we look up its right ascension RA
and declination 8 in a star catalog, read the time from
a sidereal clock, and adjust the setting circles of the in-
strument to the angle hour ¢ calculated from (2.1) and
to the declination (4 north, — south). The especially
precisely determined positions of the so-called funda-
mental stars (especially for determinations of the time,
see Sect.2.1.3) are to be found, along with those of
the Sun, the Moon, the planets, etc. in the astronomical
yearbooks or ephemerides; the most important of these
is the Astronomical Almanac.

Astronomical Coordinates. The Copernican system at-
tributes the apparent rotation of the celestial sphere to
the fact that the Earth rotates about its axis once ev-
ery 24 h of sidereal time. The horizon is defined by
a plane tangent to the Earth at the location of the ob-
server; more precisely, by an infinite water surface at the
observer’s altitude. The zenith or vertical is the direc-
tion of a plumb-bob perpendicular to this plane, i.e. the
direction of the local acceleration of gravity (including
the centrifugal acceleration caused by the Earth’s ro-
tation). The polar altitude (the altitude of the celestial

pole above the horizon) is given from Fig.2.3 by the
geographic latitude ¢ (the angle between the vertical
and the Earth’s equatorial plane); it can be readily mea-
sured as the average of the altitudes of the Pole Star or
a circumpolar star at the upper and lower culminations.

The geographic longitude | corresponds to the hour
angle. If the hour angle of the same object is measured
simultaneously at Greenwich (zero meridian, Ig = 0°)
and, for example, in New York, the difference gives
the geographic longitude of New York, /. The deter-
mination of the latitude requires only a simple angle
measurement, while that of a longitude necessitates
a precise time measurement at two places. In earlier
times, the “time markers” were taken from the motions
of the Moon or of one of the moons of Jupiter. The
introduction of the “seaworthy” chronometer by John
Harrison (ca. 1760—65) brought a great improvement,
as did the later transmission of time signals by telegraph
and still later by radio.

A few further facts: at a location having (northern)
latitude ¢, a star of declination & reaches an altitude of
hmax = 90° — | — 4| at its upper culmination and A, =
—90° 4 |@ + 4| at its lower culmination. Stars with § >
90° — ¢ always remain above the horizon (circumpolar
stars); those with & < (90° — ¢) never rise above the
horizon.

Refraction. In measuring stellar altitudes h, we must
take the refraction of light in the Earth’s atmosphere into
account. The apparent shift of a star (the apparent minus
the true altitude) is termed the refraction. For average
atmospheric tmperature and pressure, the refraction Ak
of a star at altitude 4 is summarized in the following
table:

h = 0° 5°
Ah =

100 200 40°
34'50" 945" 516" 237" 109"

60° 90°
33// 0// X
The refraction decreases slightly for increasing tem-

perature and for decreasing atmospheric pressure, for
example in a low-pressure zone or in the mountains.

2.1.2 The Motions of the Earth.
Seasons and the Zodiac

‘We now consider the orbital motion or revolution of the
Earth around the Sun in the Copernican sense, and then
the daily rotation of the Earth about its own axis, as well
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as the motions of the axis itself. We first place ourselves
in the position of an observer in space. In Sect. 2.4, we
shall derive Newton’s theory of the motions of the Earth
and the planets starting from his principles of mechanics
and law of gravitation.

Ecliptic and Seasons. The apparent annual motion of
the Sun in the sky was attributed by Copernicus to the
revolution of the Earth around the Sun on a (nearly)
circular orbit. The plane of the Earth’s orbit intersects
the celestial sphere as a great circle called the ecliptic
(Fig.2.4). This makes an angle of 23°27" with the ce-

Fig. 2.4. Annual (apparent) motion of the Sun among the stars.
The Ecliptic. The seasons

2 On these days, the day and night arcs of the Sun are equal and each corre-
spond to 12 hours.

lestial equator, the obliquity of the ecliptic. This means
that the Earth’s axis retains its direction in space relative
to the fixed stars during its annual revolution around the
Sun; it forms an angle of 90° —23°27' = 66°33’ with
the Earth’s orbital plane.

A brief summary will suffice to explain the seasons
(Figs. 2.4, 5), starting with the Northern Hemisphere.

In the Northern Hemisphere, the Sun reaches its
maximum altitude (midday altitude) at a geographical
latitude ¢ on the 21st of June (the first day of Summer or
Summer solstice), 2 = 90° — |23°27’ — ¢|. On the 22nd
of December (Winter solstice), it has its lowest midday
altitude, h = 90° — ¢ —23°27’. It can reach the zenith
at latitudes up to ¢ = +23°27’, the Tropic of Cancer.
North of the Arctic Circle, ¢ > 90° —23°27" = 66°33,
the Sun remains below the horizon around the Winter
solstice; near the Summer solstice, the “midnight Sun”
acts as a circumpolar star.

In the Southern Hemisphere, Summer corresponds
to Winter in the Northern Hemisphere, the Tropic of
Capricorn to the Tropic of Cancer, etc.

The zodiac is the term for a band in the sky on each
side of the ecliptic. Since ancient times, it has been
divided into 12 equal “signs of the zodiac” (Fig. 2.5).

It is often expedient for calculating the motions of
the Earth and the planets to use a coordinate system
oriented on the ecliptic and its poles. The (ecliptical)
longitude is measured along the ecliptic starting from
the Aries or V point, like the right ascension in the di-
rection of the annual motion of the Sun. The (ecliptical)

Fig. 2.5. The orbit of the Earth around the Sun. The seasons.
The zodiac and the signs of the zodiac. The Earth is at perihe-
lion (closest approach to the Sun) on the 2nd of January, and
at aphelion (furthest distance from the Sun) on the 2nd of July

13
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latitude is measured, analogously to the declination, in
a direction perpendicular to the ecliptic. The ecliptical
coordinates in the sky must naturally not be confused
with the similarly-named geographical coordinates!

Kepler’s Laws. The apparent annual motion of the Sun
contains irregularities which were already known to an-
cient astronomers; they were recognized by Johannes
Kepler as consequences of his first two laws of plane-
tary motion, which we shall treat in more detail in
Sect.2.4.1:

Kepler’s 1st Law: The planets move on elliptical orbits,
with the Sun at one (common) focus.

Kepler’s 2nd Law: The radius vector of a planet sweeps
out equal areas in equal times.

Kepler’s 3rd Law: The squares of the orbital periods of
two planets are in the ratio of the cubes of their orbital
semimajor axes.

The quantities needed for the geometric definition of
the Earth’s orbit or that of another planet around the Sun
are shown in Fig. 2.6: we first note the semimajor axis a.
The distance from a focus to the midpoint is denoted by
a - e, where the pure number e is called the eccentricity
of the orbit. At the perikelion, the closest approach to the
Sun, the distance of the Earth or other planet from the
Sun is 7 = a(l — e); at the aphelion, the point furthest
from the Sun, ryax = a(1 + e). The diurnal motion of the
Sun in the sky, i.e. the angle passed through by the ra-
dius vector of the Earth each day, is found from Kepler’s

Fig. 2.6. The orbital ellipse of a planet. The semimajor axis
is a, and the distance from the midpoint to a focus (the Sun)
is a- e, where e is the eccentricity. (The actual eccentricity of
the orbits of the planets is much smaller than shown here)

2nd law to obey (Fmax/Fmin)> = [(1 +e)/(1—e)]*. The
corresponding apparent diameters of the Sun’s disk have
the ratio (14 ¢)/(1 — e). Measurements yield an eccen-
tricity for the Earth’s orbit of e =0.0167. At present,
the Earth passes through its perihelion about January
2nd. The approximate coincidence of this date with the
beginning of the year is purely accidental.

Precession. Hipparchus had already discovered that the
Aries point (V' point) is not fixed with respect to the
celestial equator, but rather moves forward by about
50" each year. This has led to the advancing of the
¥ point from the constellation Aries in ancient times
to the constellation Pisces today. The precession of the
equinoxes described is due to the fact that the celes-
tial pole rotates about the fixed pole of the ecliptic on
a circle of radius 23°27" with a period of 25 700 years
(Fig. 2.1); or, expressed differently: every 25 700 years,
the Earth’s axis of rotation traces out a cone with an
opening angle of 23°27, centered around the axis of the
Earth’s orbit.

Since this precession shifts the position of the celes-
tial coordinate system in which we measure the right
ascension RA (or ) and the declination § relative to the
stars, in quoting the positions of individual stars or in
star catalogs, the equinox (position of the V point) for
which RA and § are measured must always be specified.
In Table 2.1, we show the various corrections which are
to be applied to the RA (depending on the values of RA
and §) and to § (depending only on RA) to take account
of the precession during a 10-year interval. The stellar
positions also change because of the stars’ proper mo-
tions (Sect. 6.2.2). We shall come back to the question
of the stellar positions and star catalogs in Sect. 6.2.4.

Nutation. Superimposed on the precession, which has
a period of 25 700 years, is a superficially similar mo-
tion having a period of 19 years, the nutation. Finally,
the axis of the Earth’s rotation fluctuates relative to the
body axis of the Earth itself by about +0.2"; analysis of
this motion shows it to have a periodic part, with the so-
called Chandler period of 433 days, as well as an annual
contribution and an irregular part. The resulting fluctu-
ations in the polar altitude are continuously checked at
a series of observation stations. We shall return to the
explanation of the various motions of the Earth’s axis
in Sect. 2.4.
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2.1.3 Time: Days, Years, and the Calendar

Our daily life depends to a considerable extent on the
position of the Sun. Thus, the

true solar time = hour angle of the Sun+ 12 h

was first defined. This is the time indicated by a simple
sundial; 12:00 h corresponds to the upper culmination
of the Sun. However, due to the nonuniformity of the
Earth’s orbital motion around the Sun (Kepler’s 2nd
law) and to the inclination of the ecliptic, this time
varies throughout the year. The mean solar time was
therefore introduced; it is based on a fictitious “mean
Sun”, which passes through the equator uniformly in
the same time required by the true Sun in its passage
around the ecliptic. The hour angle of this fictitious Sun
defines the mean solar time. The difference

true solar time — mean solar time
= equation of time

is thus composed of two contributions, which derive
from the eccentricity of the Earth’s orbit and from the
inclination of the ecliptic, respectively. Their extrema
are:

Febr. 12 May14  July 26 Nov. 4

Equation of time: —14.3min +3.7min —6.4min + 16.4 min

Table 2.1. Precession during a 10-year interval

a) A(RA) in minutes of time (+ increase, — decrease)

Mean solar time is different for each meridian. As
a simplification for transportation and communication,
it has been agreed upon to use the local time of a par-
ticular meridian within a suitably defined “time zone”,
for example Greenwich Mean Time (GMT) in England
and Western Europe, Central European Time (CET) in
Central Europe, Eastern Standard Time (EST) on the
East Coast of the USA and Canada, etc.

For scientific purposes, for example astronomical
or geophysical measurements at stations which may
be spread around the globe, the same time is used
everywhere, namely universal time:

world time or universal time (UT)
= mean solar time
at the Greenwich meridian .

This time is measured in 24-hour days, starting with
0:00 h at midnight. For example, 12:00 h corresponds to
07:00h EST or 13:00h CET.

For astronomical observations, the relation between
mean solar time and sidereal time is required. The
“mean Sun” moves relative to the V point by 360° or
24 h from west to east in the course of a year (365 d).
The mean solar day is thus 24 h/365d or 3 min 56
longer than a sidereal day. A sidereal clock gains about
2 h per month relative to a “normal” UT clock. To make

b) A in minutes of arc (4 increase in é, in the southern sky thus decreasing absolute values |5]!)

RA [h] 0 1 2 o 4 5
24 23 22 21 20 19
As +3.34° 4323 +289 42360 +167 4086

6 7 8 9 10 1 1
18 17 16 15 14 13 =
0.0 —0.86 1.67° -2.36' —2.89 —3.23 -3.34
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this clearer, we list the sidereal time for several dates at
0:00h local time (midnight). This is given by the hour
angle of the ¥ point or the right ascension of stars which
cross the meridian at midnight (and are thus favorable
for observation):

0h local time January 1 April1 Julyl October 1
sidereal time or
RA at the meridian 6.7h 12.6h 18.6h 0.6h.

The Year. The suitable unit for long periods of time is
the year. We define: one

siderial year = 365.25637 mean solar days

as the time between two passages of the Sun through
the same point in the sky (from sidus = “star”); it is thus
the true orbital period of the Earth. One

tropical year = 365.24220 mean solar days

is the time between two passages of the Sun through
the Aries point V' or beginning of Spring (from
Tpomstv="to turn”). Since this point moves 50.3” to
the west each year, the tropical year is correspondingly
shorter than the sidereal year.

Calendar. The seasons and the calendar are calculated
relative to the tropical year. Because it is preferable for
practical reasons that each year comprise an integral
number of days, in everyday life we use the

calendar year
= 365.2425 = 365 + ; — 705 mean solar days

It corresponds to the prescription for leap years given
by the Gregorian calendar, introduced in 1582 by Pope
Gregory XIII. Every 3 years with 365 days are followed
by a leap year with 366 days, except for the whole cen-
turies which are not divisible by 400. We cannot discuss
here the earlier Julian calendar introduced by Julius Cae-
sar in 45 B.C., nor other problems of chronology which
are interesting from a cultural-historical point of view.

The Julian Day. To simplify chronological calculations
dealing with long periods of time, and in particular for
observations and ephemerides of variable stars, etc.,
it is desirable to avoid the variation in the lengths of

years and months. Following a suggestion of J. Scaliger
(1582), the Julian days are simply counted in an unbro-
ken succession. Each Julian day begins at 12:00h UT
(mean Greenwich midday). The beginning of Julian
day 0 was fixed at 12:00h UT on January 1st in the year
4713 B.C. On January 1, 2005, the Julian day number
2453372 began at 12:00h UT.

Independently of the detailed definition, we use the
symbols yr for “year” and d for “day”.

For the calculation of astronomical times over long
periods, the unit

Julian century = 36 525.0d
with 1d =24-60-60s = 86 400 s has been defined.

The Measurement of Time. Astronomical time reck-
oning was long based on the assumed uniformity of the
Earth’s rotation. The basic physical principle underlying
terrestrial time measurements was already recognized
by Christian Huygens (“Horologium Oscillatorium”,
1673): every clock consists of an oscillatory mechanism
which is isolated as far as possible from its surroundings
(a pendulum, clock movement, etc.) and held in motion
by a driving mechanism (weight, spring, etc.) with the
least possible feedback. The pendulum chronometer,
steadily improved over the years, was for three cen-
turies one of the most important instruments in every
astronomical observatory. The quartz clock, consider-
ably less susceptible to disturbances, consists of an
oscillating piezoelectric quartz crystal, which is kept in
motion by a loosely-coupled electrical oscillator circuit.
The pinnacle of metrological precision, however, was
attained in recent times by the afomic clock, which uses
the oscillation frequency of cesium atoms (the isotope
133Cs) in the vapor phase to measure time. The frequency
corresponds to the transition between the two energet-
ically lowest hyperfine levels. Other atomic clocks are
based on oscillations in rubidium atoms or hydrogen
masers. The extreme exactness of atomic clocks, which
attain arelative accuracy of their oscillation frequencies
of better than 104, is the basis for various funda-
mental measurements and observations in physics and
astronomy.

The comparison of astronomical observations with
groups of quartz clocks and later with atomic clocks
has shown that the rotational period of the Earth is
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not constant, but rather exhibits fluctuations of the or-
der of a millisecond, in part with an annual period, in
part aperiodic; these are related to changes in the mass
distribution on the Earth.

The second was defined in 1967 as 1s=the time
required for 9192 631 770 oscillations of the radiation
from the transition between the lowest two hyperfine
structure levels of the ground state of '**Cs; it is a base
unit of the international system of units (SI).

The atomic-clock measurements of time by standards
institutes are combined into International Atomic Time
(TAI). From it, Coordinated Universal Time (UTC), the
basis for civil time, is derived as an approximation to
universal time; it is corrected only for the variations in
the Earth’s axis and thus is not uniform. It is termed
UTI1. It is a measure of the true rotation of the Earth
about its axis and differs from UTC by the correction

AUT=UT1-UTC,

which is promulgated regularly by the Bureau Interna-
tional des Poids et Mésures (BIPM) in Sévres, near Paris
(prior to 1987, it was called the Bureau International de
I’Heure or BIH) and by other similar institutions.

In everyday life, for navigation, geophysics, etc., the
measurement of time is still necessarily based on the
Earth’s rotation; therefore, UTC is “switched” by one
whole second ahead or back whenever the magnitude
of AUT appraoches 1 s.

Independently of the progress in the physical mea-
surement of time it has been discovered that the motions
of the planets and the Sun, or of the Earth and in partic-
ular the Moon, exhibit small, common variations over
long periods of time relative to the ephemerides cal-
culated according to the laws of Newtonian mechanics
and gravitation theory. On the one hand, there is a sec-
ular (i.e. progressive) increase in the length of the day,
which is caused by the braking effect of tidal friction
(Sect. 2.4.6). Another contribution shows no such obvi-
ous origins. However, comparison of the variations for
different objects forces us to attribute them to deviations
of “astronomical time”, which is based on the Earth’s
rotation, from “physical time”, based on Newton’s laws.
Because of this empirical fact, it was decided in 1950 to
base all astronomical ephemerides on a time scale de-
rived from the basic laws of physics; the latter is termed
Ephemeris Time, ET. The small corrections (Ephemeris

Time minus Universal Time) are found for the most
part by very accurate observations of the motion of the
Moon. They can only be determined retrospectively; for
most predictive purposes, they can be extrapolated with
sufficient accuracy. In 1956, the ephemeris second was
defined as the 31 556 925.9747th part of tropical year
1900.

Ten years later, it was decided to relate the ephemeris
second to the atomic time unit. This, however, disturbs
the internal consistency of the system of ET. On the rec-
ommendation of the International Astronomical Union,
ephemeris time was replaced by Terrestrial Time, TT,
which is based on the SI second.

2.1.4 The Moon

The Moon appears to us as a disk in the sky of mean di-
ameter 31’; it is thus just the same apparent size as the
Sun. Its distance from the Earth is small enough to be
determined by triangulation from two widely-separated
points on the ground (e.g. on the same meridian). As-
tronomers refer to the angle subtended by the equatorial
radius of the Earth, seen from the Moon, as the equato-
rial horizontal parallax of the Moon. It has a mean value
equal to 3422.6”. Since the Earth’s radius is known to
have the value 6378 km, one can calculate from these
two numbers the average distance of the Moon from the
center of the Earth:

rv = 60.3Rg = 384 400 km
and therefore the Moon'’s radius:
Ry =0.272Rg = 1738 km .

We shall take up the physical structure of the Earth and
the Moon in Sect. 3.2. First, we consider the Moon’s
orbit and its motions from the viewpoint of an observer.

The Moon orbits around the Earth, in the same direc-
tion as the Earth around the Sun, in one sidereal month
= 27.32 d; that is, after that time it has returned to the
same point in the heavens.

The origin of the phases of the Moon is illustrated
in Fig.2.7. Their period, the synodic month = 29.53d
(1 — 3 in Fig.2.8), is the time after which the Moon
returns to exactly the same position relative to the Sun,
and is longer than the sidereal month (1 — 2 in Fig. 2.8).
The Moon moves in an easterly direction relative to the

17



2. Classical Astronomy

18

Fig.2.7. The phases of the Moon; the Sun is at the right.
The outer pictures indicate the Moon as seen from the Earth:
A = waxing Moon, B = waning Moon

Fig. 2.8. The synodic month (1 — 3) is longer than the sidereal
month (1 — 2), because the Earth moves onwards in its orbit
in the meantime

Sun by 360°/29.53 d = 12.2° each day, and relative to
the stars, by 360°/27.32d =13.2°.

The difference between the sidereal and synodic
daily motion of the Moon is equal to the daily mo-
tion of the Sun, i.e. 360°/365 d &~ 1°d~!. This becomes
immediately clear if we consider that the daily motion
is nothing other than the angular velocity (2r/period)
in astronomical units. We could just as well write

1 1

sidereal month  sidereal year
1

" synodic month

Orbit. More precisely, the orbit of the Moon around
the Earth is an ellipse with eccentricity e = 0.055. The
point in the orbit where the Moon is closest to the Earth
(analogous to the perihelion in the Earth’s orbit around
the Sun) is called the perigee, and the most distant point
is the apogee. The plane of the Moon’s orbit is inclined
relative to the Earth’s orbit (the plane of the ecliptic) by
an angle { = 5.1°. The Moon crosses over the eclip-
tic from the south to the north at ascending nodes,
and passes “below” the ecliptic (for observers in the
Northern Hemisphere) at descending nodes.

As a result of the perturbation (gravitational attrac-
tion) caused by the Sun and the planets, the Moon’s
orbit also includes the following motions:

1. the perigee rotates “directly” around the Earth in the
plane of the Moon’s orbit, i.e. in the same sense as the
revolution of the Earth around the Sun, with a period
of 8.85 yr.

2. the nodes of the Moon’s orbit, or the line of nodes,
in which the orbit of the Moon crosses the Earth’s
orbital plane, has a retrograde motion in the ecliptic,
i.e. in the opposite sense from the Earth’s revolution,
with a period of 18.61 yr, the so-called period of
nutation.

This “regression of the lunar nodes” furthermore
causes a corresponding “nodding” of the Earth by
a maximum of 9”; this is the nutation of the Earth’s
axis mentioned previously.

The average time between two successive passages of
the Moon through the same node is called the draconitic
month = 27.2122 d. 1t is important for the prediction of
eclipses (see Sect. 2.1.5).

If we were to observe the orbits of the Moon and the
Earth around the Sun from a spaceship, we would see,
in agreement with a simple calculation, that the Moon’s
orbit is always concave as seen from the Sun (Fig. 2.9).

Fig. 2.9. The orbits of the Earth and the Moon around the Sun
(— Earth’s orbit, --- Moon’s orbit)
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Rotation. Let us now consider the rotation of the Moon
and its other motions around its center of gravity. These
can be determined very precisely by observing the mo-
tion of a sharply defined crater or similar feature on the
lunar disk.

The fact that the Moon always shows us more or
less the same face is because the lunar rotational period
is equal to the orbital period, i.e. equal to a sidereal
month. The two periods apparently were equalized by
tidal interactions (Sect.2.4.6) between the Moon and
the Earth.

Librations. Careful observation shows, however, that
the “face” of the Moon wobbles somewhat. The so-
called geometric librations of the Moon have the
following causes:

1. the equator and the orbital plane of the Moon form
an angle of ~ 6.7°; the latitudinal libration caused by
this is equal to about +6.7°.

2. the rotation of the Moon is uniform (following New-
ton’s law of inertia), but its revolution, from Kepler’s
second law taking the eccentricity of its orbit into ac-
count, is not; this causes a longitudinal libration of

- about £7.6°.

3. the equatorial radius of the Earth appears to subtend
an angle of 57’, from the Moon, the lunar horizontal
parallax; the daily rotation of the Earth thus causes
a diurnal libration.

Furthermore, there is the considerably smaller phys-
ical libration, which is due to the fact that the Moon
is not quite spherical in shape and therefore performs
small oscillations in the gravitational field (mainly that
of the Earth).

All together, the librations have the effect that we can
observe 59% of the Moon’s surface from the Earth.

2.1.5 Eclipses of the Sun and the Moon

Having studied the motions of the Sun, the Earth, and
the Moon, let us turn to the impressive spectacle of the
lunar and solar eclipses!

A lunar eclipse occurs when the full Moon is cov-
ered by the shadow of the Earth. As with shadows on
the Earth, we distinguish between the central part of the
shadow, the umbra, and the surrounding half-shadow,

the penumbra. If the Moon is completely in the um-
bra of the Earth, we speak of a total eclipse; if only
a part of the Moon’s disk is in the umbra, we have
a partial eclipse. From the known geometrical facts we
can calculate that a lunar eclipse can last for at most
3 h40 min, while totality lasts for at most 1 h40 min.
Because the Sun’s light is absorbed and scattered by
the Earth’s atmosphere more strongly at the blue end
of the visible spectrum than at the red end, the outer
edge of the penumbra on the Moon is not sharp and that
of the umbra is also noticeably fuzzy. Furthermore, the
penumbra and to a lesser extent the umbra seem to have
a reddish-coppery color.

If the new Moon passes in front of the Sun, a solar
eclipse occurs (Fig. 2.10). It can be partial or total. If the
apparent diameter of the Moon is smaller than that of the
Sun, we will observe only a ring-shaped eclipse when
the Moon’s shadow is centered on the Sun. In a partial
eclipse, an observer on the Earth is in the penumbra
of the Moon; in a total eclipse, the observer is in the
umbra. In the case of a ring-shaped eclipse, the vertex
of the Moon’s shadow cone is between the Moon and
the observer.

Total eclipses are particularly important for astro-
physical observations of the outer layers of the Sun
and the nearby interplanetary material; the bright sun-
light is then completely blocked off outside the Earth’s
atmosphere.

Relative to the Sun, the Moon moves through an an-
gle of 0.51” per second in the sky, in agreement with the

Fig.2.10. An eclipse of the Sun (shown schematically). The
Moon moves from W to E across the Sun’s disk. In the umbra,
a total eclipse is observed; in the penumbra, a partial eclipse
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length of the synodic month. This corresponds to a dis-
tance of 370 km on the Sun. Observations of eclipses
carried out with good time resolution therefore yield an
angular resolution which is generally better than that of
available telescopes.

Stellar occultations by the Moon, which, like so-
lar eclipses, must be predicted individually for each
location, are also very sharply defined in time, since
the Moon has no atmosphere. They are important for
checking the orbit of the Moon, for determining the
fluctuations in the Earth’s rotation. Since the Moon
moves 0.55” per second relative to the stars, measure-
ments of these occultations with good time resolution
may, in favorable cases, yield the angular diameters of
the tiny stellar disks. Still more important for radio-
astronomical observations with high angular resolution
are occultations of radio-emitting objects by the Moon.

It was already known to the ancient eastern cultures
that eclipses of the Sun and Moon (in the following, we
shall refer for short simply to eclipses) succeed each
other with a period of about 18 yr11 d, the so-called
Saros cycle. This cycle is based upon the fact that an
eclipse can occur only when the Sun and the Moon are
rather close to a node in the lunar orbit. The time which
the Sun requires to return to a particular lunar node is,
due to the regression of the nodes, slightly less than
a tropical year, namely 346.62 d; this time is called an
eclipse year. As we may readily verify, the Saros cycle
corresponds to an integral number of eclipse years:

223 synodic months = 6585.32 d
and of

19 eclipse years = 6585.78 d
furthermore,

239 anomalous months = 6585.54 d
(from perigee to perigee, 27.555d) .

Thus, an eclipse configuration indeed repeats itself with
good accuracy after 18 yr 11.33 d. In one year, as one
can show by considering the orbits of the Earth and the
Moon, taking their diameters into account, there can be
a maximum of 3 lunar eclipses and 5 solar eclipses. At
a particular location, lunar eclipses, which can be seen
from a whole hemisphere of the Earth, are relatively
frequent; a total solar eclipse is, in contrast, very rare.

2.2 Orbital Motions and Distances
in the Solar System

The planets known since ancient times (with their
time-honored symbols), Mercury §, Venus @, Mars 4,
Jupiter 4, and Saturn h, have fascinated people again and
again; their motions in the sky often appeared erratic,
but were found, step by step, to obey regular laws.

In the historical introduction to Part I, we briefly
summarized the efforts made in ancient times to ex-
plain the motions of the planets. Here, we immediately
adopt the heliocentric point of view, as developed by
N. Copernicus in 1543. We shall furthermore drop the
insistance on circular orbits which Copernicus had re-
tained as a last vestige of Aristotelianism and make use
of J. Kepler’s elliptical orbits and his three laws of plane-
tary motion (1609 and 1619). We thus place ourselves at
the threshold of modern mathematical-physical think-
ing, which took on a clear form through the work of
Galileo (1564-1642) and was consolidated into the be-
ginnings of classical mechanics and gravitation theory
in Newton’s Principia (1687).

In Sect. 2.2.1, we describe the planets and their orbits
and define the orbital elements necessary to fully spec-
ify their motions. In Sect. 2.2.2 we then summarize the
orbits of the comets and meteors. Finally, in Sect. 2.2.3,
we discuss the determination of the Earth-Sun distance,
the fundamental “astronomical unit” (AU), as well as
the Doppler effect which results from the motion of the
Earth, and the aberration of light.

We shall defer the discussion of the physical strucure
of the planets and their satellites, the comets and other
objects in the Solar System to Chap. 3.

2.2.1 Planetary Motions and Orbital Elements

The origin of the direct (west—east) and of the retrograde
(east—west) motions of the planets is explained in Fig.
2.11, taking Mars as an example.

Referring to Fig.2.12, we first consider the motion
around the Sun of an inner planet, e.g. Venus, as seen
from our more slowly revolving Earth. The planet is
closest to us atits lower conjunction. It then moves away
from the Sun in the sky and, as Morning Star, reaches its
greatest westerly elongation of 48°. At the upper con-
junction, Venus is at its greatest distance from the Earth
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Fig. 2.11. Direct (west—east) and retrograde (east-west) mo-
tions of the planet Mars. The positions of the Earth and Mars
on their orbits are numbered from month to month. At 4, Mars
is in apposition to the Sun; it is overtaken here by the Earth
and thereafter shows retrograde motion. At this time, it is clos-
est to the Earth and most readily observed. The orbit of Mars
is inclined relative to that of the Earth, i.e. the ecliptic, by 1.9°

and is closest to the Sun as seen in the sky. It then again
moves away from the Sun and reaches its greatest east-
erly elongation of 48° as the Evening Star. The ratio of
the orbital radii of Venus and the Earth is established by
the maximum elongation of £48° (for Mercury, £28°).
The phases of Venus, which are readily recognized in
Fig. 2.12, and the corresponding changes in its apparent
diameter (9.9” to 64.5”) were immediately discovered

Fig. 2.12. The orbit and phases of Venus, an inner planet. The
elongation of Venus in the sky cannot exceed £48° (Mercury,
+28°). The phases are similar to those of the Moon. The
maximum brightness occurs near the maximum elongation

by Galileo with his telescope; they prove that the Sun
is also at the center of the true orbit of Venus. The
planet reaches its maximum apparent brightness, as can
be seen from Fig. 2.12, in the neighborhood of its great-
est elongations. In the lower conjunction, Venus (and
Mercury) can pass in front of the Sun. These transits of
Venus were previously of interest for the determination
of the distance to the Sun or of the solar parallax.

An outer planet, for example Mars (Fig.2.13), is
nearest to us at its opposition; it then has its culmination
at midnight true local time, when it has its largest ap-
parent diameter and is most favorable to observe. When
it is near the Sun in the sky, it is said to be in conjunc-
tion. The outer planets do not go through the full cycle
of phases from “full” to “new”. The angle between the
Earth and the Sun as seen from the planet is called the
phase angle ¢. The fraction of the planet’s hemisphere
which faces the Earth and is dark is thus ¢/180°. The
phase angle of an outer planet passes through a max-
imum at the quadratures, i.e. when the planet and the
Sun form an angle of 90° in the sky. The largest phase
angle of Mars is 47°, that of Jupiter is only 12°.

Fig. 2.13. The orbit and phases of Mars, an outer planet. The
maximum brightness and largest angular diameter of 25.1”
occur when it is in opposition
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Planetary Period. The true time taken by a planet to
revolve around the Sun is termed its sidereal period. The
synodic period is the time it requires for a revolution in
the sky relative to the Sun, i.e. the time between two
successive, corresponding conjunctions. In analogy to
the Moon, the following relations hold for the planets
(subtraction of the angular velocities):

1

Synodic Period
1 1

" | Sidereal Period  Sidereal Year (Earth)

(22)

For example, the sidereal period of Mars is found from
the observed synodic period of 780 d and the length of
the sidereal year, 365 d, to be 687 d.

Planetary Orbits. Kepler was the first to derive the true
form of Mars’ orbit, by combining pairs of observations
of Mars which were taken at intervals equal to Mars’
sidereal period, that is when the planet had returned to
the same point on its orbit. Thus he could localize Mars
from two points on the Earth’s orbit separated by 687 d;
since the latter was sufficiently well-known, he was able
to trace out the true orbit of Mars. Two fortunate cir-
cumstances, namely that the conic sections had been
thoroughly investigated by Apollonius of Pergae; and
that, of the then-known planets, Mars has the greatest
orbital eccentricity, e = 0.093, made it possible for Ke-
pler to arrive at his first two laws of planetary motion.
He discovered the third law only after 10 further years,
guided by the unshakeable conviction that a “universal

Fig. 2.14. The orbital elements of a planet or comet

harmony” must somehow express itself in the orbits of
the planets.

The complete description of the orbit of a planet or
comet (Sect. 2.2.2) around the Sun requires the orbital
elements defined in Fig. 2.14:

1. The semimajor axis a. It is measured either in
terms of the semimajor axis of the Earth’s or-
bit = 1 astronomical unit (AU), or in kilometers.

Fig. 2.15. Mean orbital radii
of the planets (semimajor
axes a). The arcs correspond
to the average motion per year;
in one year, Venus circles the
Sun 1.62 times and Mercury
4.15 times
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2. The eccentricity e [distance at perihelion a(l —e);
distance at aphelion a(1 +¢)].

3. The inclination i of the orbital plane relative to the
ecliptic.

4. The length of the ascending node §] (angle from the
Aries point Y to the ascending node).

5. The distance w of the perihelion from the node (angle
from the ascending node to the perihelion). The sum
of the two angles, §] + w, where the first is measured
in the ecliptic and the second in the orbital plane, is
called the perihelion length, &.

6. The period P (sidereal period, measured in tropical
years) or the mean daily motion n (in degrees or arc
seconds per day).

7. The epoch E or the time of the passage through the
perihelion, T

The orbital elements a and e determine the size and
shape of the orbit (Fig.2.6), i and §] fix the orbital
plane, and w determines the position of the orbit within
the plane. The motion along the orbit depends upon
P and T; the period P is, in fact, determined by the
value of a, from Kepler’s third law, apart from small
corrections.

To conclude this section, in Table 2.2 we have listed
the orbital elements of the planets which are of interest
to us here (Fig. 2.15). In addition to the planets known in
ancient times, we have included Ceres, the brightest of
the many thousand planetoids or asteroids which orbit

Table 2.2. Some orbital elements of the planets (epoch 1990.0)

between Mars and Jupiter, as well as, of course, Uranus
(discovered in 1781), Neptune (1846), and Pluto (1932).

Pluto’s orbital elements (eccentricity e = 0.25, in-
clination 17.1°), along with its diameter and mass (cf.
Sect. 3.5.1) make it quite different from the other outer
planets. Pluto spends some time within the orbit of Nep-
tune, and its orbital period is in “resonance” (3:2) with
that of Neptune. Pluto’s last perihelion occurred in 1989.

We will consider the orbits of the many “small ob-
jects” which have been recently discovered (since 1992)
outside the orbit of Neptune (and to some extent outside
that of Pluto) in Sect. 3.5.2.

2.2.2 Comets and Meteors

Our planetary system also contains, besides the planets
and their moons and the asteroids, comets and meteors
(“shooting stars™).

The comets are characterized by their extended, dif-
fuse outer shell, the coma, which surrounds the bright
core or nucleus. When a comet approaches the Sun, its
coma develops a noticeable tail (see Fig. 3.27).

In ancient times and in the Middle Ages, the comets
were relegated to the Earth’s upper atmosphere, in ac-
cordance with the doctrine of the immutability of the
heavenly regions. The first proof that this doctrine was
incorrect was given by Tycho Brahe’s precise observa-
tions of the comets of 1577 and 1585, from which he
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derived parallaxes that showed that the comet of 1577,
for example, must be at least six times more distant
from the Earth than the Moon. Isaac Newton recognized
that the comets move on elongated ellipses or parabolas
around the Sun, with eccentricities equal to or a little
smaller than 1. His contemporary E. Halley improved
the method of determining their orbits and in 1705 was
able to show that Halley’s comet of 1682, which bears
his name, must have a period of 76 yr. From Kepler’s
third law, the semimajor axis of its orbit is equal to
2.76%/3 =36 AU, i.e. its aphelion lies somewhere out-
side the orbit of Neptune. Halley’s orbit calculation also
showed that the bright comet of 1682 was identical with
those of 1531 and 1607, and he could predict its return
in 1758. All together, 29 appearances of Halley’s comet
have been witnessed since the year 240 B.C. The most
recent perihelion of Halley’s comet took place in 1986.

In searching for comets, observations in the far in-
frared, which are sensitive to the thermal radiation
emitted by the comet’s dust (cf. Sect.3.6.1), can be
very useful. Thus, the first infrared observation satel-
lite, IRAS, was able to discover six new comets in the
single year 1983, while they were still extremely faint
in the visible region.

Nomenclature. The modern (since 1995) method of
naming comets is similar to that used for asteroids
(Sect. 3.3.1): when a comet is discovered, a letter cor-
responding to the time interval (in half months) and
a number for the order of the discovery within that in-
terval are appended to the year of discovery; the name
of the discoverer is often included, also, with a number
added after the name to distinguish different comets dis-
covered by the same person. Furthermore, the type of
comet is indicated by a prefix: P/ stands for comets with
short orbital periods, less than 200 yr, C/ for comets of
long period or non-periodic comets, and D/ for comets
which have ceased to exist. (A/ indicates an asteroid or
planetoid). If a clearcut determination of the orbit has
been made, a series number is put before the P/ or D/,
as is also done in the case of asteroids.

For example, Halley’s comet has been denoted
(retroactively) as 1P/Halley or 1P/1682 Q1 Halley;
the two bright comets of the 1990’s are C/1995 O1
Hale-Bopp (Fig. 3.28) and C/1996 B2 Hyakutake.

Previously, comets were given a provisional name
according to their year of discovery, with lower-case

letters indicating the order of discovery in that year.
Then, after determination of the orbit, they were de-
noted by the year of their perihelion followed by
Roman numbering in the order of their passage through
perhelion in that year; comets of short period were
characterized by P/ before the year. Examples are
1P/Halley = 1835 III = 1910 II = 1986 III, C/1956
R1 Arend-Roland = Arend-Roland 1956 h = 1957 111,
29P/1927V1 Schwassmann-Wachmann 1 = 1925 II =
1974 11

One of the reasons for introducing the new ter-
minology was that comets are not always clearly
distinguishable from asteroids in terms of their appear-
ance and orbit. For example, the asteroid 2060 Chiron
(semimajor orbital axis a = 3.7 AU) developed a coma
many years after its initial discovery and thus became
a comet (95 P/Chiron). Conversely, comets can lose
their coma (through “sealing” of their surfaces by a thin
layer of dust) and become inactive asteroids.

The Orbits and Periods of the Comets. The orbits of
the comets fall into two groups:

a) Comets of long orbital period with periods of rev-
olution between 10% and 10° years, and perhelia in the
range of 1 AU (high probability of discovery): the incli-
nations i of their orbits are randomly distributed; direct
and retrograde motions are about equally probable. The
eccentricities e are slightly smaller than or nearly equal
to 1, so that their orbits are long, thin ellipses or, as a lim-
iting case, parabolas. Hyperbolic orbits, with e > 1, are
only rarely produced by perturbations from the major
planets.

C/1995 Hale-Bopp - the third-brightest comet which
has ever been observed — had its perihelion in 1997.
According to its calculated orbit, it last passed near the
Sun 4210 years ago and will return in 2380. The changes
in its period are caused by perturbations from the major
planets.

Since the velocities v of these comets are quite small
at large distances from the Sun, it is likely that they
originate from a cloud which accompanies the Sun on
its path in the Milky Way. It is estimated that this “Oort
Cloud” (with a diameter of about 50 000 AU) contains
some 10'2 comets, whose total mass is however equal
to only about 50 times the mass of the Earth.

b) Comets of short orbital period, with periods less
than 200 years. They move for the most part in elliptical
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orbits with small inclinations i (mean inclination of this
group i 2~ 20°). Nearly half of these comets have their
apeheliaintherange5 ... 6 AU, i.e.in the neighborhood
of Jupiter’s orbit (ay = 5.2 AU). The mean values of
the orbital data correspond to a ~ 3.6 AU and e >~ 0.56.
This “Jupiter family” of comets evidently arose through
capture of longer-period comets by the planet Jupiter.
Similar comet families associated with other planets
have not been identified with certainty.

Encke’s comet (2P/1786B1 Encke) has the short-
est known orbital period of 3.3yr. The comets
29P/Schwassmann-Wachmann (a = 6.0 AU, e = 0.04)
and 82P/Gehrels (a = 4.1 AU, e = 0.12) move on nearly
circular orbits.

Comets decay in time by breaking up and by va-
porization of cometary matter, so that the swarm of
short-period comets must be constantly replenished
by capture of new objects. Model calculations for the
short-period comets with their small orbital inclinations
indicate a flattened, ring-shaped reservoir outside the
orbit of Neptune at a distance up to 50 AU from the
Sun, the Kuiper ring, containing 108 to 10'? comets.

We can thus observe only a vanishingly small fraction
both of the long-period and of the short-period comets.

The Breakup of Comets. Not only the orbits of the
comets are unstable with respect to gravitational pertur-
bations; the comets themselves are also not stable. Since
they consist of weakly bound matter (cf. Sect. 3.6.2),
they can be strongly influenced by a near passage
through the gravitational field of Jupiter or the Sun.
In fact, several comets have been observed to break up:
the comet 3D/1772E1 Biela broke into two parts in
1846, which were both last observed in 1852 and have
since disappeared. Comet 16P/1889 N1 Brooks?2 was
discovered after a near passage by Jupiter, when it al-
ready consisted of (at least) two separate comets. Only
the larger of these fragments has “survived” until the
present as a returning comet with a period of 6.9 yr.
An unusual object was discovered in 1993 by C. and
G. Shoemaker und D. Levy: a comet which had al-
ready split up into a chain of many fragments which
were arrayed along its orbit. Each fragment was sur-
rounded by its own dust-filled coma. This comet
D/1993 F2 Shoemaker-Levy 9 orbited Jupiter(!) on
a strongly elliptical orbit, approaching to within about
0.3 AU and having a period of around 2 yr. In 1992,

it approached the big planet so closely that it was
torn apart; one orbital period later, in July 1994, about
20 fragments crashed one after another within 6 days at
velocities near 60 km s~! onto the surface of Jupiter. We
shall describe this spectacular event later in connection
with the structure of Jupiter’s atmosphere (Sect. 3.4.1).

Meteors. The showers of “falling stars” or meteors
which on certain days of the year appear to emanate
from a particular point in the sky (their “radiant”, sim-
ilar to a vanishing point in perspective drawings) are,
as indicated e.g. by their periodicity, simply the de-
bris of comets, whose orbits crossed or nearly crossed
that of the Earth. In some cases, the cometary matter
seems to be fairly well concentrated along the orbit,
so that especially lively meteor showers are observed
with the corresponding period: an example is the fa-
mous case of the Leonids (radiant oo >~ 152°, § >~ +22°),
which were observed by Alexander v. Humboldt from
Venezuela in 1799, and can be attributed to the comet
55P/1865Y1 Tempel-Tuttle, with a 33 year period. In
addition, there are sporadic meteors which show no
recognizable periodicity.

The fact that “falling stars” are really small objects
from space, which enter the Earth’s atmosphere and are
heated to incandescence by it, was first demonstrated in
1798 by two students in Gottingen, Brandes and Ben-
zenberg. They made observations of meteors from two
sufficiently distant points and calculated the altitude of
their tracks. Earlier, E.F.F. Chladni had shown that me-
teorites are just meteoric material (from larger meteors)
which has reached the Earth’s surface.

Comets are not the only source for the meteors and
meteorites. They can also be debris from larger objects
originally in the asteroid belt (Sect. 3.3).

Comets or meteors whose orbits were originally
hyperbolic, i.e. objects which have entered the Solar
System from outer space, have not been observed either
among the comets or among the meteors.

2.2.3 Distance Determination,
the Doppler Effect and Aberration of Light

We need now to turn to the important question of how the
distance from the Earth to the Sun (or, more precisely,
the semimajor axis of the Earth’s orbit, which we have
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defined as the astronomical unit, 1 AU) can be measured
in established units such as kilometers. Astronomers
prefer to refer to the solar parallax nq, i.e. the angle
which the equatorial radius of the Earth, Rg = 6378 km
(known from geodetic measurements) subtends when
seen from the center of the Sun. The solar parallax is
too small for direct measurement, as can be done in the
case of the lunar parallax. Therefore, the first step is to
determine the distance to a planet or asteroid whose orbit
brings it sufficiently near to the Earth, by making obser-
vations from several observatories in both the Northern
and Southern Hemispheres. In former times, Mars at
opposition or Venus at its lower conjunction were used;
more recently, extensive series of observations of the
oppositions of the asteroid Eros, which is more favor-
able for such determinations, have been carried out.
These astronomical methods of distance determination
have recently acquired serious competetion from radar
techniques, which allow the precise determination not
only of the distance to the Moon, but also that to Venus
and Mars by direct measurement of the round-trip travel
time of reflected radiofrequency signals, together with
the velocity of light ¢ which is known from terrestrial
experiments. Combining the individual measurements
allows the calculation of the radius of the Earth’s or-
bit using Kepler’s 3rd law; the details involve difficult
celestial-mechanical calculations.

Instead of the radius of the Earth’s orbit, the orbital
velocity of the Earth can be determined in [kms~!] by
using the Doppler effect (Fig.2.16), which was derived
in 1842 by C. Doppler in connection with considerations
of the orbital motions of binary stars using the wave
theory of light:

When a radiation (light) source moves relative to
an observer with a radial velocity v (the velocity com-
ponent in the direction of the line of sight between
source and observer), the wave length Ay of the radia-
tion (or its frequency vy = ¢/Aq) appears to be shifted
by AL = A—Ag or Av=v— g, where:

Al Av v

= - o).
c

— 23
” " (2.3)

A source whose relative motion is away from the ob-
server (by definition a positive velocity) produces an
increase in the wavelength A, i.e. a red shift of the spec-
tral lines and a reduction in their frequency v, and vice
versa. (One speaks of a “red shift” even for example

Fig. 2.16. The Doppler effect, AL/Ao =v/c

in the radiofrequency range, when a shift occurs away
from red, to still larger wavelengths.)

In practice, either the radial velocity of a fixed star
relative to the Earth is followed over most of a year,
using the Doppler shift in its spectral lines, or else the
relative velocity between the Earth and e.g. Venus is
determined from the frequency shift of reflected radar
signals (reflection from a moving mirror yields twice
the frequency shift quoted above).

A similar consideration formed the basis of the his-
torically important first measurement of the velocity of
light by O. Romer in 1675: he determined the frequen-
cies of revolution v of the larger moons of Jupiter from
their transits behind the planet’s disk. When the Earth
is moving away from Jupiter, these frequencies appear
to be reduced, due to the finite propagation velocity ¢
of light; when it is moving towards the planet, the fre-
quencies are apparently increased. Starting from the
contemporary value of the solar parallax, Romer ob-
tained a relatively good numerical value for the velocity
of light. The fact that he anticipated Doppler’s principle
(2.3) by nearly two hundred years before its first spec-
troscopic application is seldom mentioned in texts on
astronomy and physics.

The first terrestrial determination of the velocity
of light was carried out by A. Fizeau in 1849 using
a rotating chopper in a light beam.

Another effect which is due to the finite velocity of
light is the aberration of light (Fig.2.17), which was
discovered by J. Bradley in 1728 while he was attempt-
ing to measure the parallax of fixed stars. When a star is
observed which would be perpendicular to the Earth’s
orbit for an observer at rest, the Earth’s (and thus the
observer’s) orbital motion makes it necessary to incline
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Fig.2.17. The aberration of light. The light from the stars
seems to be deflected in the direction of the velocity vector
of the Earth (left) by an angle v/c, where v is the component
of the Earth’s velocity perpendicular to the light propagation
direction and c is the velocity of light. A star at the celestial
pole thus describes a circle of radius equal to the ratio of
Earth’s velocity/velocity of light: & = 20.49”; in the ecliptc, it
moves on a line of maximum extension t«; and in between,
it describes an ellipse (indicated at the upper right). (*) shows
the true position of the star; an observer looking to the right
sees the star at intervals of 1/4 year in the positions /-2-3—4

the telescope by a small angle in the direction of the
Earth’s orbital velocity v in order to see the star; this
aberration angle is v/c. As aresult, a star at the celestial
pole appears to describe a small circle in the course of
ayear (Fig. 2.17, upper right); in the ecliptic it seems to
move back and forth on a straight line, and in between,
it moves on an ellipse. The usual analogy is that of an
astronomer who is walking rapidly through rain which
is coming straight down, and must incline his umbrella
forwards in order to stay dry.

This demonstration, like our elementary derivation
of the Doppler effect, is imperfect; it neglects the prin-
ciple of the constancy of the velocity of light in all
frames of motion, independently of the motion of the
source, which was demonstrated by the experiment of
A.A. Michelson and E.W. Morley in 1887. A consistent
explanation of all the effects of order v/c in that exper-
iment, and especially of those of order (v/c)?, is given
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by Einstein’s special relativity theory (1905). We treat
the relativistic Doppler effect in Sect. 4.2.1.

Finally, we give a summary of the numerical values of
the quantities discussed and their various relationships:

2.3 Mechanics
and Gravitational Theory

Following the tedious and even dangerous beginnings
made by Galileo Galilei and Johannes Kepler, Isaac
Newton in his Principia (1687) gave the first complete
treatment of the mechanics of terrestrial and extraterres-
trial systems. Combining it with his law of gravitation,
in the same work he derived Kepler’s laws and many
other observed regularities in the motions of objects
in the Solar System. It is not surprising that the further
development of celestial mechanics remained an impor-
tant field for the great mathematicians and astronomers
for nearly two hundred years.

We begin our treatment here by stating the
most important concepts and laws of mechanics and
the theory of gravitation for later reference: New-
ton’s laws of motion (Sect.2.3.1), conservation of
momentum (Sect. 2.3.2), conservation of angular mo-
mentum (Sect.2.3.3), the law of conservation of
energy (Sect. 2.3.4) and the virial theorem (Sect. 2.3.5),
and finally Newton’s Law of Universal Gravitation
(Sect.2.3.6). Its application to celestial mechanics is
then treated in the next section, Sect. 2.4.
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2.3.1 Newton’s Laws of Motion

We formulate Newton’s three basic laws of mechanics
in modern language:

1. A body remains in a state of rest or moves with
constant velocity in a straight line as long as it is not
subject to an external force (law of inertia).

We denote velocities in direction and magnitude by
avector (arrow), v; in a similar way, we denote the vector
quantity force by F: the vector quantities are indicated
in print by using boldface characters. The magnitude of
a vector quantity, e.g. of the velocity — the “length of
the arrow”, so to speak — is an ordinary number (scalar
quantity) and is denoted by absolute value signs [v| or
simply by the corresponding nonboldface character, v.

For the addition and subtraction of vector quanti-
ties, we use the vector parallogram: the two vectors are
represented by their components in a rectilinear coor-
dinate system x, y, z, i.e. by their projections on the
corresponding axes. Thus for example v = {v,, vy, v;}.

If a moving body has the mass m, the vector mass
times velocity

p=mv (2.4)

is defined as its momentum. This important concept
allows the formulation of the law of momentum:

2. The rate of change with time of the momentum of
a body is proportional to the magnitude of the exter-
nal force which acts on it, and is in the direction of
that force.

Mathematically formulated, we write for one body
(where ¢ is the time):

d_p _ d(mv) _F.

dr dr
Law 1 is clearly just a special case for F = 0 of law 2.
We can interpret the velocity v as the rate of change of
the position vector r with components {x, y, z}, and we
thus write v = dr/dt and, for m = constant, also

d’r

m i F.
This formulation (force = mass x acceleration) is how-
ever valid only for constant masses, while (2.5) remains
generally valid within special relativity theory, where
the mass depends on the velocity (Sect.4.2.2).

2.5)

(2.6)

If we consider N objects, denoted by indices k =
1,2,3...N, then (2.5) corresponds to the N vector
equations or 3N coordinate equations:

dpi _ d(myvy) _
dt dt

Newton’s final law deals with the interactions of two
bodies; it states that:

F; . 2.7)

3. The forces which two bodies exert on one another
have equal magnitudes and opposite directions.

If Fy is the force which body i exerts on body k, we
thus have:

Fy=—Fy . 238)
the law of action and reaction.

As a simple example of Newton’s laws of motion,
we consider a mass m (Fig. 2.18a) which moves at the
end of a string of length r in a horizontal circle with the
constant velocity v = |v|. Its angular velocity is then

de 2m v
= =—=- 2.9

@ dr P r (2.9)
(angle ¢ in arc measure, units = radians; P is the period
of the rotational motion.) Conversely, v =w-r.

Fig. 2.18a,b. Calculation of centrifugal force. (a) A point mass
m on a circular orbit, with the position vector r at the times
1,2, 3, ... and the velocity vector v = dr/dr tangential to the
orbit. The magnitude of v is v=r-d¢/df = wr. (b) Hodo-
graph. The velocity vector v at the times 1,2,3,... The
acceleration vector d v/dt points in the direction of the tan-
gent to the hodograph and is therefore parallel to —r. The

magnitude of the acceleration is v-d¢/df = v /r=a?r
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If we trace successive velocity vectors v using the
same starting point, thus drawing a socalled hodograph
(Fig. 2.18b), we can immediately see that the acceler-
ation |dv/dt| is equal to (v/r)v and points towards the
center of the circular path. We thus obtain the law of cen-
trifugal force which was derived by C. Huygens even
before Newton:

F= mv2/r = mw*r . (2.10)

Newton’s 3rd law states that the string pulls on its anchor
at the center with the same force that pulls the object
towards the center of its circular orbit.

When the details of the internal structure of a suf-
ficiently small object of mass m are not important in
mechanics, we speak of a point mass. In the theory
of planetary motion, for example, we can consider the
Earth to be a point mass.

From Newton’s three laws for the motion of individ-
ual point masses, we go on to the equations of motion
for a system of point masses. From them, we derive the
three conservation laws of mechanics, which we shall
often use later in this book.

2.3.2 The Conservation of Linear Momentum

In a system of N point masses m;, which we denumerate
by the indicesi ork (i, k=1,2,3... N), we distinguish
between internal forces Fj;, which for example mass i
exerts on mass k, and external forces F; (e), which are
exerted on the mass k from “outside”. This point mass
obeys the equation of motion (2.7):

d
_?_kzplfe)+ZEk. (2.11)

dr

Here and in the following sections, all summation signs
> imply a summation from k = 1 to N over all values
of k. Defining the total linear momentum of the system
by

P=) p
k
an the total external force acting on the system by

F= Z F®, (2.13)
k

we find, summing (2.11) over all values of k and using
(2.8), the equation of motion for the system, analogous

2.12)

to that for a single point mass:

dP
—=F.
dr

(2.14)
If no external forces act on the system (¥ = (), then the
law of conservation of total linear momentum applies:

P= Zpk = const . (2.15)

k

The content of equations (2.14) and (2.15) can be per-
haps more intuitively clarified if we define the position
vector R of the center of gravity of our system of overall
mass M =Y my:

MR=Y"mr. (2.16)
k

With this definition, (2.14) is converted into the equation
of motion of the center of gravity:

(2.17)

in analogy to that of a single point mass. We can see from
this last equation that in the case of no net external force,
F =0, the center of gravity must exhibit a straight-
line inertial motion with a constant velocity, dR/d¢ =
constant (in agreement with Newton’s 1st law).

2.3.3 Conservation of Angular Momentum:
the Area Theorem

We first consider a point mass m (Fig.2.19), which is
free to rotate about a fixed point O on a lever arm r.
A force F acts on m. This force tends to rotate the mass
around an axis through 0 and perpendicular to the plane
containing r and F; only the tangential component of the
force | F| sin« is effective in producing such a rotation,
where « is the angle between r and F. The quantity
“lever arm r times effective force component | F|sina”,
drawn as a vector perpendicular to the plane containing r
and F, is, in mathematical terms, the vector product r x
F, and in physical terms, it is the moment of the force
F around 0, also known as the torque M =r x F.

The torque is the equivalent of the force for ro-
tational motion; similarly, we can define a quantity

29
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Fig. 2.19. The torque My = ry x Fj. The absolute magnitude
of My is |r| - | Fi| sinc, i.e. equal to the area of the parallelo-
gram spanned by r; and Fy. The order of the factors is defined
in such a way that a right-handed screw which is screwed in
the direction from ry to F; would move parallel to M

corresponding to the linear momentum p = muv, the
angular momentum:

L=rxp=rxmv. (2.18)

We now multiply Newton’s equation of motion,

(2.14), vectorially from the left by r:
d

rxd—p=er=M, (2.19)
and then take the time derivative of the angular
momentum

dL dr n dp

—=—X rx —.

a a P
Here, the first term on the right is zero, since dr /df =
v, p = mv, and the vector product of the two parallel
vectors v and p is zero. We thus obtain the law of
conservation of angular momentum, initially for a point
mass k:

dL

=k _ M.

dt

If we consider a system of N point masses my, we
define the total torque of all internal and external forces
relative to the fixed point 0 as

M=Zrkka
k

= Zrk X (Fk(e) + Z E-k>
k i

(2.20)

2.21)

(2.22)

and the total angular momentum is defined by

L:Zrk xpk=2rkxmkvk. (2.23)
k k
The equation of motion then becomes
dL
— =M, (2.24)
dt

i.e. the time derivative of the angular momentum vector
is equal to the combined torque due to all the forces.

If only central forces act in our system, such as grav-
itational forces, for example, which act along the line
connecting two point masses, then the contribution to M
from internal forces vanishes and the right side of (2.24)
contains only the torque due to external forces, M‘©.

If, furthermore, no external forces are present or if
the resultant torque is zero, then dL/df = 0 and the im-
portant theorem of conservation of angular momentum
holds for the system of masses:

L= Zrk X my VU = const . (2.25)

k

2.3.4 Conservation of Energy

If a point mass m moves under the influence of a force
F along a differential path element dr, the latter making
an angle o with the force F, then the net work:

dA = |F||dr| cosa=F-dr (2.26)

is performed. The scalar product of the two vectors is
denoted by a raised dot “-”. If we calculate the work
performed on passing along a finite section of an orbit,
1 — 2, using the Newtonian equation of motion (2.5)
and v =dr/d¢, we find:

2 2

d 1)
de 2 1

1 1

(2.27)

The scalar quantity which appears on the right, or its sum
over several point masses, is called the kinetic energy:
1 p?

Evin == mvt = — .
"2 2m

In the following, we shall limit our discussion to

conservative forces, among which in particular is the

(2.28)
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gravitational force (Sect. 2.3.6). Such forces may be de-
rived from a Potential ®@(r) (which may, for example,
depend only on position):

P 9P 9P

F=—mgrad¢:—m{— }

,—, — 2.29
ox dy 0z ( )

Here, the gradient of & is a vector, whose components
are given in (2.29) for a cartesian coordinate system. The
zero point of the potential can be arbitrarily chosen,; it
then follows from (2.29) that F-dr is an exact differ-
ential and the work performed by the forces, [ F-dr,
is independent of the actual orbits of the point masses
and depends only on the initial and final positions of m.
If we now introduce the potential energy

Epot =me (2.30)

then from (2.27), the important theorem of conservation
of energy holds:

E = Eyin + Epo = const, (2.31)

i.e. the sum E of kinetic energy Ey;, and potential energy
Epq 1s constant.

In a system of point masses m; with conservative
forces, (2.31) holds when Ey;, and Ep are interpreted
as the sum over the contributions from all the point
masses k. In a system with gravitational forces — as in
many other cases — Eyi, depends only on the velocities
and E, only on the positions of the point masses.

2.3.5 The Virial Theorem

An important basis for the understanding of many prob-
lems, not only in celestial mechanics but also in the
structure and evolution of stars and stellar systems, is
the virial theorem of R. Clausius (1870). In an isolated
system of point masses, we consider the time variation
of the quantity Y  py - r¢. By differentiating, we find

d dp:
bl = == . 2.32
ar Ek Dk Tk Ek m ry+ Ek Pi-v, (2.32)

or — cf. (2.27) — using the equation of motion (2.7) and
the kinetic energy defined above (2.28),

d
a‘t‘Xk:Pk'rk =Xk:Fk~rk+2Ekjn. (2.33)

If we now average this expression over a sufficiently
long time, the mean value of the left side is equal to
zero (as long as r; and p; are finite for all the point
masses, and therefore Y py - ry remains bounded), and
we obtain the virial theorem:

1
Ekin = —EXk: Fk-rk .

(2.34)

In order to evaluate the virial ), Fi-ri, we must
know the forces F;. We initially consider only a sin-
gle particle of mass m under the influence of a central
(conservative) force o< r" with the corresponding po-
tential @ oc r"t1 (2.29), where r = (x> +y*> + 2912 is
the distance from the origin of the coordinate system.
The virial is then defined with r(d®/dr) = (n+ 1)® and
(2.30) by:

~ - do S
ZFk~rk =—m-r—= —(n+1)Epot ,
p dr

(2.35)

i.e. (—n — 1) multiplied by the time average of the poten-
tial energy. In the important case that the point masses
are held together by gravitational forces (Sect.2.3.6),
n = —2, so that the total energy E distributes itself
in such a way between the kinetic and the potential
energies that the time averaged energies obey

Eiin = —3 Epot (2.36)
and, with (2.31),

En=—E (2.37)
holds.

For a system of gravitationally interacting point
masses, Epq consists of individual contributions from
rl.'}(“, where ry, = |r; —ry| is the relative distance of two
point masses / and k. As can be verified by calculation,

for such a system Eqns. (2.36) and (2.37) likewise hold.

2.3.6 The Law of Gravitation.
Gravitational Energy

In order to obtain a theory of celestial motions, Newton
had to add his law of universal gravitation (ca. 1665) to
his basic laws of mechanics:
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Two point masses m; and m; at a distance r attract
each other along the line joining them with a force of
magnitude
m;my

Frnn=G )

(2.38)

By carrying out an integration, which we shall not
repeat here, Newton first demonstrated that exactly the
same law (2.38) holds for the attraction of two spherical
mass distributions of finite size (e.g. the Sun, a planet,
etc.) as for the corresponding point masses. He then
verified the law of gravitation by assuming that free fall
near the Earth’s surface (Galileo) and the lunar orbit
are both dominated by the gravitational attraction of the
Earth.

The acceleration (force/mass) for a free fall can be
determined in experiments with falling objects, or, more
precisely, with a pendulum. Its exact value depends on
the location on the Earth, and is reduced by the centrifu-
gal acceleration of the Earth’s rotation (Sect. 3.2.1). Its
standard value for an “average” Earth, after correction
for the Earth’s rotation, is equal to:

ge=9.81ms2. (2.39)

On the other hand, the Moon moves on its
circular orbit of radius ry = 60.3 Rg = 3.84- 10 m
with a velocity v =2nry/P (P =1 sidereal month
=27.32d=2.36-10%s) and is thus subject to the
acceleration (Fig.2.18):

v2 4nlry

M= '™ - P 2
(gm should not be confused with the acceleration which
an object experiences on the Moon’s surface.)

The accelerations gg and gy are, in fact, related as
the inverse squares of the radii of the Earth, Rg, and of

the lunar orbit, ry, i.e.

=272.103ms™2. (2.40)

1 1
CE gM = — —2—:3620. (2.41)

R12~: ™
The numerical value of the universal gravitation con-
stant G appears here [cf. (2.38)] only as a product with
the initially likewise unknown mass of the Earth, M.
Similarly, in other astronomical problems, G occurs
only in a product with the mass of the attracting celes-
tial object. Thus G can, for fundamental reasons, not be
determined by astronomical measurements; instead, it
must be found from terrestrial experiments.

The first attempt at such a measurement was that of
N. Maskelyne in 1774, who investigated the deflection
of a plumb line by a large mass (a mountain). In 1798,
H. Cavendish used a torsional balance, and in 1881,
P. v. Jolly performed measurements with a suitable beam
balance. The result of modern determinations is

G =(6.673+£0.010)- 107" m*s?kg™! . (242)

Gravitational Energy. For applications to celestial me-
chanics and for the understanding of the structure of
planets and stars, we still need the gravitational en-
ergy, i.e. the potential energy which results from the
action of gravitational forces. We first consider a point
mass m at a distance r from a pointlike central mass M;
we can readily convince ourselves that the potential or
the potential energy associated with Newton’s law of
gravitation (2.38) is given by:

GM

o =-2X, ox
r

Epot(r) =—m T . (243)

The potential energy can also be considered as the
work which must be performed when (in a virtual exper-
iment) we remove the mass M from the distance r under
the influence of the gravitational force G(Mm/r?) to
infinity (r — o0):

(o]
Mm GM

Ep(r) =G —zdr =—m—. (2.44)
r r

y
The negative sign of the gravitational potential indi-
cates a binding energy or an attractive interaction: if the
distance between the two masses is reduced, then en-
ergy is set free from the overall system; e.g. it might be
converted into kinetic energy of m. Conversely, energy
must be put into the system if we are to increase the
distance.

If we now consider a spherically symmetrical mass
distribution of radius R, then — as we already mentioned
— the gravitational action in the exterior region r > R
remains the same. A sphere thus acts as if its mass were
concentrated at its center. We shall not consider here the
more complicated potential in the interior of the sphere,
which in contrast to that outside the sphere is dependent
on the mass distribution.

The Acceleration of Gravity. For a sphere of radius R
having the mass M, we give the acceleration of grav-
ity: g(r) = d®(r)/dr. According to (2.43), outside the
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sphere we have

GM
gln= 7 (r=R), (2.45)

i.e. the same value as for a point mass M. However, at
a point r within the sphere, the acceleration of gravity
is

GM(r)
g = ;] (r<R); (2.46)
it thus depends only on the mass within 7,
r
M(r) = 4n / o(r)r*dr’,
0
dM(r) = 4rr’o(r)dr . (2.47)

Naturally, both expressions give the same value at the
surface of the object, R:

GM

gEg(R)=F,

since M = M(R).

We immediately apply (2.48) and calculate from
ge =9.81 ms~2, the acceleration of gravity at the
Earth’s surface, with the known value of the radius
of the Earth, Rg = 6378 km, its mass Mg and — with
M = (4/3)0R> — its mean density. We obtain

Mg =597-10"kg, 7 =5500kgm™ .

(2.48)

(2.49)

We shall return to a discussion of the geophysical
significance of these numbers later.

The Homogeneous Sphere. Finally, we calculate the
gravitational energy Eg of a homogeneous sphere of
radius R with a constant interior density o(r) = go.
Starting with a sphere of radius r and mass M(r)
— as an “intermediate step” — we add a shell of
mass dM(r), and find a gain in potential energy
dEg = ~GM(r)dM(r)/r. With

M(r) = i;r3go, dM(r) = dmr’gedr  (2.50)

we immediately obtain

R
M@PAM(r) 4\ LR
=G| ———L=23G(—+) &+
Ea / r ( 3 ) 75
0

364
5 R

2.51)

For an arbitrary density o(r), only the numerical factor
changes, so that in general, the gravitational energy of
a sphere of radius R has the order of magnitude

_GM®

Eg >~ R (2.52)

2.4 Celestial Mechanics

Celestial mechanics deals with the application of New-
ton’s law of universal gravitation and the laws of
mechanics to the motions of the various bodies which
make up our Solar System.

First, we go back to Newton’s Principia and derive
Kepler’s laws from the basic equations of mechanics
and the law of gravitation, in order to gain a deeper un-
derstanding of the laws themselves and of the numerical
values which occur in them. We apply Kepler’s laws im-
mediately to the orbits of the planets (Sect. 2.4.1) and to
the determination of the masses of the celestial objects
(Sect.2.4.2). We then calculate — with later applica-
tions in mind — the escape veloticy (Sect.2.4.3) and
the rotational energy of a rigid body (Sect.2.4.4). We
treat precession (Sect. 2.4.5), the problem of the tides
(Sect. 2.4.6), and finally, we consider from the modern
point of view the relation between the Ptolemaic and
the Copernican worldviews (Sect.2.4.7). Applications
of celestial mechanics to artificial satellites and space
probes are treated later, in Sect. 2.5.1.

2.4.1 Kepler’s First and Second Laws:
Planetary Orbits

The mass of the Sun is clearly very much greater than
that of any of the planets, so we start by treating the Sun
as fixed and calculate the radius vectorsr orr = |r| of the
planets from the center of the Sun. The mutual attraction
of the planets among themselves, their perturbations,
will be left out of our calculations.

The motion of one planet around the Sun is governed
by the central force G Mgm/r?, where M, is the mass
of the Sun, and m (<& M) is that of the planet. Conser-
vation of angular momentum (2.25) thus holds, i.e. the
angular momentum vector of the planet

L=rxmv (2.53)
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Fig. 2.20. The surface area swept out by a planet per unit time
within its orbit, %lr X v = %rv sina

is constant in magnitude and direction. Here, v is the
planet’s orbital velocity vector and r its position vec-
tor. Both remain in the same plane, perpendicular to
L, the spatially fixed orbital plane of the planet. The
magnitude of |r x v| = rvsin« (Fig. 2.20) is twice the
area which is swept out by the radius vector r of the
planet per unit time. Conservation of angular momen-
tum is therefore identical with the statement that each
planet follows an orbit in a fixed plane with constant
areal velocity (Kepler’s 2nd and part of his 1st laws).

We shall not reproduce here the somewhat tedious
calculations which show that the orbit of a point mass
(planet, comet, etc.) under the influence of a central
force proportional to 1/r> must be a conic section,
i.e. a circle (eccentricity e = 0), an ellipse (0 < e < 1),
a parabola (e = 1), or a hyperbola (e > 1) with the Sun
in one focus (Kepler’s first law).

2.4.2 Kepler's Third Law:
Determination of Masses

We shall carry out the calculation of planetary motion
and the derivation of Kepler’s 3rd law only for circular
orbits. The general calculation can be found in any text
on classical mechanics. However, in view of future ap-
plications, we shall not restrict the mass m of the planet
to be much less than the mass Mg of the Sun. We there-
fore consider the motion of two masses around their
common center of gravity, and, on the other hand, the
relative motion of the two masses with respect to, for
example, the larger one. Let m; and m; be the masses
and a; and a, their respective distances from the center
of gravity S (Fig. 2.21). Then a = a; + a; is their mutual
distance. Using the definition of the center of gravity,

we have:
ay:a:a=mp:my:(m+my) or
mims
mia; =myady = ———a = [ua, (2.54)
mi+ma
where
mymyp 1 1 1
v=——, —-=—+— (2.55)
mi +ms noomp my

is termed the reduced mass. For each of the two
masses m; and m;, the force of gravitational attrac-
tion, Gmimy/a®, must be balanced by the centrifugal
force. Calling the orbital period of the system P, we
find for the centrifugal force on my:

myv? 2\ ?
— =\ -0 miasg .
ai P

Because of action =reaction, as expressed in (2.54),
asimilar equation and the same value of P naturally hold
for m,. Applying this equation once more, together with
(2.54), we obtain after rearranging Kepler’s 3rd law:

a3

P2
If we relax the requirement of a circular orbit (we
shall not carry out the explicit calculation here), the
masses m; and m, are found to move on similar conic
sections around the center of gravity S; the relative orbit
is also a corresponding conic section. Instead of orbital
radii, we then have orbital semimajor axes, which are
likewise denoted by a;, a; and a. We thus obtain a gen-
eralized version of Kepler’s 3rd law (2.57). In the Solar
System, as we shall see, the mass of e.g. the largest
planet, Jupiter, is only about 1/1000 the mass of the
Sun. To this accuracy, we can therefore set the expres-
sion m; +my on the right-hand side of the equation
equal to the Sun’s mass, Mg

(2.56)

G

Fig.2.21. The motion of the masses m{ and mj about their
common center of gravity S. From the definition of the center
of gravity, mia; = maay



2.4 Celestial Mechanics

By inserting the numerical values of a and P for the
orbit of the Earth or another planet into (2.57), we obtain
the solar mass Mg. Its apparent disk radius of 16/,
together with a, gives the solar radius, Rp. From M =
(47/3)R3p, we finally obtain the mean density of the
Sun, 9. The numerical values are:

Mass Mg =1.989-10"kg,
Radius Rg =6.960-108m,

Density §o = 1409kgm™ . (2.58)

The uncertainty in these values is in each case about £
one unit in the last place.

In a similar way, we calculate the masses of the plan-
ets (Table 3.1) by applying Kepler’s 3rd law to the orbits
of their moons. If the planet has no moons, then mu-
tual perturbations of the planets must be used; this is of
course much more difficult. Space travel has opened up
further possibilities of determining planetary masses by
observing the orbital motions of artificial satellites and
space probes.

2.4.3 Conservation of Energy
and the Escape Velocity

It is instructive to consider the “Kepler problem” again
from the point of view of energy conservation (2.31);
this requires that the total energy E, e.g. for a planet,

1 GM
E = Exin+ Epot = Emvz—m =

(2.59)

remain constant in time. We can immediately see again
from this that the velocity increases on going from the
aphelion to the perihelion. For a circular orbit (v = vyp),
the centrifugal force is equal to the attractive force of
the two masses, and therefore mv3/r = m GMp/r?, or
lmv2 = lm GMo .

270972 r
Thus, the kinetic energy Eyiy is equal to — Ei/2, a spe-
cial case of the virial theorem (2.36) for the periodic
motion of a single point mass attracted by a central
force.

If, on the other hand, we consider a parabolic orbit
(e.g. a nonperiodic comet), which is the limiting case
of an elliptical orbit extending to infinity, we find that
at infinity, both the kinetic and the potential energy, and

(2.60)

thus the total energy, are zero. Since E is a constant of
the motion, from E = 0 it follows using (2.59) that:
2 M
o™ o
2 r

Eyin = _Epot .

(2.61)

At the same distance from the Sun, the parabolic veloc-
ity, i.e. v on a parabolic orbit, is larger by a factor of V2
than the velocity on a circular orbit. For example, if the
mean velocity of the Earth is 30 kms™!, that of a comet
or meteor swarm which meets us on a parabolic orbit
would be 30+/2 = 42.4kms™.

Conversely, the conservation of energy in the limiting
case of a parabolic orbit, (2.61), also determines the
escape velocity,

2GM
Ve = ©

=2,
i.e. the smallest velocity which an object must have
in order to leave a circular orbit at a distance r from
a central mass M and to escape its gravitational field.
For example, the escape velocity for leaving from the
Earth and completely escaping the Solar System is ve =
42.4kms~!, while that for escaping from the Earth’s
gravitational field starting from the surface of the Earth
is 11.2kms~! (cf. Sect. 2.5.1).

(2.62)
p

2.4.4 Rotation and the Moment of Inertia

For later applications, we give the intrinsic or proper
angular momentum of a rigid rotating body, in which
all the mass points m; have the same angular velocity

vector o, so that their (linear) velocities are:
(2.63)

Ve =WXTryg.

The proper angular momentum (“spin”) of the body
follows then from (2.25):

S:Zrkxmk(wxrk)zlw,
k

(2.64)

where
1= Z mkr,f
k

is the moment of inertia of the body relative to the
particular axis of rotation.

(2.65)
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For a “dumbbell”, i.e. two masses m; and m, which
rotate rigidly about their common center of gravity at
a fixed distance a (Fig. 2.21), it follows from (2.54) that

=M e 2 (2.66)

where u again denotes the reduced mass.
For a homogeneous sphere of mass M and radius R,
we have:

I1=2MR*. (2.67)

The rotational energy of the body, i.e. the total ki-
netic energy (2.28) which is associated with the (rigid)
rotation of all the point masses, is given by

1 1
Eo = 2 Ek mkv,% = 3 Ek mkr,f w? or
1 52
Eri= 3 I = 3 (2.68)

2.4.5 Precession

Besides the Kepler problem, Newton solved numerous
other problems in celestial mechanics. We shall first
consider precession, at least in outline form.

The “wobble” of the Earth’s axis around the pole of
the ecliptic is a result of the same physical phenomenon
as the wobbling of a top under the influence of gravity:
the equatorial bulge of the Earth is pulled into the plane

Fig. 2.22. Lunar precession

of the ecliptic by the Sun and the Moon, whose mass
we can imagine to be distributed around their orbits
over the long precession period of the Earth’s axis (the
Moon has only a small orbital inclination). The angular
momentum vector S of the Earth’s rotation, which is es-
sentially parallel to the rotation axis, reacts to this torque
M (Fig. 2.22) according to (2.24). The rate of change in
the Earth’s spin S, given by dS/dr = M, produces the
circling motion of §, i.e. of the Earth’s axis, on a cone
of constant vertex angle, as can be seen in Fig.2.22.
Numerical calculation yields the correct period for the
lunisolar precession (Fig. 2.22).

2.4.6 TheTides

Next, we turn briefly to the old problem of the tides.
Galilei became involved in controversies with his con-
temporaries over a wholly incorrect theory of the
12-hour alternation of ebb and flow (the tides being
known to Mediterranean peoples only by hearsay); they
were a major contributor leading to his unfortunate trial
by the Inquisition. It was again Newton who developed
the elements of a static theory of the tides (Fig.2.23).
We assume here for simplicity that the common cen-
ter of gravity of the Earth and the Moon lies at the
midpoint of the Earth. In fact, it is at a distance of 0.73
Earth radii from the midpoint, but still within the Earth
(2.54). The gravitational acceleration due to the Moon

Fig. 2.23. The static theory of the tides. The acceleration of
the three points indicated relative to the Moon corresponds to
their differing distances from it: A, lower culmination of the
Moon: a —ag; B, center of the Earth (center of gravity): a; C,
upper culmination of the Moon: a + ag. The (rigid) Earth takes
on, as a whole, the acceleration a. Therefore, at the points A
and C, an acceleration ag is left over, and it produces a high
water level at both these points
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is exactly compensated by centrifugal acceleration only
at the center of gravity (midpoint of the Earth); at every
other point, a tidal acceleration occurs as their differ-
ence. The acceleration vector ag at the surface of the
Earth (at the Earth’s radius Rg), acting for example on
a water droplet in the ocean, points upwards both at
the upper and at the lower culmination of the Moon,
i.e. at the passages of the Moon through the meridian
in the north and the south. Accordingly, correspond-
ing to the apparent motion of the moon (1 lunar day =
24 h 51 min), two “high-water peaks” and two “low-
water valleys” will continually circle the Earth, getting
later by 51 minutes (at any given point) every day.

The difference between the accelerations of gravity
due to the attractive mass M of the Moon acting at the
Earth’s center (at a distance r from M) and that at e.g.
the lower culmination (at a distance r + Rg, point A in
Fig.2.23) is then

GM  GM _2GM
r2 (r+Rg)? 13

The tidal acceleration is thus only a tiny fraction of the
Earth’s gravitational acceleration, ag = 1077 ge. It is
a differential acceleration and is therefore proportional
to 1/r3; it is thus a stronger function of the distance
than the gravitational acceleration and force. For this
reason, the tidal force due to the Sun is only about half
as great as that from the Moon, although the Sun’s mass
is enormously greater. At the new Moon and full Moon,
the tidal forces of the Moon and the Sun act together and
produce a spring tide; in the first and last quarters of the
Moon, they oppose each other and we have a neap tide.

This static theory given here in fact only explains the
rough features of tidal phenomena; the exact theory of
tides takes into account in detail the Earth’s rotation,
the fact that the center of gravity is not at the Earth’s
midpoint, and the spatial and directional variation of the
vector ag on the Earth’s surface. It is then found that in
reality this vector’s horizontal components “shove up”
the water into tidal peaks and are therefore the real “driv-
ing force” behind tidal motion. Furthermore, the deep
areas and coastal regions of the oceans play a decisive
role in the dynamic theory of the tides (G.H. Darwin),
in which forced oscillations that are produced in the
oceanic basins by tidal forces with the different peri-
ods of the apparent solar and lunar motions lead to the
propagation of waves.

ag = RE . (269)

The average tidal height (twice the amplitude of the
tidal oscillations) can in the presence of resonances in
some places (e.g. the Bay of Fundy, Canada) be as large
as 16 m. The tidal forces also cause lifting and sinking
of the Earth’s crust of up to £0.3 m.

Tidal friction in the oceans and in the Earth’s crust
produces a braking effect on the Earth’s rotation (a de-
crease in the angular velocity, Awg) and thus an increase
in the length of the day. The tiny increase of ca. 2 ms
per 100 yr is readily measurable over geologic times
(Sect. 14.1.4).

According to the law of conservation of angular mo-
mentum (2.64), the angular momentum of rotation lost
by the Earth, ASg, must be transferred to the orbital
motion of the Moon; thus

ASg+ AL = IgAwg + MA(wr?) =0 (2.70)
holds. The Moon’s intrinsic angular momentum can be
neglected here. Since furthermore, from Kepler’s 3rd
law (w?r® = const), the angular momentum L is pro-
portional to the square root of the orbital radius r, the
Moon must be gradually moving away from the Earth,
i.e. its orbital period P = 27/w is increasing. This will
continue to occur until the length of the day and the
orbital period of the Moon have equalized.

In recent times, the use of Lunar Laser Ranging has
permitted the determination of the distance to the Moon
with a precision of around 1 cm, so that this effect
of tidal friction can be directly measured. The value

— averaged over a few years — has been found to be
(3.74£0.2)cmyr~1.

2.4.7 The Ptolemaic
and the Copernican Worldviews

Before leaving the theory of planetary motions, we want
to consider the decisive change which was made in
going from the Ptolemaic to the Copernican worldview,
looking back from our modern standpoint (Fig. 2.24).

Viewed from the Sun (heliocentric system), let us
denote the position vector of a planet by rp, and that of
the Earth by rg. Then as seen from the Earth (geocen-
tric system), the position of the planet is given by the
difference vector

2.71)

We turn once more to the geocentric view of Ptolemy:
(a) for the outer planets, e.g. Mars, we begin by first

R=r,-rg.
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drawing the vector r, from the Earth and letting it ro-
tate as it did before around the Sun. Following (2.71),
we then add the vector —rg (the position vector of the
Sun as seen from the Earth) and thus obtain the posi-
tion vector R of the planet as seen from the Earth. The
imaginary circle which r, describes with its sidereal pe-
riod around the Earth is the Ptolemaic deferent. The
other circle around the point r, which is described by
the planet at the end of the vector —rg with the side-
real period of the Earth is the Ptolemaic epicycle. (b)
For the inner planets, it appeared more reasonable to the
Alexandrians to first let the larger vector circle the Earth
with a period of one sidereal year as the deferent, and
then to allow the smaller vector ry, to circle the point —rg
with the sidereal period of the planet as the epicycle.

So far, the geocentric constructions still correspond
exactly to the equation R =rp, —rg. Scheme (b), applied
to all the planets, would represent the worldview of
Tycho Brahe.

Fig. 2.24. The motion of an outer planet (Mars) and an inner
planet (Venus) on the celestal sphere, represented in helio-
centric and in geocentric pictures (O = Sun, @ = Earth). The
dashed arrow indicates in each case the position of the planet
in the sky. Correspondingly, for:

outer planets inner planets

deferent o —rE

epicycle —rg p

In fact, however, we have not yet completed the
transition to the Ptolemaic system: as long as only the
positions of the planets in the sky, i.e. only their direc-
tions but not their distances, could be measured, only
the direction, not the magnitude, of the vector R was
of importance. One could therefore draw the vector R
on a different scale for each planet. This means that the
vectors

" = Ap- Rp 2.72)

with a fixed but purely arbitrary numerical factor A,
for each planet, give a completely satisfactory repre-
sentation of the motions of the planets in the sky in the
Ptolemaic system.

Now we can see clearly what was lost in our stepwise
return from the Copernican to the Ptolemaic system:

1. The change of coordinate system means relinquish-
ing a simple mechanical explanation.

2. The scale factors A leave the positions of the planets
in the celestial sphere unchanged, but the mutual re-
lations of the planetary positions among themselves
are lost.

3. The fact that in the Ptolemaic system the annual pe-
riod, corresponding to the motion of rg, is introduced
independently for each planet, is another indication
of the “clumsiness” of the ancient worldview.

However, it is important to recognize that a purely
kinematic consideration of the planetary motions in the
sky did not allow a decision to be made between the
ancient and the modern views. Only Galileo’s obser-
vations with his telescope (1609) led to progress: (a)
Jupiter, with its freely orbiting moons, could be seen
as a “model” of the Copernican solar system. (b) The
phases of Venus are determined by the relative positions
of the Sun, Earth, and Venus. The smallness of the phase
angle e.g. for Jupiter also supports Copernicus. Even the
very idea of a celestial mechanics presupposes, as we
should keep in mind, that the basic similarity of cosmic
and terrestrial matter and its physics be recognized.

2.5 Space Research
Astronomy owes to the advent of space travel a great

expansion in available observational methods and with
it, an enormous increase of knowledge. On the one
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hand, the spectral regions which were previously inac-
cessible due to absorption in the atmosphere have been
opened up for observations: the far ultraviolet, X-ray
and gamma-ray regions, and at longer wavelengths, the
infrared out to the millimeter-wave range and finally the
radiofrequencies which are reflected by the ionosphere,
with wavelengths longer than ca. 30 m. On the other
hand, near flybys of objects in the Solar System and
landings onto them have become commonplace, and
they offer a wealth of new observational possibilities.

As a conclusion to our discussion of celestial me-
chanics in the previous Sect. 2.4, we shall in the next
section take a brief look at the orbits of artificial satel-
lites and spacecraft (Sect.2.5.1). Then, in considering
the development of space travel in Sect. 2.5.2, we con-
fine ourselves to those aspects relevant to astronomical
observations. Finally, we give an overview of the space
missions which have investigated our nearest neighbor,
the Moon (Sect. 2.5.3), and other objects in the Solar
System (Sect. 2.5.4).

Here, we will consider only the gravitational field of
the Earth, limit ourselves to circular orbits, and neglect
the braking effect of the atmosphere.

2.5.1 The Orbits of Artificial Satellites
and Space Vehicles

A satellite in a circular orbit near the Earth (Earth’s ra-
dius Rg = 6378 km) must have, according to (2.60),
a velocity near vy=7.9kms™! and an orbital pe-
riod near Py=84.4min. In a larger orbit with
a radius r, from Kepler's 3rd law the velocity
must be v=uvy(r/Rg)""/? and the period must be
P = Py(r/Rg)?/?. Of particular importance is the fact
that the period becomes equal to one sidereal day
(P = 1) for r = 6.6 Rg. A geostationary satellite at this
distance then “stands” at an altitude of nearly 36 000 km
above a fixed spot on the Earth’s surface.

In order to allow a spacecraft which lacks its own
drive motor to escape from the gravitational field of the
Earth (alone) and travel to infinite distances, it must start
with at least the parabolic or escape velocity vov/2 =
11.2kms™! (cf. (2.61)).

Jules Verne, in his great novel “From the Earth to the
Moon” (1865), suggested a solution to this problem by
using a gigantic cannon. This would not work, however,

since the initial velocity of a cannon shell cannot be
much greater than the velocity of sound in the gases
from the explosive charge, which is too small.

Higher velocities can be reached by using rockets. We
shall first deal with the mechanics of rocket propulsion
by considering a rocket without the influence of gravity
(i.e. on a horizontal test ramp or in space) and without
air resistance. Let the mass of the rocket’s hull and other
parts plus fuel at time ¢ be given by m(f). The change
in m(t) per unit time, corresponding to the mass of
combustion products expelled from the rocket per unit
time, is dm/dr. If we now call the expulsion velocity
of the combustion gases u, then a momentum equal to
—(dm/df)u will be transferred to the rocket per unit
time. Considering the acceleration of the rocket from
the point of view of an astronaut moving along with it,
we obtain the Newtonian equation of motion:

o dv dm
mil)—=——u or
dr

dr
dv  dm
u  m@)’
By integrating and using the initial condition that for

(t =0, v =0) the mass is equal to m, we find the rocket
equation

(2.73)

v=uln 22 (2.74)

m(t)

If we had taken the (homogeneous) gravitational field
in the neighborhood of the Earth into account, for a verti-
cal takeoff we would have had on the right the additional
well-known term —ggt.

Taking the relatively favorable values u =4 kms~!
and mgy/m = 10 at burnout, we find a final velocity
(without air resistance!) for our single-stage rocket of
v=9.2kms™!. For real space travel, it is thus neces-
sary to use multi-stage rockets, whose basic principle
quickly becomes clear on repeatedly applying the rocket
equation (2.74).

An extremely effective method which is frequently
applied in space travel is the flyby (or “slingshot”) tech-
nique, which produces a change in the orbit of a space
probe without consuming fuel, making use of the gravi-
tational field of a massive planet, e.g. Jupiter. We denote
the velocity of the probe as v and that of the planet as vp
— both relative to the Sun —, then, according to energy
conservation (2.59), the magnitude of the relative ve-
locity |v — vp| at a large distance from the planet before
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Fig. 2.25. The orbit of the space probe Ulysses, seen from an
angle of 15° above the ecliptic. Its second passage through
perihelion occurred in May, 2000. The tick marks along the
orbit indicate time intervals of 100 days

and after the flyby remains constant, but its direction
in general will change. More important, however, is the
fact that the space probe can be accelerated or deceler-
ated relative to the Sun, since its relative velocity and
the velocity of the planet vp add vectorially. As an ex-
ample, in Fig. 2.25 we show the redirection of the space

Table 2.3. Some Astronomical Satellites

probe Ulysses by Jupiter out of the plane of the eclip-
tic; and in Fig. 2.28, we illustrate the flight paths of the
two Voyager probes to the outer planets.

2.5.2 Astronomical Observations from Space

A preliminary phase of space research was the inves-
tigation of the celestial objects from simple rockets,
which can be carried out with a relatively moderate in-
vestment; the observational time is, however, limited
to a few minutes. The V-2 rockets constructed in Ger-
many during the 2nd World War could attain heights
of nearly 200 km. After the war in the USA, the V-2
and improved rockets were employed for the investiga-
tion of the highest layers of the atmosphere (the ozone
layer and the ionosphere) and of short-wavelength solar
radiation.

In 1957, Soviet researchers succeeded in launching
the first artificial satellite Sputnik 1 into an orbit of alti-
tude between 225 and 950 km. Since then, thousands of
satell<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>